ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Determination of CO2 Solubility in Saturated Liquid CH4 + N2 and CH4 + C2H6 Mixtures above Atmospheric Pressure

View Author Information
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
*Tel.: +86-21-34206533; fax: +86-21-34206814; e-mail address: [email protected]
Cite this: J. Chem. Eng. Data 2012, 57, 8, 2296–2303
Publication Date (Web):July 18, 2012
https://doi.org/10.1021/je3002859
Copyright © 2012 American Chemical Society

    Article Views

    570

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (663 KB)

    Abstract

    Abstract Image

    Accurate CO2 solubility data are crucial for putting a proposal of pressurized liquefied natural gas (PLNG) project into practice. A solid–liquid equilibrium (SLE) apparatus, which is based on the static–analytic method, has been set up to measure the solubility of carbon dioxide in saturated liquid CH4/CH4 + N2/CH4 + C2H6 in the pressure region from atmospheric up to 3 MPa, corresponding to the temperature region from (112 to 170) K. In addition, Peng–Robinson (PR) and Suave–Redlich–Kwong (SRK) equations-of-state (EOS) are selected to calculate the solubility of carbon dioxide in CH4 + N2 and CH4 + C2H6 mixtures, and the results are consistent with the experimental data in the whole region. Two temperature-dependent correlations for the interaction coefficients kij on CH4 + CO2 system are derived by the experimental data for PR and SRK EOS, which can improve the calculation accuracy of the binary and ternary solid–liquid phase equilibrium.

    Cited By

    This article is cited by 34 publications.

