ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Liquid−Liquid Equilibria for Ternary Systems of Water + Formic Acid + Dibasic Esters

View Author Information
Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320, Avcilar, Istanbul, Turkey
Cite this: J. Chem. Eng. Data 2007, 52, 5, 1889–1893
Publication Date (Web):August 7, 2007
https://doi.org/10.1021/je700206y
Copyright © 2007 American Chemical Society

    Article Views

    658

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Liquid−liquid equilibrium (LLE) data including solubility curves and tie-line compositions were measured for mixtures of water (1) + formic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3) at T = 298.2 K and atmospheric pressure, p = (101.3 ± 0.7) kPa. The relative mutual solubility of the formic acid is higher in the aqueous phase than in the dibasic ester phases. The reliability of the experimental tie-line data was confirmed by using the Othmer−Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC and modified UNIFAC methods. Distribution coefficients and separation factors were evaluated for the immiscibility region.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. Fax:  +90-212-473 71 80. E-mail:  erolince@ istanbul.edu.tr.

    Cited By

    This article is cited by 34 publications.

    1. Saidah Altway, Ardila Hayu Tiwikrama, Serli Dwi Rahayu, Daril Ridho Zuchrillah, Soeprijanto Soeprijanto, Nadza Basyuni Ramli, Melvin Iga Maulidia, Suprihatin Suprihatin. Liquid–Liquid Equilibria of Butyric Acid, Water, and Methyl Isobutyl Ketone with the Aid of Biological Buffer as a Green Auxiliary Agent. Journal of Chemical & Engineering Data 2023, 68 (7) , 1706-1715. https://doi.org/10.1021/acs.jced.3c00132
    2. Ardila Hayu Tiwikrama, Saidah Altway. Effect of EPPS Buffer on the Liquid–Liquid Equilibria of Carboxylic Acids (Acetic Acid or Propionic Acid)–Water–Methyl Isobutyl Ketone at Elevated Temperatures. Journal of Chemical & Engineering Data 2022, 67 (5) , 1228-1236. https://doi.org/10.1021/acs.jced.2c00084
    3. Xingchuan Yang, Genlei Wei, Xiangmeng Chen, Li Xu, Guoji Liu. Liquid–Liquid Equilibrium Measurement and Correlation for the Ternary Systems (Dimethyl Succinate + 1,4-Butanediol)/(Dimethyl Glutarate + 1,5-Pentanediol)/(Dimethyl Adipate + 1,6-Hexanediol) + Water at Different Temperatures. Journal of Chemical & Engineering Data 2020, 65 (4) , 1875-1885. https://doi.org/10.1021/acs.jced.9b01099
    4. Mahinder Ramdin, Andrew R. T. Morrison, Mariette de Groen, Rien van Haperen, Robert de Kler, Erdem Irtem, Antero T. Laitinen, Leo J. P. van den Broeke, Tom Breugelmans, J. P. Martin Trusler, Wiebren de Jong, Thijs J. H. Vlugt. High-Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: Effect of pH on the Downstream Separation Process and Economics. Industrial & Engineering Chemistry Research 2019, 58 (51) , 22718-22740. https://doi.org/10.1021/acs.iecr.9b03970
    5. Thanaporn Wannachod, Milan Hronec, Tomáš Soták, Katarína Fulajtárová, Ura Pancharoen, and Kasidit Nootong . Influence of Salt on the Solubility and Tie-Line Data for Water + Formic Acid + Methyl Isobutyl Ketone at T = 298.15 K. Journal of Chemical & Engineering Data 2016, 61 (7) , 2433-2439. https://doi.org/10.1021/acs.jced.6b00109
    6. Hasan Uslu and Dipaloy Datta . Experimental and Theoretical Investigations on the Reactive Extraction of Itaconic (2-Methylidenebutanedioic) Acid Using Trioctylamine (N,N-Dioctyloctan-1-amine). Journal of Chemical & Engineering Data 2015, 60 (5) , 1426-1433. https://doi.org/10.1021/je501131j
    7. Erol İnce, Melisa Lalikoglu, and Dana Constantinescu . Liquid Phase Equilibria of the Water + Acetic Acid + Dimethyl Carbonate Ternary System at Several Temperatures. Journal of Chemical & Engineering Data 2014, 59 (11) , 3353-3358. https://doi.org/10.1021/je500332k
    8. Erol İnce, Melisa Lalikoglu, and Dana Constantinescu . Liquid Phase Equilibria of Water + Formic Acid + Dimethyl Carbonate Ternary System at Several Temperatures. Journal of Chemical & Engineering Data 2014, 59 (9) , 2781-2787. https://doi.org/10.1021/je500422t
    9. Hasan Uslu, Dipaloy Datta, and Sushil Kumar . Reactive Extraction of Oxoethanoic Acid (Glyoxylic Acid) Using Amberlite-LA2 in Different Diluents. Journal of Chemical & Engineering Data 2014, 59 (8) , 2623-2629. https://doi.org/10.1021/je5003972
    10. Hossein Ghanadzadeh Gilani, Ali Ghanadzadeh Gilani, and S. Laleh Seyed Saadat . Experimental and Correlational Study of Phase Equilibria in Aqueous Solutions of Formic and Butyric Acids with Isoamyl Acetate and Methyl Isoamyl Ketone at T = 298.15 K. Journal of Chemical & Engineering Data 2014, 59 (3) , 917-925. https://doi.org/10.1021/je401095k
    11. María J. P. Comuñas, Jean-Patrick Bazile, Luis Lugo, Antoine Baylaucq, Josefa Fernández, and Christian Boned . Influence of the Molecular Structure on the Volumetric Properties and Viscosities of Dialkyl Adipates (Dimethyl, Diethyl, and Diisobutyl Adipates). Journal of Chemical & Engineering Data 2010, 55 (9) , 3697-3703. https://doi.org/10.1021/je100237h
    12. Hasan Uslu, Cuma Bayat, Selahattin Gökmen and Yavuz Yorulmaz . Reactive Extraction of Formic Acid by Amberlite LA-2 Extractant. Journal of Chemical & Engineering Data 2009, 54 (1) , 48-53. https://doi.org/10.1021/je8005584
    13. Süheyla Çehreli and Burcu Başlıoğlu . Phase Equilibrium of Water + Formic Acid + Acetic Acid + Solvent (Amyl Acetate or Diisobutyl Ketone or Diisopropyl Ether) Quaternary Liquid Systems. Journal of Chemical & Engineering Data 2008, 53 (7) , 1607-1611. https://doi.org/10.1021/je800143b
    14. Chunli Zhi, Yang Tang, Jinru Wan, Xingming Liu, Honglin Chen, Xunqiu Wang. Determination and correlation of ternary isobaric vapour-liquid equilibrium data of (dimethyl succinate + dimethyl glutarate + dimethyl adipate) at 2, 5 and 8 kPa. The Journal of Chemical Thermodynamics 2020, 143 , 106047. https://doi.org/10.1016/j.jct.2019.106047
    15. Honglin Chen, Lei Zhang, Yulan Huang, Jingjing Lu, Zhijian Zhao, Xunqiu Wang. Isobaric vapor–liquid equilibrium of three binary systems containing dimethyl succinate, dimethyl glutarate and dimethyl adipate at 2, 5.2 and 8.3 kPa. The Journal of Chemical Thermodynamics 2019, 133 , 100-110. https://doi.org/10.1016/j.jct.2019.02.006
    16. Thanaporn Wannachod, Milan Hronec, Tomáš Soták, Katarína Fulajtárová, Ura Pancharoen, Kasidit Nootong. Influence of salt concentration on solubility and tie-line data for the system: Formic acid + n-butanol + water. Separation Science and Technology 2018, 53 (6) , 990-998. https://doi.org/10.1080/01496395.2017.1405988
    17. Hasan Uslu, Dipaloy Datta, Sushil Kumar. Investigations on the Reactive Extraction of Glyoxylic Acid by Amberlite-LA2 dissolved in Alcoholic Diluents. Separation Science and Technology 2015, 200 , 150716070254008. https://doi.org/10.1080/01496395.2015.1067229
    18. Dongmei Xu, Chunxia Wu, Qing Zhang, Huan Zhang, Yinglong Wang, Jun Gao. Liquid–liquid equilibrium for the ternary systems water+2-methyl-1-propanol+butyl acetate and water+2-methyl-2-propanol+butyl acetate at (298.15 and 323.15)K. Fluid Phase Equilibria 2014, 381 , 60-66. https://doi.org/10.1016/j.fluid.2014.08.014
    19. Kayhan Bayazıt, Aslı Gök, Hasan Uslu, Ş. İsmail Kırbaşlar. Phase equilibria of (water+butyric acid+butyl acetate) ternary systems at different temperatures. Fluid Phase Equilibria 2014, 379 , 185-190. https://doi.org/10.1016/j.fluid.2014.07.023
    20. H. Ghanadzadeh Gilani, Sh. Asan. Liquid–liquid equilibrium data for systems containing of formic acid, water, and primary normal alcohols at T=298.2K. Fluid Phase Equilibria 2013, 354 , 24-28. https://doi.org/10.1016/j.fluid.2013.06.006
    21. Hossein Ghanadzadeh Gilani, Syrous Noury, Shain Asan. Phase equilibrium data for aqueous solutions of formic acid with 2-ethyl-1-hexanol at T=(298.2, 308.2, 318.2, and 328.2) K. Korean Journal of Chemical Engineering 2013, 30 (6) , 1289-1294. https://doi.org/10.1007/s11814-013-0050-7
    22. Dipaloy Datta, Sushil Kumar. INTENSIFICATION OF RECOVERY OF FORMIC ACID FROM AQUEOUS STREAM USING REACTIVE EXTRACTION WITH N, N-DIOCTYLOCTAN-1-AMINE: EFFECT OF DILUENT AND TEMPERATURE. Chemical Engineering Communications 2013, 200 (5) , 678-700. https://doi.org/10.1080/00986445.2012.717318
    23. H. Ghanadzadeh Gilani, M. Azadian. Tie-line data for water–formic acid–1-decanol ternary system at T=298.2, 303.2, 313.2, and 323.2K. Thermochimica Acta 2012, 547 , 141-145. https://doi.org/10.1016/j.tca.2012.08.001
    24. Tugba Gündogdu, Süheyla Çehreli. Ternary liquid–liquid phase equilibria of (water–carboxylic acid–1-undecanol) systems at 298.15K. Fluid Phase Equilibria 2012, 331 , 26-32. https://doi.org/10.1016/j.fluid.2012.06.020
    25. Zhiyun Chen, Li Cai, Meijun Huang, Tianxiang Yin, Xueqin An, Weiguo Shen. The liquid–liquid coexistence curves of {x dimethyl adipate + (1 −x) n-hexane} and {x dimethyl adipate + (1 −x) n-heptane} in the critical region. The Journal of Chemical Thermodynamics 2012, 48 , 229-234. https://doi.org/10.1016/j.jct.2011.12.024
    26. Dipaloy Datta, Sushil Kumar. Modeling and Optimization of Recovery Process of Glycolic Acid using Reactive Extraction. International Journal of Chemical Engineering and Applications 2012, 16 , 141-146. https://doi.org/10.7763/IJCEA.2012.V3.175
    27. Burcu Başlıoğlu, Süheyla Çehreli. Quaternary phase equilibrium of water–carboxylic acid mixture (formic–propionic acid or acetic–propionic acid)–solvent liquid systems at 298.15K. Fluid Phase Equilibria 2011, 312 , 85-92. https://doi.org/10.1016/j.fluid.2011.09.014
    28. Aslı Gök, Ş. İsmail Kırbaşlar, Hasan Uslu, H. Ghanadzadeh Gilani. Liquid–liquid equilibria of (water+butyric acid+diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems. Fluid Phase Equilibria 2011, 303 (1) , 71-75. https://doi.org/10.1016/j.fluid.2011.01.012
    29. Süheyla Çehreli, Tugba Gündogdu. Phase equilibria of (water–carboxylic acid–diethyl maleate) ternary liquid systems at 298.15K. Fluid Phase Equilibria 2011, 303 (2) , 168-173. https://doi.org/10.1016/j.fluid.2011.01.020
    30. , , Andrzej Mączyński, Barbara Wiśniewska-Gocłowska. IUPAC-NIST Solubility Data Series. 88. Esters with Water—Revised and Updated. Part 3. C7 to C9 Esters. Journal of Physical and Chemical Reference Data 2010, 39 (2) https://doi.org/10.1063/1.3339774
    31. Thella Prathap Kumar, Parichay K. Das. SOLUBILITY AND TIE-LINE DATA FOR WATER + FORMIC ACID + METHYL ISOBUTYL KETONE TERNARY SYSTEM AT DIFFERENT TEMPERATURES. Chemical Engineering Communications 2010, 197 (9) , 1163-1171. https://doi.org/10.1080/00986440903574784
    32. , , Andrzej Mączyński, Pawel Oracz, Barbara Wiśniewska-Gocłowska, Iwona Owczarek, Krystyna Blazej. IUPAC-NIST Solubility Data Series. 88. Esters with Water—Revised and Updated. Part 2. C5 and C6 Esters. Journal of Physical and Chemical Reference Data 2010, 39 (1) https://doi.org/10.1063/1.3243973
    33. Hasan Uslu, Aslı Gök, Ş. İsmail Kırbaşlar. Phase equilibria of (water+levulinic acid+dibasic esters) ternary systems. Fluid Phase Equilibria 2009, 282 (1) , 20-24. https://doi.org/10.1016/j.fluid.2009.04.017
    34. M. B. Oliveira, M. J. Pratas, I. M. Marrucho, A. J. Queimada, J. A. P. Coutinho. Description of the mutual solubilities of fatty acids and water with the CPA EoS. AIChE Journal 2009, 55 (6) , 1604-1613. https://doi.org/10.1002/aic.11766

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect