Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thermophysical Properties of Three Compounds from the Acrylate Family

View Author Information
Grupo de Investigación GIMACES, Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
*E-mail: [email protected]. Tel.: 34 976 060100.
Cite this: J. Chem. Eng. Data 2013, 58, 5, 1193–1202
Publication Date (Web):April 9, 2013
https://doi.org/10.1021/je301333b
Copyright © 2013 American Chemical Society

    Article Views

    558

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Several thermophysical properties of three chemicals from the acrylate family (methyl acrylate, ethyl acrylate, and butyl acrylate) have been measured over a wide range of temperatures, from T = 278.15 K to T = 338.15 K with a temperature step of 2.5 K. The studied properties were: density, refractive index, speed of sound, surface tension, viscosity, vapor pressure, and static permittivity. From the experimental results, isentropic compressibilities, molar refractions and enthalpies of surface formation have been determined. Moreover, a comparative study has been carried out, and information regarding molecular interactions and structures has been obtained.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 42 publications.

    1. Robert J. Tannenbaum, Natalia Cislo, Eric Ruzicka, Pablo A. Dean, Zachary P. Smith, Brian C. Benicewicz, Sanat K. Kumar. Activated Gas Transport in Polymer-Grafted Nanoparticle Membranes. Macromolecules 2023, 56 (11) , 3954-3961. https://doi.org/10.1021/acs.macromol.3c00215
    2. Shubham Sharma, Samriti Sharma, Manjeet Singh, Jeetinder Singh, Meena Sharma. Density, Speed of Sound, and Viscosity for Binary Liquid Mixtures of 2-(2-Ethoxyethoxy)ethanol with Methyl Acrylate, Ethyl Acrylate, or Butyl Acrylate from T = 288.15 to 318.15 K and P = 101 kPa. Journal of Chemical & Engineering Data 2021, 66 (8) , 3107-3122. https://doi.org/10.1021/acs.jced.1c00213
    3. Pralhad S. Wagh, Ajit N. Bhumkar, Manapragada V. Rathnam. Excess Volume, Viscosity, and Isentropic Compressibility of Methyl Acrylate + Alkane Binary Mixtures. Journal of Chemical & Engineering Data 2020, 65 (5) , 2343-2350. https://doi.org/10.1021/acs.jced.9b00924
    4. Edgar Núñez-Rojas, Jorge Alberto Aguilar-Pineda, Alexander Pérez de la Luz, Edith Nadir de Jesús González, and José Alejandre . Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility. The Journal of Physical Chemistry B 2018, 122 (5) , 1669-1678. https://doi.org/10.1021/acs.jpcb.7b10970
    5. Michael Ringleb, Timo Schuett, Stefan Zechel, Ulrich S. Schubert. Best practice for sampling in automated parallel synthesizers. Digital Discovery 2023, 2 (6) , 1883-1893. https://doi.org/10.1039/D3DD00074E
    6. Rajendran Raju, Venkatramana Losetty, Srinivasan Ravikumar, Puthalapattu Bhanuprakash, Subramanian Balamurugan, Venkatesan Pandiyan. Geometrical and temperature impact on elucidation of intermolecular interactions for the binary mixtures of morpholine with aliphatic esters by thermodynamic, FTIR and DFT study. Zeitschrift für Physikalische Chemie 2023, 237 (4-5) , 519-543. https://doi.org/10.1515/zpch-2022-0167
    7. Isidro Cachadiña, Ariel Hernández, Ángel Mulero. Surface tension of esters. Temperature dependence of the influence parameter in density gradient theory with Peng-Robinson equation of state. Case Studies in Thermal Engineering 2022, 36 , 102193. https://doi.org/10.1016/j.csite.2022.102193
    8. Ville A. Lovikka. Condensation‐Controlled Toposelective Vapor Deposition in Nano‐ and Microcavities: Theory, Methods, Applications, and Related Technologies. Advanced Materials Interfaces 2022, 9 (9) https://doi.org/10.1002/admi.202101314
    9. R. Gerald Arokiaraj, R. Raju, S. Ravikumar, K. Sivakumar, P. Bhanuprakash, V. Pandiyan. Excess thermodynamic properties and FTIR studies of binary mixtures of aniline with esters at different temperatures. Chemical Data Collections 2022, 37 , 100807. https://doi.org/10.1016/j.cdc.2021.100807
    10. M. Chandra Sekhar. A thermodynamic and density functional theory study of intermolecular interactions between 2-methylaniline and some alkyl acrylates. Physics and Chemistry of Liquids 2021, 59 (6) , 835-851. https://doi.org/10.1080/00319104.2020.1849207
    11. Sören Hapke, Gerrit Albert Luinstra, Kristina Maria Zentel. Optimization of a 3D-printed tubular reactor for free radical polymerization by CFD. Journal of Flow Chemistry 2021, 11 (3) , 539-552. https://doi.org/10.1007/s41981-021-00154-5
    12. A. Mulero, I. Cachadiña, A. Vegas. Recommended Correlations for the Surface Tension of 80 Esters. Journal of Physical and Chemical Reference Data 2021, 50 (3) https://doi.org/10.1063/5.0061617
    13. Anil Kumar Nain. Insight into intermolecular interactions in benzonitrile + methyl acrylate/ethyl acrylate/n-butyl acrylate/t-butyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K: Ultrasonic and viscometric study. Journal of Molecular Liquids 2021, 331 , 115599. https://doi.org/10.1016/j.molliq.2021.115599
    14. Anil Kumar Nain. Physicochemical study of intermolecular interactions in binary mixtures of acetonitrile with alkyl acrylate monomers at temperatures from 293.15 K to 318.15 K by using ultrasonic speed and viscosity data. The Journal of Chemical Thermodynamics 2021, 156 , 106387. https://doi.org/10.1016/j.jct.2021.106387
    15. Neha Chaudhary, Anil Kumar Nain. Volumetric, acoustic and viscometric studies of intermolecular interactions in polyethylene glycol 400 + alkyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K. Physics and Chemistry of Liquids 2020, 58 (6) , 736-759. https://doi.org/10.1080/00319104.2019.1636378
    16. Jin-Jin Li, Yin-Ning Zhou, Zheng-Hong Luo, Shiping Zhu. Engineering bicontinuous polymeric monoliths through high internal phase emulsion templating. Materials Today Communications 2020, 22 , 100813. https://doi.org/10.1016/j.mtcomm.2019.100813
    17. Neha Chaudhary, Anil Kumar Nain. Volumetric, ultrasonic, viscometric and refractive index studies of molecular interactions in binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with methyl acrylate at temperatures from 293.15 to 318.15 K. Journal of Molecular Liquids 2020, 297 , 111890. https://doi.org/10.1016/j.molliq.2019.111890
    18. Neha Chaudhary, Anil Kumar Nain. Densities, speeds of sound, refractive indices, excess and partial molar properties of polyethylene glycol 200 + methyl acrylate or ethyl acrylate or n-butyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K. Journal of Molecular Liquids 2018, 271 , 501-513. https://doi.org/10.1016/j.molliq.2018.09.020
    19. A. Shakila, S. Ravikumar, V. Pandiyan, Rekha Gaba. Influence of temperature on thermo physical properties of binary mixtures of ethyl acrylate and alkyl amines: An experimental and theoretical approach. Journal of Molecular Liquids 2018, 265 , 544-555. https://doi.org/10.1016/j.molliq.2018.05.130
    20. Azusa Funabashi, Yoshiyuki Sato, Hiroshi Inomata. Measurement and prediction of phase equilibria of ethylene + methyl acrylate + poly(ethylene-co-methyl acrylate) systems. Fluid Phase Equilibria 2018, 465 , 100-106. https://doi.org/10.1016/j.fluid.2018.03.005
    21. Mihai Daniel Moraru, Costin Sorin Bildea. Design and plantwide control of n -butyl acrylate production process. Journal of Process Control 2017, 58 , 46-62. https://doi.org/10.1016/j.jprocont.2017.08.008
    22. Preeti Droliya, Anil Kumar Nain. Experimental and theoretical studies of acoustic and viscometric properties of binary mixtures of tetrahydrofuran with some alkyl acrylates at temperatures from 293.15 to 318.15 K. Journal of Molecular Liquids 2017, 241 , 549-562. https://doi.org/10.1016/j.molliq.2017.06.021
    23. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11–C192. Journal of Physical and Chemical Reference Data 2017, 46 (1) https://doi.org/10.1063/1.4970519
    24. Anil Kumar Nain, Preeti Droliya. Temperature and concentration dependence of volumetric properties of (tetrahydrofuran + methyl acrylate, or + ethyl acrylate, or + n -butyl acrylate, or + tert -butyl acrylate) binary mixtures. The Journal of Chemical Thermodynamics 2017, 105 , 317-326. https://doi.org/10.1016/j.jct.2016.10.042
    25. Christian Wohlfarth. Viscosity of ethyl acrylate. 2017, 156-156. https://doi.org/10.1007/978-3-662-49218-5_136
    26. Christian Wohlfarth. Viscosity of butyl acrylate. 2017, 284-284. https://doi.org/10.1007/978-3-662-49218-5_258
    27. Christian Wohlfarth. Viscosity of methyl acrylate. 2017, 100-100. https://doi.org/10.1007/978-3-662-49218-5_87
    28. Christian Wohlfarth. Refractive index of methyl acrylate. 2017, 131-131. https://doi.org/10.1007/978-3-662-49236-9_121
    29. Christian Wohlfarth. Refractive index of ethyl acrylate. 2017, 183-183. https://doi.org/10.1007/978-3-662-49236-9_170
    30. Christian Wohlfarth. Refractive index of butyl acrylate. 2017, 299-299. https://doi.org/10.1007/978-3-662-49236-9_283
    31. Anil Kumar Nain. Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K. The Journal of Chemical Thermodynamics 2016, 103 , 316-324. https://doi.org/10.1016/j.jct.2016.08.026
    32. Gaurab Sarkar, Debashis Kundu, Tamal Banerjee. Effects of functionality on the transport properties of thiol-ene/acrylate systems: A molecular dynamics study. Journal of Molecular Liquids 2016, 224 , 859-871. https://doi.org/10.1016/j.molliq.2016.10.036
    33. Anil Kumar Nain. Densities and volumetric properties of benzonitrile + methyl acrylate, or + ethyl acrylate, or + n-butyl acrylate, or + tert-butyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K. Journal of Molecular Liquids 2016, 224 , 1055-1063. https://doi.org/10.1016/j.molliq.2016.10.072
    34. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C 1 − C 10. Journal of Physical and Chemical Reference Data 2016, 45 (3) , 033101. https://doi.org/10.1063/1.4948363
    35. Christian Wohlfarth. Surface tension of butyl acrylate. 2016, 150-150. https://doi.org/10.1007/978-3-662-48336-7_147
    36. Christian Wohlfarth. Surface tension of methyl acrylate. 2016, 54-54. https://doi.org/10.1007/978-3-662-48336-7_51
    37. Christian Wohlfarth. Surface tension of ethyl acrylate. 2016, 85-85. https://doi.org/10.1007/978-3-662-48336-7_82
    38. Laura Lomba, Isabel Aznar, Ignacio Gascón, Carlos Lafuente, Beatriz Giner. Thermophysical study of the furan family. Thermochimica Acta 2015, 617 , 54-64. https://doi.org/10.1016/j.tca.2015.08.013
    39. Christian Wohlfarth. Static dielectric constant of butyl acrylate. 2015, 156-156. https://doi.org/10.1007/978-3-662-48168-4_155
    40. Christian Wohlfarth. Static dielectric constant of methyl acrylate. 2015, 54-54. https://doi.org/10.1007/978-3-662-48168-4_53
    41. Christian Wohlfarth. Static dielectric constant of furfuryl alcohol. 2015, 86-86. https://doi.org/10.1007/978-3-662-48168-4_85
    42. Christian Wohlfarth. Static dielectric constant of ethyl acrylate. 2015, 89-89. https://doi.org/10.1007/978-3-662-48168-4_88