    1. Ting He, Wensheng Lin, Zhimin Du. Measurement and Theoretical Calculation of CO2 Solubility Data in Liquid CH4 + C2H6 Mixtures at Cryogenic Temperatures. Journal of Chemical & Engineering Data 2022, 67 (10) , 3222-3233. https://doi.org/10.1021/acs.jced.2c00237
    2. Giorgia De Guido, Elvira Spatolisano. Simultaneous Multiphase Flash and Stability Analysis Calculations Including Solid CO2 for CO2–CH4, CO2–CH4–N2, and CO2–CH4–N2–O2 Mixtures. Journal of Chemical & Engineering Data 2021, 66 (11) , 4132-4147. https://doi.org/10.1021/acs.jced.1c00330
    3. Jingxuan Xu, Ting He, Wensheng Lin. Experimental and Theoretical Study of CO2 Solubility in Liquid CH4/H2 Mixtures at Cryogenic Temperatures. Journal of Chemical & Engineering Data 2021, 66 (7) , 2844-2855. https://doi.org/10.1021/acs.jced.1c00223
    4. Liangguang Tang, Chaoen Li, Seng Lim. Solid–Liquid–Vapor Equilibrium Model Applied for a CH4–CO2 Binary Mixture. Industrial & Engineering Chemistry Research 2019, 58 (39) , 18355-18366. https://doi.org/10.1021/acs.iecr.9b02389
    5. Mauro Riva, Paolo Stringari. Experimental Study of the Influence of Nitrogen and Oxygen on the Solubility of Solid Carbon Dioxide in Liquid and Vapor Methane at Low Temperature. Industrial & Engineering Chemistry Research 2018, 57 (11) , 4124-4131. https://doi.org/10.1021/acs.iecr.7b05224
    6. Xiaojun Xiong, Wensheng Lin, Rong Jia, Yang Song, and Anzhong Gu . Measurement and Calculation of CO2 Frost Points in CH4 + CO2/CH4 + CO2 + N2/CH4 + CO2 + C2H6 Mixtures at Low Temperatures. Journal of Chemical & Engineering Data 2015, 60 (11) , 3077-3086. https://doi.org/10.1021/acs.jced.5b00059
    7. Stefano Langè, Laura A. Pellegrini, Paolo Vergani, and Marco Lo Savio . Energy and Economic Analysis of a New Low-Temperature Distillation Process for the Upgrading of High-CO2 Content Natural Gas Streams. Industrial & Engineering Chemistry Research 2015, 54 (40) , 9770-9782. https://doi.org/10.1021/acs.iecr.5b02211
    8. Mauro Riva, Marco Campestrini, Joseph Toubassy, Denis Clodic, and Paolo Stringari . Solid–Liquid–Vapor Equilibrium Models for Cryogenic Biogas Upgrading. Industrial & Engineering Chemistry Research 2014, 53 (44) , 17506-17514. https://doi.org/10.1021/ie502957x
    9. Xian Wang, Xiufang Zhao, Wei Yin, Jiayu Zhang, Yanxing Zhao, Xueqiang Dong, Maoqiong Gong. A cryogenic visual apparatus for solid-liquid equilibrium and the measurement of CH4 + C2H6. International Journal of Refrigeration 2023, 153 , 110-115. https://doi.org/10.1016/j.ijrefrig.2023.06.005
    10. Marco Campestrini, Salem Hoceini, Paolo Stringari, Nicolò Baiguini. On the crystallization of solid formers during liquefaction of gases. Fluid Phase Equilibria 2023, 570 , 113774. https://doi.org/10.1016/j.fluid.2023.113774
    11. Jianlu Zhu, Zihe Li, Yuxing Li. Design of a Device and System to Study the Liquid–Solid-Phase Equilibrium Experiment of CO2 in PLNG. Energies 2023, 16 (7) , 3045. https://doi.org/10.3390/en16073045
    12. Catherine C. Sampson, Peter J. Metaxas, Mark T. J. Barwood, Rebecca Sinclair‐Adamson, Peter E. Falloon, Paul L. Stanwix, Michael L. Johns, Eric F. May. Experimental solid–liquid equilibria and solid formation kinetics for carbon dioxide in methane for LNG processing. AIChE Journal 2023, 69 (4) https://doi.org/10.1002/aic.18001
    13. Hossein Asgharian, Florin Iov, Samuel Simon Araya, Thomas Helmer Pedersen, Mads Pagh Nielsen, Ehsan Baniasadi, Vincenzo Liso. A Review on Process Modeling and Simulation of Cryogenic Carbon Capture for Post-Combustion Treatment. Energies 2023, 16 (4) , 1855. https://doi.org/10.3390/en16041855
    14. Salem Hoceini, Marco Campestrini, Paolo Stringari. New insights into the modeling of low-temperature phase equilibria involving molecular solids: focus on the systems of interest for the LNG production. Fluid Phase Equilibria 2023, 24 , 113741. https://doi.org/10.1016/j.fluid.2023.113741
    15. Lei Gao, Jiaxin Wang, Maxime Binama, Qian Li, Weihua Cai. The Design and Optimization of Natural Gas Liquefaction Processes: A Review. Energies 2022, 15 (21) , 7895. https://doi.org/10.3390/en15217895
    16. Yujing Bi, Yonglin Ju. Review on cryogenic technologies for CO2 removal from natural gas. Frontiers in Energy 2022, 16 (5) , 793-811. https://doi.org/10.1007/s11708-022-0821-0
    17. Jingxuan Xu, Wensheng Lin, Xi Chen, Hua Zhang. Review of Unconventional Natural Gas Liquefaction Processes. Frontiers in Energy Research 2022, 10 https://doi.org/10.3389/fenrg.2022.915893
    18. Xiaoxian Yang, Darren Rowland, Catherine C. Sampson, Peter E. Falloon, Eric F. May. Evaluating cubic equations of state for predictions of solid-fluid equilibrium in liquefied natural gas production. Fuel 2022, 314 , 123033. https://doi.org/10.1016/j.fuel.2021.123033
    19. Marco Campestrini, Francesca Rabino, David Marques, Dyhia Atig, Paolo Stringari, Guido Franzoni, Barbara Picutti. Experimental investigation of the effect of nitrogen on the phase equilibrium behavior of the CH4–CO2 mixture at low temperature for natural and biogas purification. Fluid Phase Equilibria 2022, 553 , 113292. https://doi.org/10.1016/j.fluid.2021.113292
    20. Khashayar Nasrifar, Mahmood Moshfeghian. Thermodynamics of carbon dioxide mixtures at cryogenic conditions. Cryogenics 2022, 121 , 103404. https://doi.org/10.1016/j.cryogenics.2021.103404
    21. Yujing Bi, Yonglin Ju. Design and analysis of CO2 cryogenic separation process for the new LNG purification cold box. International Journal of Refrigeration 2021, 130 , 67-75. https://doi.org/10.1016/j.ijrefrig.2021.05.036
    22. Michał Sobieraj. Development of novel wet sublimation cascade refrigeration system with binary mixtures of R744/R32 and R744/R290. Applied Thermal Engineering 2021, 196 , 117336. https://doi.org/10.1016/j.applthermaleng.2021.117336
    23. Lorena F.S. Souza, Saif Z.S. Al Ghafri, Olivia Fandiño, Martin Trusler. Vapor-liquid equilibria, solid-vapor-liquid equilibria and H2S partition coefficient in (CO2 + CH4) at temperatures between (203.96 and 303.15) K at pressures up to 9 MPa. Fluid Phase Equilibria 2020, 522 , 112762. https://doi.org/10.1016/j.fluid.2020.112762
    24. K. Nasrifar, M. Moshfeghian. Prediction of carbon dioxide frost point for natural gas and LNG model systems. Journal of Natural Gas Science and Engineering 2020, 76 , 103206. https://doi.org/10.1016/j.jngse.2020.103206
    25. Ahmed M. Yousef, Wael M. El-Maghlany, Yehia A. Eldrainy, Abdelhamid Attia. Upgrading biogas to biomethane and liquid CO2: A novel cryogenic process. Fuel 2019, 251 , 611-628. https://doi.org/10.1016/j.fuel.2019.03.127
    26. Muhammad Babar, Mohamad Azmi Bustam, Abulhassan Ali, Abdulhalim Shah Maulud, Umar Shafiq, Ahmad Mukhtar, Syed Nasir Shah, Khuram Maqsood, Nurhayati Mellon, Azmi M. Shariff. Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review. Cryogenics 2019, 102 , 85-104. https://doi.org/10.1016/j.cryogenics.2019.07.004
    27. Stephanie Peper, José M.S. Fonseca, Ralf Dohrn. High-pressure fluid-phase equilibria: Trends, recent developments, and systems investigated (2009–2012). Fluid Phase Equilibria 2019, 484 , 126-224. https://doi.org/10.1016/j.fluid.2018.10.007
    28. Marco Spitoni, Mariano Pierantozzi, Gabriele Comodi, Fabio Polonara, Alessia Arteconi. Theoretical evaluation and optimization of a cryogenic technology for carbon dioxide separation and methane liquefaction from biogas. Journal of Natural Gas Science and Engineering 2019, 62 , 132-143. https://doi.org/10.1016/j.jngse.2018.12.007
    29. Wensheng Lin, Xiaojun Xiong, Anzhong Gu. Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal. Energy 2018, 161 , 870-877. https://doi.org/10.1016/j.energy.2018.07.051
    30. Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas. Frontiers of Chemical Science and Engineering 2018, 12 (2) , 209-225. https://doi.org/10.1007/s11705-017-1688-1
    31. Sanghyuk Lee, Youngkyun Seo, Jaemin Lee, Daejun Chang. Economic evaluation of pressurized LNG supply chain. Journal of Natural Gas Science and Engineering 2016, 33 , 405-418. https://doi.org/10.1016/j.jngse.2016.05.039
    32. Xiaojun Xiong, Wensheng Lin, Anzhong Gu. Design and optimization of offshore natural gas liquefaction processes adopting PLNG (pressurized liquefied natural gas) technology. Journal of Natural Gas Science and Engineering 2016, 30 , 379-387. https://doi.org/10.1016/j.jngse.2016.02.046
    33. Xiaojun Xiong, Wensheng Lin, Anzhong Gu. Integration of CO 2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration. Energy 2015, 93 , 1-9. https://doi.org/10.1016/j.energy.2015.09.022
    34. Minfei Hu, Wensheng Lin, Anzhong Gu, Jinlai Li. Isothermal vapor–liquid equilibrium in CH4/H2/N2 system at a cryogenic temperature range from 100.0K to 125.0K. Fluid Phase Equilibria 2014, 366 , 16-23. https://doi.org/10.1016/j.fluid.2014.01.002

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect