Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Experimental Study and Correlation Models of the Density and Viscosity of 1-Hexene and 1-Heptene at Temperatures from (298 to 473) K and Pressures up to 245 MPa

View Author Information
Kazan State Technological University, Kazan, Russia
Geothermal Research Institute of the Dagestan Scientific Center of the Russian Academy of Sciences, Makhachkala, Dagestan, Russia
Cite this: J. Chem. Eng. Data 2014, 59, 4, 1105–1119
Publication Date (Web):March 5, 2014
https://doi.org/10.1021/je401015e
Copyright © 2014 American Chemical Society

    Article Views

    595

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The density and viscosity of liquid 1-hexene and 1-heptene have been simultaneously measured over the temperature range from (298 to 473) K and pressures up to 245 MPa using the hydrostatic weighing and falling-body techniques, respectively. The combined expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95 % confidence level with a coverage factor of k = 2 is estimated to be 0.15 % to 0.30 %, 0.05 %, 0.02 K, and 1.5 % to 2.0 % (depending on temperature and pressure ranges), respectively. The measured densities were used to develop a Tait-type equation of state for liquid 1-hexene and 1-heptene. Theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher (VTF) type equations with pressure-dependent coefficients were used to represent the temperature and pressure dependences of the measured viscosities for liquid 1-hexene and 1-heptene. Also the friction theory (FT) viscosity model together with derived Tait-type equation of state (EOS) was used to accurately represent measured viscosity data. The measured values of the density and viscosity of 1-hexene and 1-heptene in the liquid phase were compared in detail with reported data and with the values calculated from correlations.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 28 publications.

    1. Luis F. Cardona, Luis A. Forero, Jorge A. Velásquez. Extension of a Group Contribution Method to Predict Viscosity Based on Momentum Transport Theory Using a Modified Peng–Robinson EoS. Industrial & Engineering Chemistry Research 2021, 60 (41) , 14903-14926. https://doi.org/10.1021/acs.iecr.1c02146
    2. Damir I. Sagdeev, Il’giz R. Gabitov, Vener F. Khairutdinov, Marina G. Fomina, Valerii A. Alyaev, Robert S. Sal’manov, Vladimir S. Minkin, Farid M. Gumerov, Ilmutdin M. Abdulagatov. New Design of the Falling-Body Rheoviscometer for High and Extra-High Viscous Liquid Measurements. Viscosity of Vacuum Oils. Journal of Chemical & Engineering Data 2020, 65 (4) , 1773-1786. https://doi.org/10.1021/acs.jced.9b01071
    3. Jian Yang, Xianyang Meng, Jiangtao Wu. Liquid Density of n-Pentene, n-Hexene, and n-Heptene at Temperatures from 283.15 to 363.15 K and Pressures up to 100 MPa. Journal of Chemical & Engineering Data 2018, 63 (6) , 2280-2289. https://doi.org/10.1021/acs.jced.8b00229
    4. Damir Sagdeev, Marina Fomina, Valeriy Alyaev, Rashid Musin, Ilmutdin Abdulagatov. Density of Working Liquids for Diffusion Vacuum Pumps. Journal of Chemical & Engineering Data 2018, 63 (5) , 1698-1705. https://doi.org/10.1021/acs.jced.8b00028
    5. Anna Zaitseva, Juha-Pekka Pokki, Huy Quang Le, Ville Alopaeus, and Herbert Sixta . Vapor–Liquid Equilibria, Excess Enthalpy, and Density of Aqueous γ-Valerolactone Solutions.. Journal of Chemical & Engineering Data 2016, 61 (2) , 881-890. https://doi.org/10.1021/acs.jced.5b00724
    6. Vladimir Diky, John P. O’Connell, Jens Abildskov, Kenneth Kroenlein, and Michael Frenkel . Representation and Validation of Liquid Densities for Pure Compounds and Mixtures. Journal of Chemical & Engineering Data 2015, 60 (12) , 3545-3553. https://doi.org/10.1021/acs.jced.5b00477
    7. Guojing Xu, Zhaoyang Ren, Zhenpeng Wang, Lijie Cui, Jian-Zheng Su, Xiang-Long Meng, Penglei Chen, Peng Li, Nannan Wang, Xiang Hao, Bo Guan. Petroleum-like fuels with substantially enriched branched iso-paraffins and benzenes via boehmite-assisted pyrolysis of oil shale. Fuel 2024, 358 , 130324. https://doi.org/10.1016/j.fuel.2023.130324
    8. Hussain A. AlNazr, Nabeel Ahmad, Usama Ahmed, Balaji Mohan, Abdul Gani Abdul Jameel. Predicting physical properties of oxygenated gasoline and diesel range fuels using machine learning. Alexandria Engineering Journal 2023, 76 , 193-219. https://doi.org/10.1016/j.aej.2023.06.037
    9. Sofia Sotiriadou, Eleftheria Ntonti, Marc J. Assael, Marcia L. Huber. Reference Correlations of the Viscosity and Thermal Conductivity of 1-Hexene from the Triple Point to High Temperatures and Pressures. International Journal of Thermophysics 2023, 44 (7) https://doi.org/10.1007/s10765-023-03217-y
    10. Guojing Xu, Zhaoyang Ren, Lijie Cui, Zhenpeng Wang, Nannan Wang, Peng Li, Bo Guan, Xujin Qin, Penglei Chen. High-quality petroleum-like fuels and/or profitable value-added platform chemicals manufactured via a solid acid-catalyzed two-stage fast oil shale pyrolysis. Fuel 2023, 344 , 128077. https://doi.org/10.1016/j.fuel.2023.128077
    11. Jovan D. Jovanović, Nikola D. Grozdanić, Ivona R. Radović, Mirjana Lj. Kijevčanin. A new group contribution model for prediction liquid hydrocarbon viscosity based on free-volume theory. Journal of Molecular Liquids 2023, 376 , 121452. https://doi.org/10.1016/j.molliq.2023.121452
    12. Damir I. Sagdeev, Vener F. Khairutdinov, Mansur Farakhov, Valeriy A. Alyaev, Farid M. Gumerov, Zufar I. Zaripov, Vladimir S. Minkin, Ilmutdin M. Abdulagatov. Measurements of the Density and Viscosity of Heavy Oil and Water-in-Oil Emulsions Over a Wide Temperature Range. International Journal of Thermophysics 2023, 44 (1) https://doi.org/10.1007/s10765-022-03111-z
    13. Benjamin Betken, Robin Beckmüller, Muhammad Ali Javed, Elmar Baumhögger, Roland Span, Jadran Vrabec, Monika Thol. Thermodynamic properties for 1-hexene – Measurements and Modeling. The Journal of Chemical Thermodynamics 2023, 176 , 106881. https://doi.org/10.1016/j.jct.2022.106881
    14. Joseph A. Moebus, Brian R. Greenhalgh. Application of the PC‐SAFT Equation of State to the Prediction of Vapor Solubility in Semicrystalline Polyethylenes. Macromolecular Reaction Engineering 2022, 16 (6) https://doi.org/10.1002/mren.202200017
