ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004

View Author Information
Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Cite this: J. Chem. Eng. Data 2012, 57, 11, 3032–3091
Publication Date (Web):October 31, 2012
https://doi.org/10.1021/je300655b
Copyright © 2012 American Chemical Society

    Article Views

    11382

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    A new equation of state for the thermodynamic properties of natural gases, similar gases, and other mixtures, the GERG-2008 equation of state, is presented in this work. This equation is an expanded version of the GERG-2004 equation. GERG-2008 is explicit in the Helmholtz free energy as a function of density, temperature, and composition. The equation is based on 21 natural gas components: methane, nitrogen, carbon dioxide, ethane, propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, hydrogen, oxygen, carbon monoxide, water, hydrogen sulfide, helium, and argon. Over the entire composition range, GERG-2008 covers the gas phase, liquid phase, supercritical region, and vapor–liquid equilibrium states for mixtures of these components. The normal range of validity of GERG-2008 includes temperatures from (90 to 450) K and pressures up to 35 MPa where the most accurate experimental data of the thermal and caloric properties are represented to within their accuracy. The extended validity range reaches from (60 to 700) K and up to 70 MPa. The given numerical information (including all of the sophisticated derivatives) enables the use of GERG-2008 for all of the various technical applications. Examples are processing, transportation through pipelines or by shipping, storage and liquefaction of natural gas, and processes to separate gas components. Comparisons with other equations of state, for example, AGA8-DC92 and Peng–Robinson equation (P-R), are also presented. GERG-2008 will be adopted as an ISO Standard (ISO 20765-2/3) for natural gases.

    Cited By

    This article is cited by 727 publications.

    1. Timm Esper, Gernot Bauer, Philipp Rehner, Joachim Gross. PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases. Industrial & Engineering Chemistry Research 2023, 62 (37) , 15300-15310. https://doi.org/10.1021/acs.iecr.3c02255
    2. Zlatan Arnautovic, Conrad Zimmermann, Maya Hamza, Florian Heberle, Stephan Kabelac, Dieter Brüggemann. Measurements of Thermophysical Properties of Ethanol + Hexamethyldisiloxane and Ethanol + Octamethyltrisiloxane Mixtures in the Temperature Range of 293–343 K at 100 kPa. Journal of Chemical & Engineering Data 2023, 68 (9) , 2223-2237. https://doi.org/10.1021/acs.jced.3c00336
    3. Xiaoxian Yang, Ehsan Sadeghi Pouya, Gongkui Xiao, Markus Richter, Eric F. May. High-Pressure Gravimetric Measurements for Binary Gas Adsorption Equilibria and Comparisons with Ideal Adsorbed Solution Theory (IAST). Langmuir 2023, Article ASAP.
    4. Pierre J. Walker, Simon Mueller, Irina Smirnova. Confidence-Interval and Uncertainty-Propagation Analysis of SAFT-type Equations of State. Journal of Chemical & Engineering Data 2023, Article ASAP.
    5. Sayandeep Biswas, Yunsie Chung, Josephine Ramirez, Haoyang Wu, William H. Green. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning. Journal of Chemical Information and Modeling 2023, 63 (15) , 4574-4588. https://doi.org/10.1021/acs.jcim.3c00546
    6. Xavier Rozanska, Alain Valtz, Mauro Riva, Christophe Coquelet, Erich Wimmer, Karen Gonzalez-Tovar, Frédérick de Meyer. Selective H2S Absorption in Aqueous Tertiary Alkanolamine Solvents: Experimental Measurements and Quantitative Kinetic Model. Industrial & Engineering Chemistry Research 2023, 62 (29) , 11480-11490. https://doi.org/10.1021/acs.iecr.3c00888
    7. Fraz Saeed Butt, Allana Lewis, Riccardo Rea, Nurul A. Mazlan, Ting Chen, Norbert Radacsi, Enzo Mangano, Xianfeng Fan, Yaohao Yang, Shuiqing Yang, Yi Huang. Highly-Controlled Soft-Templating Synthesis of Hollow ZIF-8 Nanospheres for Selective CO2 Separation and Storage. ACS Applied Materials & Interfaces 2023, 15 (26) , 31740-31754. https://doi.org/10.1021/acsami.3c06502
    8. Philipp Rehner, Gernot Bauer, Joachim Gross. FeOs: An Open-Source Framework for Equations of State and Classical Density Functional Theory. Industrial & Engineering Chemistry Research 2023, 62 (12) , 5347-5357. https://doi.org/10.1021/acs.iecr.2c04561
    9. Zlatan Arnautovic, Sebastian Kutzner, Theresa Weith, Florian Heberle, Dieter Brüggemann. Density and Viscosity of Linear Siloxanes and Their Mixtures. Journal of Chemical & Engineering Data 2023, 68 (2) , 314-329. https://doi.org/10.1021/acs.jced.2c00590
    10. Marcia L. Huber, Eric W. Lemmon, Ian H. Bell, Mark O. McLinden. The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids. Industrial & Engineering Chemistry Research 2022, 61 (42) , 15449-15472. https://doi.org/10.1021/acs.iecr.2c01427
    11. Jean-Charles de Hemptinne, Georgios M. Kontogeorgis, Ralf Dohrn, Ioannis G. Economou, Antoon ten Kate, Susanna Kuitunen, Ljudmila Fele Žilnik, Maria Grazia De Angelis, Velisa Vesovic. A View on the Future of Applied Thermodynamics. Industrial & Engineering Chemistry Research 2022, 61 (39) , 14664-14680. https://doi.org/10.1021/acs.iecr.2c01906
    12. Pierre J. Walker, Hon-Wa Yew, Andrés Riedemann. Clapeyron.jl: An Extensible, Open-Source Fluid Thermodynamics Toolkit. Industrial & Engineering Chemistry Research 2022, 61 (20) , 7130-7153. https://doi.org/10.1021/acs.iecr.2c00326
    13. Ismail I. I. Alkhatib, Ahmed AlHajaj, Ali Almansoori, Lourdes F. Vega. Accurate Predictions of the Effect of Hydrogen Composition on the Thermodynamics and Transport Properties of Natural Gas. Industrial & Engineering Chemistry Research 2022, 61 (18) , 6214-6234. https://doi.org/10.1021/acs.iecr.2c00363
    14. Ian H. Bell, Ulrich K. Deiters, Allan M. M. Leal. Implementing an Equation of State without Derivatives: teqp. Industrial & Engineering Chemistry Research 2022, 61 (17) , 6010-6027. https://doi.org/10.1021/acs.iecr.2c00237
    15. Yi Zhang, Baokun Zhao, Changzhong Zhao, Jingru Zhang, Ke Chen, Yongsheng Xu. Density Characteristics of a Multicomponent CO2/N2/CH4 Ternary Mixture at Temperature of 293.15–353.15 K and Pressure of 0.5–18 MPa. Journal of Chemical & Engineering Data 2022, 67 (4) , 908-918. https://doi.org/10.1021/acs.jced.2c00020
    16. Mirhasan Hosseini, Jalal Fahimpour, Muhammad Ali, Alireza Keshavarz, Stefan Iglauer. Capillary Sealing Efficiency Analysis of Caprocks: Implication for Hydrogen Geological Storage. Energy & Fuels 2022, 36 (7) , 4065-4075. https://doi.org/10.1021/acs.energyfuels.2c00281
    17. Adnan Aftab, Aliakbar Hassanpouryouzband, Quan Xie, Laura L. Machuca, Mohammad Sarmadivaleh. Toward a Fundamental Understanding of Geological Hydrogen Storage. Industrial & Engineering Chemistry Research 2022, 61 (9) , 3233-3253. https://doi.org/10.1021/acs.iecr.1c04380
    18. Ivan Antolović, Jadran Vrabec. Vapor–Liquid–Liquid Equilibria of Nitrogen + Ethane by Molecular Simulation. Industrial & Engineering Chemistry Research 2022, 61 (8) , 3104-3112. https://doi.org/10.1021/acs.iecr.1c04726
    19. Ryo Akasaka, Sho Fukuda, Kozue Miyane, Yukihiro Higashi. Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and Propane (R290) Mixtures: (p, ρ, T) Behavior, Saturated Liquid and Vapor Densities, Critical Parameters, and a Mixture Model. Journal of Chemical & Engineering Data 2022, 67 (2) , 346-357. https://doi.org/10.1021/acs.jced.1c00890
    20. Paolo Stringari, Marco Campestrini, Salem Hoceini. Gibbs Free Energy Equation of State for Phase I of Solid Benzene from 15 to 488 K and up to 1165 MPa. Journal of Chemical & Engineering Data 2021, 66 (12) , 4603-4617. https://doi.org/10.1021/acs.jced.1c00622
    21. Jerry A. Commodore, Connor E. Deering, Francis Bernard, Robert A. Marriott. High-Pressure Densities and Excess Molar Volumes for the Binary Mixture of Carbon Dioxide and Hydrogen Sulfide at T = 343–397 K. Journal of Chemical & Engineering Data 2021, 66 (11) , 4236-4247. https://doi.org/10.1021/acs.jced.1c00446
    22. Mirhadi S. Sadaghiani, Arash Arami-Niya, Benjamin Marsh, Saif Z.S. Al Ghafri, Eric F. May. Vapor–Liquid Equilibria for Carbon Dioxide + 3,3,3-Trifluoropropene Binary Mixtures at Temperatures between (288 and 348) K. Journal of Chemical & Engineering Data 2021, 66 (11) , 4044-4055. https://doi.org/10.1021/acs.jced.1c00297
    23. Siyuan Cheng, Fengyi Li, Fei Shang, Weigang Ma, Hui Jin, Naoya Sakoda, Xing Zhang, Liejin Guo. A Review of Experimental Researches on the Thermophysical Properties of Hydrogen-Containing Mixtures at High Temperatures and High Pressures. Journal of Chemical & Engineering Data 2021, 66 (9) , 3361-3385. https://doi.org/10.1021/acs.jced.1c00366
    24. Xiaoxian Yang, Dongchan Kim, Eric F. May, Ian H. Bell. Entropy Scaling of Thermal Conductivity: Application to Refrigerants and Their Mixtures. Industrial & Engineering Chemistry Research 2021, 60 (35) , 13052-13070. https://doi.org/10.1021/acs.iecr.1c02154
    25. Jingxuan Xu, Ting He, Wensheng Lin. Experimental and Theoretical Study of CO2 Solubility in Liquid CH4/H2 Mixtures at Cryogenic Temperatures. Journal of Chemical & Engineering Data 2021, 66 (7) , 2844-2855. https://doi.org/10.1021/acs.jced.1c00223
    26. Andreas Jäger, Cornelia Breitkopf, Markus Richter. The Representation of Cross Second Virial Coefficients by Multifluid Mixture Models and Other Equations of State. Industrial & Engineering Chemistry Research 2021, 60 (25) , 9286-9295. https://doi.org/10.1021/acs.iecr.1c01186
    27. Ming Gao, Linlin Wang, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Luji Li. Joule–Thomson Effect on a CCS-Relevant (CO2 + N2) System. ACS Omega 2021, 6 (14) , 9857-9867. https://doi.org/10.1021/acsomega.1c00554
    28. Feng Yang, He Zheng, Bin Lyu, Furong Wang, Qiulei Guo, Huaxin Xu. Experimental Investigation about Gas Transport in Tight Shales: An Improved Relationship between Gas Slippage and Petrophysical Properties. Energy & Fuels 2021, 35 (5) , 3937-3950. https://doi.org/10.1021/acs.energyfuels.0c04086
    29. Changzhong Zhao, Di Lu, Ke Chen, Yuan Chi, Shezhan Liu, Lei Yuan, Yi Zhang, Yongchen Song. Review of Density Measurements and Predictions of CO2–Alkane Solutions for Enhancing Oil Recovery. Energy & Fuels 2021, 35 (4) , 2914-2935. https://doi.org/10.1021/acs.energyfuels.0c03914
    30. Jonas Mairhofer. A Residual Entropy Scaling Approach for Viscosity Based on the GERG-2008 Equation of State. Industrial & Engineering Chemistry Research 2021, 60 (6) , 2652-2662. https://doi.org/10.1021/acs.iecr.0c04938
    31. Iglika M. Dimitrova, Velislava I. Yordanova, Radomir I. Slavchov. Quadrupolarizability of Liquid Mixtures. The Journal of Physical Chemistry B 2020, 124 (51) , 11711-11717. https://doi.org/10.1021/acs.jpcb.0c08841
    32. Seungwook Lee, Connor E. Deering, Mitchell J. Stashick, Nancy Chou, Robert A. Marriott. Experimental High-Pressure Hydrogen Sulfide Partial Oxidation and Equilibrium Calculation by Gibbs Energy Minimization. Industrial & Engineering Chemistry Research 2020, 59 (45) , 19890-19896. https://doi.org/10.1021/acs.iecr.0c04465
    33. Ulrich K. Deiters, Ian H. Bell. Calculation of Critical Curves of Fluid Mixtures through Solution of Differential Equations. Industrial & Engineering Chemistry Research 2020, 59 (42) , 19062-19076. https://doi.org/10.1021/acs.iecr.0c03667
    34. Siyuan Cheng, Fei Shang, Weigang Ma, Hui Jin, Naoya Sakoda, Xing Zhang, Liejin Guo. PVT Measurements of the H2–CO2–CH4–CO–H2O System at 740–939 K and 18.1–34.7 MPa with an Isochoric Apparatus and the Development of a Virial Equation of State. Journal of Chemical & Engineering Data 2020, 65 (10) , 4881-4891. https://doi.org/10.1021/acs.jced.0c00504
    35. Mark O. McLinden, Marcia L. Huber. (R)Evolution of Refrigerants. Journal of Chemical & Engineering Data 2020, 65 (9) , 4176-4193. https://doi.org/10.1021/acs.jced.0c00338
    36. Jerry A. Commodore, Connor E. Deering, Robert A. Marriott. High-Pressure Volumetric Properties of Carbon Disulfide, Carbonyl Sulfide, and Hydrogen Sulfide in Propane. Journal of Chemical & Engineering Data 2020, 65 (9) , 4621-4631. https://doi.org/10.1021/acs.jced.0c00471
    37. Siyuan Cheng, Fei Shang, Weigang Ma, Hui Jin, Naoya Sakoda, Xing Zhang, Liejin Guo. Viscosity Measurements of the H2–CO2, H2–CO2–CH4, and H2–H2O Mixtures and the H2–CO2–CH4–CO–H2O System at 280–924 K and 0.7–33.1 MPa with a Capillary Apparatus. Journal of Chemical & Engineering Data 2020, 65 (8) , 3834-3847. https://doi.org/10.1021/acs.jced.0c00176
    38. Christopher L. Suiter, Veruska D. Malavé, Edward J. Garboczi, Jason A. Widegren, Mark O. McLinden. Nuclear Magnetic Resonance (NMR) Spectroscopy for the In Situ Measurement of Vapor–Liquid Equilibria. Journal of Chemical & Engineering Data 2020, 65 (7) , 3318-3333. https://doi.org/10.1021/acs.jced.0c00113
    39. Christian W. Scholz, Roland Span. Vapor-Phase (p, ρ, T, x) Behavior of the (Hydrogen + Argon) System. Journal of Chemical & Engineering Data 2020, 65 (7) , 3728-3734. https://doi.org/10.1021/acs.jced.0c00355
    40. Pu Zhang, Li Zhou, Wenping Zeng, Gang Xiong, Hongfa Huang, Li Cai, Huiyan Ye, Shanshan Qu. Hydrocarbon Dew Point Measurement and Model Evaluation of Synthetic and Real Natural Gases. ACS Omega 2020, 5 (15) , 8463-8473. https://doi.org/10.1021/acsomega.9b03469
    41. Hidenori Hashimoto, Hiroyuki Ozeki, Yoshitaka Yamamoto, Sanehiro Muromachi. CO2 Capture from Flue Gas Based on Tetra-n-butylammonium Fluoride Hydrates at Near Ambient Temperature. ACS Omega 2020, 5 (13) , 7115-7123. https://doi.org/10.1021/acsomega.9b03442
    42. Richard A. Messerly, Navneeth Gokul, Andrew J. Schultz, David A. Kofke, Allan H. Harvey. Molecular Calculation of the Critical Parameters of Classical Helium. Journal of Chemical & Engineering Data 2020, 65 (3) , 1028-1037. https://doi.org/10.1021/acs.jced.9b00443
    43. Maximilian Piszko, Korbinian Batz, Michael H. Rausch, Cédric Giraudet, Andreas P. Fröba. Diffusivities of Binary Mixtures Consisting of Carbon Dioxide, Methane, and Propane by Dynamic Light Scattering. Journal of Chemical & Engineering Data 2020, 65 (3) , 1068-1082. https://doi.org/10.1021/acs.jced.9b00495
    44. Erik Mickoleit, Andreas Jäger, Cornelia Breitkopf. Carrier-Fluid Screening for a Three-Phase Sublimation Refrigeration Cycle with CO2 Using Reference Equations of State and COSMO-SAC. Journal of Chemical & Engineering Data 2020, 65 (3) , 1124-1134. https://doi.org/10.1021/acs.jced.9b00514
    45. Ahmed El Hawary, Sirojiddin Z. Mirzaev, Karsten Meier. Speed-of-Sound Measurements in Liquid n-Pentane and Isopentane. Journal of Chemical & Engineering Data 2020, 65 (3) , 1243-1263. https://doi.org/10.1021/acs.jced.9b00602
    46. Xiaoxian Yang, Markus Richter. Experimental Investigation of Surface Phenomena on Quasi Nonporous and Porous Materials Near Dew Points of Pure Fluids and Their Mixtures. Industrial & Engineering Chemistry Research 2020, 59 (7) , 3238-3251. https://doi.org/10.1021/acs.iecr.9b06753
    47. Sofia K. Mylona, Xiaoxian Yang, Thomas J. Hughes, Aaron C. White, Luke McElroy, Dongchan Kim, Saif Al Ghafri, Paul L. Stanwix, Young Hoon Sohn, Yutaek Seo, Eric F. May. High-Pressure Thermal Conductivity Measurements of a (Methane + Propane) Mixture with a Transient Hot-Wire Apparatus. Journal of Chemical & Engineering Data 2020, 65 (2) , 906-915. https://doi.org/10.1021/acs.jced.9b01087
    48. Bjørn H. Morland, Adriana Tadesse, Gaute Svenningsen, Ronald D. Springer, Andre Anderko. Nitric and Sulfuric Acid Solubility in Dense Phase CO2. Industrial & Engineering Chemistry Research 2019, 58 (51) , 22924-22933. https://doi.org/10.1021/acs.iecr.9b04957
    49. Gergana Tsankova, Yvonne Leusmann, Roland Span, Markus Richter. Dew Points, Dielectric Permittivities, and Densities for (Hydrogen + Carbon Dioxide) Mixtures Determined with a Microwave Re-Entrant Cavity Resonator. Industrial & Engineering Chemistry Research 2019, 58 (47) , 21752-21760. https://doi.org/10.1021/acs.iecr.9b04423
    50. Siyuan Cheng, Fei Shang, Weigang Ma, Hui Jin, Naoya Sakoda, Xing Zhang, Liejin Guo. Density Measurements of the H2–CO2–CH4–CO–H2O System by the Isochoric Method at 722–930 K and 15.4–30.3 MPa. Journal of Chemical & Engineering Data 2019, 64 (9) , 4024-4036. https://doi.org/10.1021/acs.jced.9b00399
    51. Jianli Ma, Qi Li, Thomas Kempka, Michael Kühn. Hydromechanical Response and Impact of Gas Mixing Behavior in Subsurface CH4 Storage with CO2-Based Cushion Gas. Energy & Fuels 2019, 33 (7) , 6527-6541. https://doi.org/10.1021/acs.energyfuels.9b00518
    52. Kyle G. Wynnyk, Behnaz Hojjati, Robert A. Marriott. Sour Gas and Water Adsorption on Common High-Pressure Desiccant Materials: Zeolite 3A, Zeolite 4A, and Silica Gel. Journal of Chemical & Engineering Data 2019, 64 (7) , 3156-3163. https://doi.org/10.1021/acs.jced.9b00233
    53. Panrui Yang, Huirong Guo, Zhe Wang, Qian Zhou. Density and Volumetric Properties of Binary Mixtures of CO2 + Hexadecane from (303.2 to 473.2) K and Pressures up to 50.0 MPa. Journal of Chemical & Engineering Data 2019, 64 (6) , 2568-2577. https://doi.org/10.1021/acs.jced.9b00078
    54. Jinsheng Wang, David Ryan, Martina Szabries, Philip Jaeger. A Study for Using CO2 To Enhance Natural Gas Recovery from Tight Reservoirs. Energy & Fuels 2019, 33 (5) , 3821-3827. https://doi.org/10.1021/acs.energyfuels.8b04464
    55. Siyuan Cheng, Fei Shang, Weigang Ma, Hui Jin, Naoya Sakoda, Xing Zhang, Liejin Guo. Density Data of Two (H2 + CO2) Mixtures and a (H2 + CO2 + CH4) Mixture by a Modified Burnett Method at Temperature 673 K and Pressures up to 25 MPa. Journal of Chemical & Engineering Data 2019, 64 (4) , 1693-1704. https://doi.org/10.1021/acs.jced.8b01206
    56. Denise S. Leal, Marcelo Embiruçu, Gloria M. N. Costa, Karen V. Pontes. Prediction of Thermodynamic Properties of CO2 by Cubic and Multiparameter Equations of State for Fluid Dynamics Applications. Journal of Chemical & Engineering Data 2019, 64 (4) , 1746-1759. https://doi.org/10.1021/acs.jced.8b01238
    57. Aliakbar Hassanpouryouzband, Mehrdad Vasheghani Farahani, Jinhai Yang, Bahman Tohidi, Evgeny Chuvilin, Vladimir Istomin, Boris Bukhanov. Solubility of Flue Gas or Carbon Dioxide-Nitrogen Gas Mixtures in Water and Aqueous Solutions of Salts: Experimental Measurement and Thermodynamic Modeling. Industrial & Engineering Chemistry Research 2019, 58 (8) , 3377-3394. https://doi.org/10.1021/acs.iecr.8b04352
    58. João Paulo Lobo dos Santos, Ana Katerine de Carvalho Lima Lobato, Caetano Moraes, João Baptista Severo Júnior, José Jailton Marques, Luiz Carlos Lobato dos Santos. Evaluation of the Influence of Operating Parameters in the Modeling and Simulation of Sour Gas Stream Desulfurization by Adsorption. Energy & Fuels 2019, 33 (2) , 1673-1681. https://doi.org/10.1021/acs.energyfuels.8b03791
    59. Nayef M. Alsaifi, Mohammed Alkhater, Housam Binous, Isa Al Aslani, Yousef Alsunni, Zhen-Gang Wang. Nonphysical Behavior in Several Statistical Mechanically Based Equations of State. Industrial & Engineering Chemistry Research 2019, 58 (3) , 1382-1395. https://doi.org/10.1021/acs.iecr.8b04656
    60. Shuyang Liu, Changzhong Zhao, Junchen Lv, Pengfei Lv, Yi Zhang. Density Characteristics of the CO2–CH4 Binary System: Experimental Data at 313–353 K and 3–18 MPa and Modeling from the PC-SAFT EoS. Journal of Chemical & Engineering Data 2018, 63 (12) , 4368-4380. https://doi.org/10.1021/acs.jced.8b00433
    61. Ahmed El Hawary, Karsten Meier. Speed-of-Sound Measurements and Derived Thermodynamic Properties of Liquid Isobutane. Journal of Chemical & Engineering Data 2018, 63 (10) , 3684-3703. https://doi.org/10.1021/acs.jced.8b00202
    62. Wenying Zhao, Xiaoyan Sun, Li Xia, Shuguang Xiang. Research into the Polynomial Alpha Function for the Cubic Equation of State. Industrial & Engineering Chemistry Research 2018, 57 (38) , 12602-12623. https://doi.org/10.1021/acs.iecr.8b02549
    63. Luuc Keulen, Elisabeth Mansfield, Ian H. Bell, Andrea Spinelli, Alberto Guardone. Bubble-Point Measurements and Modeling of Binary Mixtures of Linear Siloxanes. Journal of Chemical & Engineering Data 2018, 63 (9) , 3315-3330. https://doi.org/10.1021/acs.jced.8b00200
    64. Sergey Martynov, Wentian Zheng, Haroun Mahgerefteh, Solomon Brown, Jerome Hebrard, Didier Jamois, Christophe Proust. Computational and Experimental Study of Solid-Phase Formation during the Decompression of High-Pressure CO2 Pipelines. Industrial & Engineering Chemistry Research 2018, 57 (20) , 7054-7063. https://doi.org/10.1021/acs.iecr.8b00181
    65. Roberto Hernández-Gómez, Dirk Tuma, Eduardo Pérez, César R. Chamorro. Accurate Experimental (p, ρ, and T) Data for the Introduction of Hydrogen into the Natural Gas Grid (II): Thermodynamic Characterization of the Methane–Hydrogen Binary System from 240 to 350 K and Pressures up to 20 MPa. Journal of Chemical & Engineering Data 2018, 63 (5) , 1613-1630. https://doi.org/10.1021/acs.jced.7b01125
    66. Andre P. C. M. Vinhal, Wei Yan, Georgios M. Kontogeorgis. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures. Journal of Chemical & Engineering Data 2018, 63 (4) , 981-993. https://doi.org/10.1021/acs.jced.7b00779
    67. Mauro Riva, Paolo Stringari. Experimental Study of the Influence of Nitrogen and Oxygen on the Solubility of Solid Carbon Dioxide in Liquid and Vapor Methane at Low Temperature. Industrial & Engineering Chemistry Research 2018, 57 (11) , 4124-4131. https://doi.org/10.1021/acs.iecr.7b05224
    68. Andreas Köster, Monika Thol, and Jadran Vrabec . Molecular Models for the Hydrogen Age: Hydrogen, Nitrogen, Oxygen, Argon, and Water. Journal of Chemical & Engineering Data 2018, 63 (2) , 305-320. https://doi.org/10.1021/acs.jced.7b00706
    69. Corey J. Baker, Jordan H. Oakley, Darren Rowland, Thomas J. Hughes, Zachary M. Aman, and Eric F. May . Rapid Simulation of Solid Deposition in Cryogenic Heat Exchangers To Improve Risk Management in Liquefied Natural Gas Production. Energy & Fuels 2018, 32 (1) , 255-267. https://doi.org/10.1021/acs.energyfuels.7b03057
    70. Roberto Hernández-Gómez, Dirk Tuma, Angel Gómez-Hernández, and César R. Chamorro . Accurate Experimental (p, ρ, T) Data for the Introduction of Hydrogen into the Natural Gas Grid: Thermodynamic Characterization of the Nitrogen–Hydrogen Binary System from 240 to 350 K and Pressures up to 20 MPa. Journal of Chemical & Engineering Data 2017, 62 (12) , 4310-4326. https://doi.org/10.1021/acs.jced.7b00694
    71. Daiane Damasceno Borges, Périne Normand, Anastasia Permiakova, Ravichandar Babarao, Nicolas Heymans, Douglas S. Galvao, Christian Serre, Guy De Weireld, and Guillaume Maurin . Gas Adsorption and Separation by the Al-Based Metal–Organic Framework MIL-160. The Journal of Physical Chemistry C 2017, 121 (48) , 26822-26832. https://doi.org/10.1021/acs.jpcc.7b08856
    72. Wentian Zheng, Haroun Mahgerefteh, Sergey Martynov, and Solomon Brown . Modeling of CO2 Decompression across the Triple Point. Industrial & Engineering Chemistry Research 2017, 56 (37) , 10491-10499. https://doi.org/10.1021/acs.iecr.7b02024
    73. Gergana Tsankova, Paul L. Stanwix, Eric F. May, and Markus Richter . Densities, Dielectric Permittivities, and Dew Points for (Argon + Carbon Dioxide) Mixtures Determined with a Microwave Re-entrant Cavity Resonator. Journal of Chemical & Engineering Data 2017, 62 (9) , 2521-2532. https://doi.org/10.1021/acs.jced.6b01043
    74. Darren Rowland, Thomas J. Hughes, and Eric F. May . Effective Critical Constants for Helium for Use in Equations of State for Natural Gas Mixtures. Journal of Chemical & Engineering Data 2017, 62 (9) , 2799-2811. https://doi.org/10.1021/acs.jced.7b00122
    75. Mohamed A. Ben Souissi, Reiner Kleinrahm, Xiaoxian Yang, and Markus Richter . Vapor-Phase (p, ρ, T, x) Behavior and Virial Coefficients for the Binary Mixture (0.05 Hydrogen + 0.95 Carbon Dioxide) over the Temperature Range from (273.15 to 323.15) K with Pressures up to 6 MPa. Journal of Chemical & Engineering Data 2017, 62 (9) , 2973-2981. https://doi.org/10.1021/acs.jced.7b00213
    76. Tauqir H. Syed, Thomas J. Hughes, and Eric F. May . Enthalpy of Vaporization Measurements of Liquid Methane, Ethane, and Methane + Ethane by Differential Scanning Calorimetry at Low Temperatures and High Pressures. Journal of Chemical & Engineering Data 2017, 62 (8) , 2253-2260. https://doi.org/10.1021/acs.jced.6b00984
    77. Kayode I. Adeniyi, Connor E. Deering, and Robert A. Marriott . Hydrate Decomposition Conditions for Liquid Water and Propane. Journal of Chemical & Engineering Data 2017, 62 (7) , 2222-2229. https://doi.org/10.1021/acs.jced.7b00343
    78. Qiao Zhao, Mounir Mecheri, Thibaut Neveux, Romain Privat, and Jean-Noël Jaubert . Selection of a Proper Equation of State for the Modeling of a Supercritical CO2 Brayton Cycle: Consequences on the Process Design. Industrial & Engineering Chemistry Research 2017, 56 (23) , 6841-6853. https://doi.org/10.1021/acs.iecr.7b00917
    79. Wentian Zheng, Haroun Mahgerefteh, Didier Jamois, Jerome Hebrard, and Christophe Proust . Modeling of Depressurization-Induced Superheating for Compressed Liquefied Gases. Industrial & Engineering Chemistry Research 2017, 56 (18) , 5432-5442. https://doi.org/10.1021/acs.iecr.7b00105
    80. Leonid Rapoport, Matthew Sullivan, and Christopher Harrison . Radially Ejected Bubbles Driven by Thermocapillarity in Equilibrated Vapor–Liquid Mixtures. Langmuir 2017, 33 (18) , 4435-4443. https://doi.org/10.1021/acs.langmuir.7b00628
    81. Øivind Wilhelmsen, Ailo Aasen, Geir Skaugen, Peder Aursand, Anders Austegard, Eskil Aursand, Magnus Aa. Gjennestad, Halvor Lund, Gaute Linga, and Morten Hammer . Thermodynamic Modeling with Equations of State: Present Challenges with Established Methods. Industrial & Engineering Chemistry Research 2017, 56 (13) , 3503-3515. https://doi.org/10.1021/acs.iecr.7b00317
    82. Mohamed A. Ben Souissi, Markus Richter, Xiaoxian Yang, Reiner Kleinrahm, and Roland Span . Vapor-Phase (p, ρ, T, x) Behavior and Virial Coefficients for the (Argon + Carbon Dioxide) System. Journal of Chemical & Engineering Data 2017, 62 (1) , 362-369. https://doi.org/10.1021/acs.jced.6b00687
    83. Martin Doubek and Vaclav Vacek . Speed of Sound Data in Pure Refrigerants R-116 and R-218 and Their Mixtures: Experiment and Modeling. Journal of Chemical & Engineering Data 2016, 61 (12) , 4046-4056. https://doi.org/10.1021/acs.jced.6b00536
    84. Shu Yang, Andrew J. Schultz, and David A. Kofke . Thermodynamic Properties of Supercritical CO2/CH4 Mixtures from the Virial Equation of State. Journal of Chemical & Engineering Data 2016, 61 (12) , 4296-4312. https://doi.org/10.1021/acs.jced.6b00702
    85. Ian H. Bell and Eric W. Lemmon . Automatic Fitting of Binary Interaction Parameters for Multi-fluid Helmholtz-Energy-Explicit Mixture Models. Journal of Chemical & Engineering Data 2016, 61 (11) , 3752-3760. https://doi.org/10.1021/acs.jced.6b00257
    86. Ahmed El Hawary and Karsten Meier . Measurements of the Speed of Sound in Liquid n-Butane. Journal of Chemical & Engineering Data 2016, 61 (11) , 3858-3867. https://doi.org/10.1021/acs.jced.6b00577
    87. Karsten Meier and Stephan Kabelac . Speed-of-Sound Measurements in Compressed Nitrogen and Dry Air. Journal of Chemical & Engineering Data 2016, 61 (11) , 3941-3951. https://doi.org/10.1021/acs.jced.6b00720
    88. Xiaoxian Yang, Markus Richter, Mohamed A. Ben Souissi, Reiner Kleinrahm, and Roland Span . Vapor-Phase (p, ρ, T, x) Behavior and Virial Coefficients for the Binary Mixture (0.05 Argon + 0.95 Carbon Dioxide) over the Temperature Range from (273.15 to 323.15) K with Pressures up to 9 MPa. Journal of Chemical & Engineering Data 2016, 61 (8) , 2676-2681. https://doi.org/10.1021/acs.jced.6b00120
    89. Armand Karimi, Thomas J. Hughes, Markus Richter, and Eric F. May . Density Measurements of Methane + Propane Mixtures at Temperatures between (256 and 422) K and Pressures from (24 to 35) MPa. Journal of Chemical & Engineering Data 2016, 61 (8) , 2782-2790. https://doi.org/10.1021/acs.jced.6b00131
    90. Andrea Tibaduiza, Diego E. Cristancho, Hugo Acosta Ramirez, Diego Ortiz, James C. Holste, and Kenneth R. Hall . Accurate p–ρ–T Data for a Synthetic Residual Natural Gas Mixture (0.95 CH4 + 0.04 C2H6 + 0.01 C3H8) at Temperatures between (135 and 500) K at Pressures to 200 MPa. Journal of Chemical & Engineering Data 2016, 61 (8) , 2771-2781. https://doi.org/10.1021/acs.jced.6b00137
    91. Martin A. Gomez-Osorio, Robert A. Browne, Mauricio Carvajal Diaz, Kenneth R. Hall, and James C. Holste . Density Measurements for Ethane, Carbon Dioxide, and Methane + Nitrogen Mixtures from 300 to 470 K up to 137 MPa Using a Vibrating Tube Densimeter. Journal of Chemical & Engineering Data 2016, 61 (8) , 2791-2798. https://doi.org/10.1021/acs.jced.6b00138
    92. Elisabeth Mansfield, Ian H. Bell, and Stephanie L. Outcalt . Bubble-Point Measurements of n-Propane + n-Decane Binary Mixtures with Comparisons of Binary Mixture Interaction Parameters for Linear Alkanes. Journal of Chemical & Engineering Data 2016, 61 (7) , 2573-2579. https://doi.org/10.1021/acs.jced.6b00258
    93. Yajun Li, Canteng Gong, and Yue Li . Application of Highly Accurate Phase-Equilibrium Models for CO2 Freezing Prediction of Natural Gas System. Industrial & Engineering Chemistry Research 2016, 55 (19) , 5780-5787. https://doi.org/10.1021/acs.iecr.6b00339
    94. Connor E. Deering, Matthew J. Saunders, Jerry A. Commodore, and Robert A. Marriott . The Volumetric Properties of Carbonyl Sulfide and Carbon Dioxide Mixtures from T = 322 to 393 K and p = 2.5 to 35 MPa: Application to COS Hydrolysis in Subsurface Injectate Streams. Journal of Chemical & Engineering Data 2016, 61 (3) , 1341-1347. https://doi.org/10.1021/acs.jced.5b01061
    95. Junwei Cui, Shengshan Bi, Xianyang Meng, and Jiangtao Wu . Surface Tension and Liquid Viscosity of R32+R1234yf and R32+R1234ze. Journal of Chemical & Engineering Data 2016, 61 (2) , 950-957. https://doi.org/10.1021/acs.jced.5b00798
    96. Eric F. May, Jerry Y. Guo, Jordan H. Oakley, Thomas J. Hughes, Brendan F. Graham, Kenneth N. Marsh, and Stanley H. Huang . Reference Quality Vapor–Liquid Equilibrium Data for the Binary Systems Methane + Ethane, + Propane, + Butane, and + 2-Methylpropane, at Temperatures from (203 to 273) K and Pressures to 9 MPa. Journal of Chemical & Engineering Data 2015, 60 (12) , 3606-3620. https://doi.org/10.1021/acs.jced.5b00610
    97. Clayton R. Locke, Dan Fang, Paul L. Stanwix, Thomas J. Hughes, Gongkui Xiao, Michael L. Johns, Anthony R. H. Goodwin, Kenneth N. Marsh, and Eric F. May . Viscosity and Dew Point Measurements of {xCH4 + (1 – x)C4H10} for x = 0.9484 with a Vibrating-Wire Viscometer. Journal of Chemical & Engineering Data 2015, 60 (12) , 3688-3695. https://doi.org/10.1021/acs.jced.5b00635
    98. Sebastian Herrmann and Eckhard Vogel . Viscosity and Density of Normal Butane Simultaneously Measured at Temperatures from (298 to 448) K and at Pressures up to 30 MPa Incorporating the Near-Critical Region. Journal of Chemical & Engineering Data 2015, 60 (12) , 3703-3720. https://doi.org/10.1021/acs.jced.5b00654
    99. Xiaoxian Yang, Zhe Wang, and Zheng Li . Accurate Density Measurements on Ternary Mixtures (Carbon Dioxide + Nitrogen + Argon) at Temperatures from (323.15 to 423.15) K with Pressures from (3 to 31) MPa using a Single-Sinker Densimeter. Journal of Chemical & Engineering Data 2015, 60 (11) , 3353-3357. https://doi.org/10.1021/acs.jced.5b00625
    100. Elisabeth Mansfield and Stephanie L. Outcalt . Bubble-Point Measurements of n-Butane + n-Octane and n-Butane + n-Nonane Binary Mixtures. Journal of Chemical & Engineering Data 2015, 60 (8) , 2447-2453. https://doi.org/10.1021/acs.jced.5b00308
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect