Use of Equations of State and Coarse Grained Simulations to Complement Experiments: Describing the Interfacial Properties of Carbon Dioxide + Decane and Carbon Dioxide + Eicosane Mixtures
Abstract

We report surface tension measurements, coexisting densities, concentration profiles along the interfacial region, surface activities, and relative Gibbs adsorption isotherms for binary mixtures of carbon dioxide (CO2) + n-decane (n-C10H22) at 344.15 K and carbon dioxide (CO2) + n-eicosane (n-C20H42) at 323.15 K over a pressure range from 0.1 MPa to 10.35 MPa. The results are obtained by employing a broad approach that integrates experiments with both theory and molecular simulations to gain an enhanced multiscale description of the interfacial region. Measurements are based on the use of a high-pressure pendant drop tensiometer coupled to a high-pressure densimeter. Theoretical modeling is carried out using the Square Gradient Theory based on a version of the Statistical Associated Fluid Theory (SAFT-VR Mie) equation of state. At the molecular level, Molecular Dynamics is employed and molecules are represented by the SAFT-γ coarse-grained force field. The novelty here is that both the theory and the simulations uniquely share the same underlying intermolecular potentials, hence the experimental data are employed to verify and inform in the same way both the theory and simulations. Reassuringly, theory, experiments, and molecular simulations agree with each other in the description of the bulk phase equilibria and interfacial tension. It is observed that for both mixtures, the interfacial tension decreases as the pressure (or the liquid mole fraction of CO2) increases. Furthermore, there is quantitative agreement between the theoretical predictions and the results obtained from the molecular simulations of surface activities, concentration profiles along the interfacial region, and relative Gibbs adsorption isotherms at the interfaces. A remarkable high excess adsorption of CO2, larger in eicosane than in decane, is detected along the interface.
Cited By
This article is cited by 80 publications.
- Simon Stephan, Florian Fleckenstein, Hans Hasse. Vapor–Liquid Interfacial Properties of the Systems (Toluene + CO2) and (Toluene + N2): Experiments, Molecular Simulation, and Density Gradient Theory. Journal of Chemical & Engineering Data 2023, Article ASAP.
- Louisa McFegan, Ákos Juhász, Péter Márton, Zoltán Hórvölgyi, Angela Jedlovszky-Hajdu, György Hantal, Pál Jedlovszky. Surface Affinity of Tetramethylammonium Iodide in Aqueous Solutions: A Combined Experimental and Computer Simulation Study. The Journal of Physical Chemistry B 2023, 127 (23) , 5341-5352. https://doi.org/10.1021/acs.jpcb.3c01370
- Arun Kumar Narayanan Nair, Mohd Fuad Anwari Che Ruslan, Marcia Luna Ramirez Hincapie, Shuyu Sun. Bulk and Interfacial Properties of Brine or Alkane in the Presence of Carbon Dioxide, Methane, and Their Mixture. Industrial & Engineering Chemistry Research 2022, 61 (15) , 5016-5029. https://doi.org/10.1021/acs.iecr.2c00249
- A. Mulero, I. Cachadiña, L.F. Cardona, J. O. Valderrama. Pressure–Surface Tension–Temperature Equation of State for n-Alkanes. Industrial & Engineering Chemistry Research 2022, 61 (9) , 3457-3473. https://doi.org/10.1021/acs.iecr.1c04979
- Reihaneh Toutouni, Jan Kubelka, Mohammad Piri. Liquid–Vapor Interfacial Tension in Alkane Mixtures: Improving Predictive Capabilities of Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2022, 126 (5) , 1136-1146. https://doi.org/10.1021/acs.jpcb.1c09122
- Reihaneh Toutouni, Jan Kubelka, Mohammad Piri. Molecular Dynamics Simulations of the Vapor–Liquid Equilibria in CO2/n-Pentane, Propane/n-Pentane, and Propane/n-Hexane Binary Mixtures. The Journal of Physical Chemistry B 2021, 125 (24) , 6658-6669. https://doi.org/10.1021/acs.jpcb.1c03673
- Reihaneh Toutouni, Sugata P. Tan, Henry Plancher, Mohammad Piri. Effects of Temperature and Pressure on Interfacial Tensions of Fluid Mixtures. I. CO2/n-Pentane Binary. Journal of Chemical & Engineering Data 2021, 66 (5) , 1977-1983. https://doi.org/10.1021/acs.jced.0c01044
- Jennifer A. Clark, Erik E. Santiso. SAFT-γ-Mie Cross-Interaction Parameters from Density Functional Theory-Predicted Multipoles of Molecular Fragments for Carbon Dioxide, Benzene, Alkanes, and Water. The Journal of Physical Chemistry B 2021, 125 (15) , 3867-3882. https://doi.org/10.1021/acs.jpcb.1c00851
- Andrés Mejía, Erich A. Müller, Gustavo Chaparro Maldonado. SGTPy: A Python Code for Calculating the Interfacial Properties of Fluids Based on the Square Gradient Theory Using the SAFT-VR Mie Equation of State. Journal of Chemical Information and Modeling 2021, 61 (3) , 1244-1250. https://doi.org/10.1021/acs.jcim.0c01324
- Nilesh Choudhary, Mohd Fuad Anwari Che Ruslan, Arun Kumar Narayanan Nair, Shuyu Sun. Bulk and Interfacial Properties of Alkanes in the Presence of Carbon Dioxide, Methane, and Their Mixture. Industrial & Engineering Chemistry Research 2021, 60 (1) , 729-738. https://doi.org/10.1021/acs.iecr.0c04843
- Sonja A. Smith, Jamie T. Cripwell, Cara E. Schwarz. A Quadrupolar SAFT-VR Mie Approach to Modeling Binary Mixtures of CO2 or Benzene with n-Alkanes or 1-Alkanols. Journal of Chemical & Engineering Data 2020, 65 (12) , 5778-5800. https://doi.org/10.1021/acs.jced.0c00705
- Rahul Gajbhiye. Effect of CO2/N2 Mixture Composition on Interfacial Tension of Crude Oil. ACS Omega 2020, 5 (43) , 27944-27952. https://doi.org/10.1021/acsomega.0c03326
- Yusi Zhou, Liqiang Ai, Min Chen. Taylor Dispersion in Nanopores during Miscible CO2 Flooding: Molecular Dynamics Study. Industrial & Engineering Chemistry Research 2020, 59 (40) , 18203-18210. https://doi.org/10.1021/acs.iecr.0c02669
- Jesús Algaba, José Manuel Mı́guez, Paula Gómez-Álvarez, Andrés Mejı́a, Felipe J. Blas. Preferential Orientations and Anomalous Interfacial Tensions in Aqueous Solutions of Alcohols. The Journal of Physical Chemistry B 2020, 124 (38) , 8388-8401. https://doi.org/10.1021/acs.jpcb.0c05412
- Marcela Cartes, Gustavo Chaparro, Andrés Mejía. A Novel Experimental Procedure to Measure the Bulk Mass Densities and Interfacial Tensions for Mixtures at Vapor–Liquid–Liquid Equilibria. Journal of Chemical & Engineering Data 2020, 65 (7) , 3344-3356. https://doi.org/10.1021/acs.jced.0c00139
- Jos Tasche, Elise F. D. Sabattié, Richard L. Thompson, Mario Campana, Mark R. Wilson. Oligomer/Polymer Blend Phase Diagram and Surface Concentration Profiles for Squalane/Polybutadiene: Experimental Measurements and Predictions from SAFT-γ Mie and Molecular Dynamics Simulations. Macromolecules 2020, 53 (7) , 2299-2309. https://doi.org/10.1021/acs.macromol.9b02155
- Lingru Zheng, Fernando Bresme, J. P. Martin Trusler, Erich A. Müller. Employing SAFT Coarse-Grained Force Fields for the Molecular Simulation of Thermodynamic and Transport Properties of CO2–n-Alkane Mixtures. Journal of Chemical & Engineering Data 2020, 65 (3) , 1159-1171. https://doi.org/10.1021/acs.jced.9b00534
- Jesús Algaba, Marcela Cartes, Andrés Mejía, José Manuel Míguez, Felipe J. Blas. Phase Equilibria and Interfacial Properties of the Tetrahydrofuran + Methane Binary Mixture from Experiment and Computer Simulation. The Journal of Physical Chemistry C 2019, 123 (34) , 20960-20970. https://doi.org/10.1021/acs.jpcc.9b05412
- Jesús Algaba, José Matías Garrido, José Manuel Míguez, Andrés Mejía, A. Ignacio Moreno-Ventas Bravo, Felipe J. Blas. Interfacial Properties of Tetrahydrofuran and Carbon Dioxide Mixture from Computer Simulation. The Journal of Physical Chemistry C 2018, 122 (28) , 16142-16153. https://doi.org/10.1021/acs.jpcc.8b04154
- José Matías Garrido, Ilya Polishuk. Toward Development of a Universal CP-PC-SAFT-Based Modeling Framework for Predicting Thermophysical Properties at Reservoir Conditions: Inclusion of Surface Tensions. Industrial & Engineering Chemistry Research 2018, 57 (26) , 8819-8831. https://doi.org/10.1021/acs.iecr.8b02091
- Carmelo Herdes, Camille Petit, Andres Mejía, Erich A. Müller. Combined Experimental, Theoretical, and Molecular Simulation Approach for the Description of the Fluid-Phase Behavior of Hydrocarbon Mixtures within Shale Rocks. Energy & Fuels 2018, 32 (5) , 5750-5762. https://doi.org/10.1021/acs.energyfuels.8b00200
- Teresa Regueira, Maria-Lito Glykioti, Erling H. Stenby, Wei Yan. Density and Compressibility of Multicomponent n-Alkane Mixtures up to 463 K and 140 MPa. Journal of Chemical & Engineering Data 2018, 63 (4) , 1072-1080. https://doi.org/10.1021/acs.jced.7b00803
- Erich A. Müller and Andrés Mejía . Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States. Langmuir 2017, 33 (42) , 11518-11529. https://doi.org/10.1021/acs.langmuir.7b00976
- Nan Li, Cheng-Wei Zhang, Qing-Lan Ma, Li-Yu Jiang, Yu-Xi Xu, Guang-Jin Chen, Chang-Yu Sun, and Lan-Ying Yang . Interfacial Tension Measurement and Calculation of (Carbon Dioxide + n-Alkane) Binary Mixtures. Journal of Chemical & Engineering Data 2017, 62 (9) , 2861-2871. https://doi.org/10.1021/acs.jced.7b00159
- Hai Hoang, Stéphanie Delage-Santacreu, and Guillaume Galliero . Simultaneous Description of Equilibrium, Interfacial, and Transport Properties of Fluids Using a Mie Chain Coarse-Grained Force Field. Industrial & Engineering Chemistry Research 2017, 56 (32) , 9213-9226. https://doi.org/10.1021/acs.iecr.7b01397
- Fenglei Cao, Joshua D. Deetz, and Huai Sun . Free Energy-Based Coarse-Grained Force Field for Binary Mixtures of Hydrocarbons, Nitrogen, Oxygen, and Carbon Dioxide. Journal of Chemical Information and Modeling 2017, 57 (1) , 50-59. https://doi.org/10.1021/acs.jcim.6b00685
- Songqi Li, Yi Pan, Shuangchun Yang, Zhaoxuan Li. A molecular insight into the mechanism of organic molecule detachment by supercritical CO2 from a water invasion calcite surface: Effect of water film and molecular absorbability. Geoenergy Science and Engineering 2023, 231 , 212290. https://doi.org/10.1016/j.geoen.2023.212290
- Yafan Yang, Arun Kumar Narayanan Nair, Weiwei Zhu, Shuxun Sang, Shuyu Sun. Molecular perspectives of interfacial properties of the hydrogen+water mixture in contact with silica or kerogen. Journal of Molecular Liquids 2023, 385 , 122337. https://doi.org/10.1016/j.molliq.2023.122337
- Hongqin Liu. A revisit of the vapor–liquid interface of the Lennard-Jones fluid. Chemical Physics 2023, 571 , 111921. https://doi.org/10.1016/j.chemphys.2023.111921
- Ziqing Pan, J. P. Martin Trusler. Measurement and modelling of the interfacial tensions of CO2 + decane-iododecane mixtures at high pressures and temperatures. Fluid Phase Equilibria 2023, 566 , 113700. https://doi.org/10.1016/j.fluid.2022.113700
- Isabel Nitzke, Rolf Stierle, Simon Stephan, Michael Pfitzner, Joachim Gross, Jadran Vrabec. Phase equilibria and interface properties of hydrocarbon propellant–oxygen mixtures in the transcritical regime. Physics of Fluids 2023, 35 (3) https://doi.org/10.1063/5.0138973
- Fariborz Shaahmadi, Sonja AM Smith, Cara E Schwarz, Andries J Burger, Jamie T Cripwell. Group-contribution SAFT equations of state: A review. Fluid Phase Equilibria 2023, 565 , 113674. https://doi.org/10.1016/j.fluid.2022.113674
- Simon Stephan, Harry Cárdenas, Andrés Mejía, Erich A. Müller. The monotonicity behavior of density profiles at vapor-liquid interfaces of mixtures. Fluid Phase Equilibria 2023, 564 , 113596. https://doi.org/10.1016/j.fluid.2022.113596
- Mehdi Mahdaviara, Menad Nait Amar, Mehdi Ostadhassan, Abdolhossein Hemmati-Sarapardeh. On the evaluation of the interfacial tension of immiscible binary systems of methane, carbon dioxide, and nitrogen-alkanes using robust data-driven approaches. Alexandria Engineering Journal 2022, 61 (12) , 11601-11614. https://doi.org/10.1016/j.aej.2022.04.049
- Reza Behvandi, Mohsen Mirzaie. A novel correlation for modeling interfacial tension in binary mixtures of CH₄, CO₂, and N₂ + normal alkanes systems: Application to gas injection EOR process. Fuel 2022, 325 , 124622. https://doi.org/10.1016/j.fuel.2022.124622
- Ziqing Pan, J.P. Martin Trusler. Interfacial tensions of systems comprising N2, 7 mass% KI (aq), decane and iododecane at elevated pressures and temperatures. Fluid Phase Equilibria 2022, 556 , 113364. https://doi.org/10.1016/j.fluid.2021.113364
- Lipei Fu, Feng Gu, Kaili Liao, Xianli Wen, Weiqiu Huang, Xufei Li, Zhangkun Ren, Leizhen Xie. Application of molecular simulation in tertiary oil recovery: A systematic review. Journal of Petroleum Science and Engineering 2022, 212 , 110196. https://doi.org/10.1016/j.petrol.2022.110196
- Yingnan Wang, Nadia Shardt, Janet A. W. Elliott, Zhehui Jin. Highly Efficient and Accurate Gas-Alkane Binary Mixture Interfacial Tension Equations for a Broad Range of Temperatures, Pressures, and Compositions. SPE Journal 2022, 27 (01) , 895-913. https://doi.org/10.2118/208572-PA
- Andrés Mejía, Marcela Cartes, Gustavo Chaparro, Esther Feria, Felipe J. Blas, José Manuel Míguez, Jesús Algaba, Erich A. Müller. Phase equilibria and interfacial properties of selected methane + n-alkane binary mixtures. Journal of Molecular Liquids 2021, 341 , 116918. https://doi.org/10.1016/j.molliq.2021.116918
- A. Mulero, I. Cachadiña, A. Vegas. Recommended Correlations for the Surface Tension of 80 Esters. Journal of Physical and Chemical Reference Data 2021, 50 (3) https://doi.org/10.1063/5.0061617
- Farzaneh Rezaei, Amin Rezaei, Saeed Jafari, Abdolhossein Hemmati-Sarapardeh, Amir H. Mohammadi, Sohrab Zendehboudi. On the Evaluation of Interfacial Tension (IFT) of CO2–Paraffin System for Enhanced Oil Recovery Process: Comparison of Empirical Correlations, Soft Computing Approaches, and Parachor Model. Energies 2021, 14 (11) , 3045. https://doi.org/10.3390/en14113045
- A. Mulero, I. Cachadiña, D. Bautista. Recommended Correlations for the Surface Tension of n -Alkanes. Journal of Physical and Chemical Reference Data 2021, 50 (2) https://doi.org/10.1063/5.0048675
- Simon Stephan, Dominik Schaefer, Kai Langenbach, Hans Hasse. Mass transfer through vapour–liquid interfaces: a molecular dynamics simulation study. Molecular Physics 2021, 119 (3) , e1810798. https://doi.org/10.1080/00268976.2020.1810798
- Mohsen Mirzaie, Afshin Tatar. Modeling of interfacial tension in binary mixtures of CH4, CO2, and N2 - alkanes using gene expression programming and equation of state. Journal of Molecular Liquids 2020, 320 , 114454. https://doi.org/10.1016/j.molliq.2020.114454
- Simon Stephan, Stefan Becker, Kai Langenbach, Hans Hasse. Vapor-liquid interfacial properties of the system cyclohexane + CO2: Experiments, molecular simulation and density gradient theory. Fluid Phase Equilibria 2020, 518 , 112583. https://doi.org/10.1016/j.fluid.2020.112583
- Esteban Cea-Klapp, Héctor Quinteros-Lama, Ilya Polishuk, José Matías Garrido. Effect of size disparity on the gas-liquid interfacial properties of Lennard-Jones monomer plus dimer mixtures. Journal of Molecular Liquids 2020, 311 , 113280. https://doi.org/10.1016/j.molliq.2020.113280
- Simon Stephan, Hans Hasse. Enrichment at vapour–liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties. International Reviews in Physical Chemistry 2020, 39 (3) , 319-349. https://doi.org/10.1080/0144235X.2020.1777705
- Simon Stephan, Hans Hasse. Interfacial properties of binary mixtures of simple fluids and their relation to the phase diagram. Physical Chemistry Chemical Physics 2020, 22 (22) , 12544-12564. https://doi.org/10.1039/D0CP01411G
- Gerard Alonso, Gustavo Chaparro, Marcela Cartes, Erich A. Müller, Andrés Mejía. Probing the Interfacial Behavior of Type IIIa Binary Mixtures Along the Three-Phase Line Employing Molecular Thermodynamics. Molecules 2020, 25 (7) , 1499. https://doi.org/10.3390/molecules25071499
- Christopher C. Walker, Jan Genzer, Erik E. Santiso. Extending the fused-sphere SAFT-γ Mie force field parameterization approach to poly(vinyl butyral) copolymers. The Journal of Chemical Physics 2020, 152 (4) https://doi.org/10.1063/1.5126213
- Nan Li, Chengwei Zhang, Qinglan Ma, Zhenfeng Sun, Yun Chen, Shuai Jia, Guangjin Chen, Changyu Sun, Lanying Yang. Measurements and modeling of interfacial tension for (CO2 + n-alkyl benzene) binary mixtures. The Journal of Supercritical Fluids 2019, 154 , 104625. https://doi.org/10.1016/j.supflu.2019.104625
- Zehua Chen, Daoyong Yang. Correlations of Equilibrium Interfacial Tension Based on Mutual Solubility/Density: Extension to n-Alkane–Water and n-Alkane–CO2 Binary/Ternary Systems and Comparisons With the Parachor Model. Journal of Energy Resources Technology 2019, 141 (12) https://doi.org/10.1115/1.4043824
- Nilesh Choudhary, Arun Kumar Narayanan Nair, Mohd Fuad Anwari Che Ruslan, Shuyu Sun. Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-56378-y
- Amulya K. Pervaje, Christopher C. Walker, Erik E. Santiso. Molecular simulation of polymers with a SAFT-γ Mie approach. Molecular Simulation 2019, 45 (14-15) , 1223-1241. https://doi.org/10.1080/08927022.2019.1645331
- Timing Fang, Yingnan Zhang, Jie Liu, Bin Ding, Youguo Yan, Jun Zhang. Molecular insight into the miscible mechanism of CO2/C10 in bulk phase and nanoslits. International Journal of Heat and Mass Transfer 2019, 141 , 643-650. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.083
- Thomas M. Koller, Shaomin Yan, Corina Steininger, Tobias Klein, Andreas P. Fröba. Interfacial Tension and Liquid Viscosity of Binary Mixtures of n-Hexane, n-Decane, or 1-Hexanol with Carbon Dioxide by Molecular Dynamics Simulations and Surface Light Scattering. International Journal of Thermophysics 2019, 40 (8) https://doi.org/10.1007/s10765-019-2544-y
- Timing Fang, Muhan Wang, Yang Gao, Yingnan Zhang, Youguo Yan, Jun Zhang. Enhanced oil recovery with CO2/N2 slug in low permeability reservoir: Molecular dynamics simulation. Chemical Engineering Science 2019, 197 , 204-211. https://doi.org/10.1016/j.ces.2018.12.016
- Jun Pu, Xuejie Qin, Feifei Gou, Wenchao Fang, Fengjie Peng, Runxi Wang, Zhaoli Guo. Molecular Modeling of CO2 and n-Octane in Solubility Process and α-Quartz Nanoslit. Energies 2018, 11 (11) , 3045. https://doi.org/10.3390/en11113045
- Constanza Cumicheo, Marcela Cartes, Erich A. Müller, Andrés Mejía. Experimental measurements and theoretical modeling of high-pressure mass densities and interfacial tensions of carbon dioxide + n-heptane + toluene and its carbon dioxide binary systems. Fuel 2018, 228 , 92-102. https://doi.org/10.1016/j.fuel.2018.04.057
- Michaela Heier, Simon Stephan, Jinlu Liu, Walter G. Chapman, Hans Hasse, Kai Langenbach. Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5 σ based on perturbation theory and its applications to interfacial thermodynamics. Molecular Physics 2018, 116 (15-16) , 2083-2094. https://doi.org/10.1080/00268976.2018.1447153
- Felix Diewald, Michaela Heier, Martin Horsch, Charlotte Kuhn, Kai Langenbach, Hans Hasse, Ralf Müller. Three-dimensional phase field modeling of inhomogeneous gas-liquid systems using the PeTS equation of state. The Journal of Chemical Physics 2018, 149 (6) https://doi.org/10.1063/1.5035495
- Runxi Wang, Fengjie Peng, Kunlun Song, Guang Feng, Zhaoli Guo. Molecular dynamics study of interfacial properties in CO 2 enhanced oil recovery. Fluid Phase Equilibria 2018, 467 , 25-32. https://doi.org/10.1016/j.fluid.2018.03.022
- Shahin Khosharay, Sedigheh Tourang, Farhad Tajfar. Modeling surface tension and interface of (water+methanol), (water+ethanol), (water+1-propanol), and (water+MEG) mixtures. Fluid Phase Equilibria 2017, 454 , 99-110. https://doi.org/10.1016/j.fluid.2017.09.017
- Fenglei Cao, Zheng Gong, Yanze Wu, Huai Sun. A high-throughput computing procedure for predicting vapor-liquid equilibria of binary mixtures – Using carbon dioxide and n-alkanes as examples. Fluid Phase Equilibria 2017, 452 , 58-68. https://doi.org/10.1016/j.fluid.2017.08.021
- José Matías Garrido, Marcela Cartes, Andrés Mejía. Coarse-grained theoretical modeling and molecular simulations of nitrogen + n -alkanes: ( n -pentane, n -hexane, n -heptane, n -octane). The Journal of Supercritical Fluids 2017, 129 , 83-90. https://doi.org/10.1016/j.supflu.2017.01.001
- José Matías Garrido, Marcela Cartes, Andrés Mejía, Jesús Algaba, José Manuel Míguez, Felipe J. Blas, Ignacio Moreno-Ventas Bravo, Manuel M. Piñeiro. Measurement and modeling of high pressure density and interfacial tension of carbon dioxide + tetrahydrofuran mixture. The Journal of Supercritical Fluids 2017, 128 , 359-369. https://doi.org/10.1016/j.supflu.2017.04.008
- Jonas Mairhofer, Joachim Gross. Modeling of interfacial properties of multicomponent systems using density gradient theory and PCP-SAFT. Fluid Phase Equilibria 2017, 439 , 31-42. https://doi.org/10.1016/j.fluid.2017.02.009
- Qiaoyan Shang, Shuqian Xia, GuanWei Cui, Bo Tang, Peisheng Ma. Measurement and correlation of the interfacial tension for paraffin + CO 2 and (CO 2 +N 2 ) mixture gas at elevated temperatures and pressures. Fluid Phase Equilibria 2017, 439 , 18-23. https://doi.org/10.1016/j.fluid.2017.02.012
- Åsmund Ervik, Guadalupe Jiménez Serratos, Erich A. Müller. raaSAFT: A framework enabling coarse-grained molecular dynamics simulations based on the SAFT- γ Mie force field. Computer Physics Communications 2017, 212 , 161-179. https://doi.org/10.1016/j.cpc.2016.07.035
- Stefan Becker, Stephan Werth, Martin Horsch, Kai Langenbach, Hans Hasse. Interfacial tension and adsorption in the binary system ethanol and carbon dioxide: Experiments, molecular simulation and density gradient theory. Fluid Phase Equilibria 2016, 427 , 476-487. https://doi.org/10.1016/j.fluid.2016.08.007
- Harry Cárdenas, Andrés Mejía. Phase behaviour and interfacial properties of ternary system CO 2 + n-butane + n-decane: coarse-grained theoretical modelling and molecular simulations. Molecular Physics 2016, 114 (18) , 2627-2640. https://doi.org/10.1080/00268976.2016.1170221
- Luís M.C. Pereira, Antonin Chapoy, Rod Burgass, Bahman Tohidi. Measurement and modelling of high pressure density and interfacial tension of (gas + n -alkane) binary mixtures. The Journal of Chemical Thermodynamics 2016, 97 , 55-69. https://doi.org/10.1016/j.jct.2015.12.036
- José Matías Garrido, Andrés Mejía, Manuel M. Piñeiro, Felipe J. Blas, Erich A. Müller. Interfacial tensions of industrial fluids from a molecular‐based square gradient theory. AIChE Journal 2016, 62 (5) , 1781-1794. https://doi.org/10.1002/aic.15190
- J. M. Garrido, J. Algaba, J. M. Míguez, B. Mendiboure, A. I. Moreno-Ventas Bravo, M. M. Piñeiro, F. J. Blas. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation. The Journal of Chemical Physics 2016, 144 (14) https://doi.org/10.1063/1.4945385
- Olga Lobanova, Andrés Mejía, George Jackson, Erich A. Müller. SAFT- γ force field for the simulation of molecular fluids 6: Binary and ternary mixtures comprising water, carbon dioxide, and n -alkanes. The Journal of Chemical Thermodynamics 2016, 93 , 320-336. https://doi.org/10.1016/j.jct.2015.10.011
- José Matías Garrido, Manuel M. Piñeiro, Andrés Mejía, Felipe J. Blas. Understanding the interfacial behavior in isopycnic Lennard-Jones mixtures by computer simulations. Physical Chemistry Chemical Physics 2016, 18 (2) , 1114-1124. https://doi.org/10.1039/C5CP06562C
- Simon Dufal, Thomas Lafitte, Amparo Galindo, George Jackson, Andrew J. Haslam. Developing intermolecular‐potential models for use with the SAFT ‐ VR M ie equation of state. AIChE Journal 2015, 61 (9) , 2891-2912. https://doi.org/10.1002/aic.14808
- Olga Lobanova, Carlos Avendaño, Thomas Lafitte, Erich A. Müller, George Jackson. SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range. Molecular Physics 2015, 113 (9-10) , 1228-1249. https://doi.org/10.1080/00268976.2015.1004804
- Jeremy C. Palmer, Pablo G. Debenedetti. Recent advances in molecular simulation: A chemical engineering perspective. AIChE Journal 2015, 61 (2) , 370-383. https://doi.org/10.1002/aic.14706
- Erich A. Müller, George Jackson. Force-Field Parameters from the SAFT-γ Equation of State for Use in Coarse-Grained Molecular Simulations. Annual Review of Chemical and Biomolecular Engineering 2014, 5 (1) , 405-427. https://doi.org/10.1146/annurev-chembioeng-061312-103314