    15. Misirkhan A Talybov, Ilmutdin M Abdulagatov. High-temperature and high-pressure PVT measurements and derived thermodynamic properties of geothermal fluids from East Turkey. Geothermics 2021, 95 , 102125. https://doi.org/10.1016/j.geothermics.2021.102125
    16. Arash Pakravesh, Fatemeh Zarei, Hosseinali Zarei. PρT parameterization of SAFT equation of state: developing a new parameterization method for equations of state. Fluid Phase Equilibria 2021, 538 , 113024. https://doi.org/10.1016/j.fluid.2021.113024
    17. Dong NguyenHuynh, My T. Luu, Chau T. Q. Mai, Siem T. K. Tran. Free-volume theory coupled with modified group-contribution PC-SAFT for predicting viscosities of 1-alkenes. Korean Journal of Chemical Engineering 2020, 37 (3) , 402-410. https://doi.org/10.1007/s11814-019-0473-x
    18. Babatunde A. Bamgbade, Rajendar R. Mallepally, Nathaniel Cain, Aaron J. Rowane, Mark A. McHugh. Mixture densities and viscosities of toluene with ethylene or propylene at temperatures to 530 K and pressures to 70 MPa. Fluid Phase Equilibria 2019, 498 , 122-131. https://doi.org/10.1016/j.fluid.2019.06.022
    19. Damir Sagdeev, Il'giz Gabitov, Chingiz Isyanov, Vener Khairutdinov, Mansur Farakhov, Zufar Zaripov, Ilmutdin Abdulagatov. Densities and Viscosities of Oleic Acid at Atmospheric Pressure. Journal of the American Oil Chemists' Society 2019, 96 (6) , 647-662. https://doi.org/10.1002/aocs.12217
    20. Ilmutdin M. Abdulagatov, Lala A. Akhmedova-Azizova. Viscosity of rocket propellant (RP-1) at high temperatures and high pressures. Fuel 2019, 235 , 703-714. https://doi.org/10.1016/j.fuel.2018.08.073
    21. J. Safarov, G. Huseynova, M. Bashirov, E. Hassel, I. M. Abdulagatov. Viscosity of 1-ethyl-3-methylimidazolium methanesulfonate over a wide range of temperature and Vogel–Tamman–Fulcher model. Physics and Chemistry of Liquids 2018, 56 (6) , 703-717. https://doi.org/10.1080/00319104.2017.1379080
    22. Javid Safarov, Christoffer Bussemer, Abilgani Aliyev, Carlos Lafuente, Egon Hassel, Ilmutdin Abdulagatov. Effect of temperature on thermal (density), caloric (heat capacity), acoustic (speed of sound) and transport (viscosity) properties of 1-octyl-3-methylimidazolium hexafluorophosphate at atmospheric pressure. The Journal of Chemical Thermodynamics 2018, 124 , 49-64. https://doi.org/10.1016/j.jct.2018.04.018
    23. Suleiman M. Rasulov, Ilmutdin M. Abdulagatov. PVT, saturated liquid density and vapor-pressure measurements of main components of the biofuels at high temperatures and high pressures: Methyl palmitate. Fuel 2018, 218 , 282-294. https://doi.org/10.1016/j.fuel.2018.01.039
    24. Javid Safarov, Felix Lesch, Khagani Suleymanli, Abilgani Aliyev, Astan Shahverdiyev, Egon Hassel, Ilmutdin Abdulagatov. High-temperature and high-pressure density measurements and other derived thermodynamic properties of 1-butyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate. Thermochimica Acta 2017, 658 , 14-23. https://doi.org/10.1016/j.tca.2017.10.022
    25. Damir I. Sagdeev, Marina G. Fomina, Ilmutdin M. Abdulagatov. Density and viscosity of propylene glycol at high temperatures and high pressures. Fluid Phase Equilibria 2017, 450 , 99-111. https://doi.org/10.1016/j.fluid.2017.07.006
    26. Javid Safarov, Gulyaz Huseynova, Mahir Bashirov, Egon Hassel, Ilmutdin Abdulagatov. High temperatures and high pressures density measurements of 1-ethyl-3-methylimidazolium methanesulfonate and Tait-type equation of state. Journal of Molecular Liquids 2017, 238 , 347-358. https://doi.org/10.1016/j.molliq.2017.05.013
    27. Damir I. Sagdeev, Marina G. Fomina, Ilmutdin M. Abdulagatov. Density and Viscosity of a Ternary $$ x_{1} $$ x 1 1-Hexene(1) +  $$ x_{2} $$ x 2 1-Octene(2) + (1 − x 1 − x 2) 1-Decene(3) Mixture at High Temperatures and High Pressures. Journal of Solution Chemistry 2017, 46 (4) , 966-988. https://doi.org/10.1007/s10953-017-0617-8
    28. Damir I. Sagdeev, Marina G. Fomina, Gabdlnur Kh. Mukhamedzyanov, Ilmutdin M. Abdulagatov. Measurements of the density and viscosity of 1-hexene+1-octene mixtures at high temperatures and high pressures. Thermochimica Acta 2014, 592 , 73-85. https://doi.org/10.1016/j.tca.2014.08.016