ACS Publications. Most Trusted. Most Cited. Most Read
Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
My Activity

Figure 1Loading Img
    Article

    Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
    Click to copy article linkArticle link copied!

    View Author Information
    Departamento de Física Aplicada, Universidad de Vigo, Facultad de Ciencias, Campus As Lagoas, 32004, Ourense, Spain
    Other Access Options

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2007, 52, 6, 2261–2265
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je7002836
    Published October 19, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Experimental measurements of density and isobaric molar heat capacity for the binary systems containing ionic liquid 1-butyl-3-methylpyridinium tetrafluoroborate + water, + ethanol, and + nitromethane are presented within the temperature range (293.15 to 318.15) K at atmospheric pressure. From these data, excess molar volumes and excess molar isobaric heat capacity are calculated and discussed based on arguments often used for the study of liquid mixtures.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  romani@ uvigo.es.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Shehzad Liaqat, Moh’d Basel Shahin, Paul Nancarrow, Samira Zeinab, Taleb Ibrahim, Nabil Abdel Jabbar, Mustafa Khamis, Sarah McCormack. Prediction of Liquid Phase Heat Capacity of Ionic Liquids: Comparison of Existing Methods and Development of New Hybrid Group Contribution Models. Industrial & Engineering Chemistry Research 2023, 62 (39) , 16093-16112. https://doi.org/10.1021/acs.iecr.3c00675
    2. Kazunobu Igawa, Shusaku Asano, Yuki Yoshida, Yuuya Kawasaki, Katsuhiko Tomooka. Analysis of Stereochemical Stability of Dynamic Chiral Molecules Using an Automated Microflow Measurement System. The Journal of Organic Chemistry 2021, 86 (14) , 9651-9657. https://doi.org/10.1021/acs.joc.1c00914
    3. Harish Babu Balaraman, Senthil Kumar Rathnasamy. Thermophysical, Cohesive Energy Density and Molar Heat Capacity of Surfactant-Based Low-Transition-Temperature Mixtures. Journal of Chemical & Engineering Data 2020, 65 (9) , 4452-4461. https://doi.org/10.1021/acs.jced.0c00279
    4. Jacobo Troncoso. Isobaric Heat Capacity of Ionic Liquids in Aqueous Solutions. A Review. Journal of Chemical & Engineering Data 2019, 64 (11) , 4611-4618. https://doi.org/10.1021/acs.jced.9b00056
    5. Nandhibatla V Sastry and Indravijaysinh R Ravalji . Densities, Speeds of Sound, and Excess and Partial Excess Properties of Room Temperature Ionic Liquids of Type [Cnpy][X] or [Cn4mpy][X] (Where n = 6 or 8, [X] = Cl– or Br–) + Water Binary Mixtures at T = (308.15 and 318.15) K. Journal of Chemical & Engineering Data 2016, 61 (11) , 3834-3848. https://doi.org/10.1021/acs.jced.6b00460
    6. Varadhi Govinda, T. Vasantha, Imran Khan, and Pannuru Venkatesu . Effect of the Alkyl Chain Length of the Cation on the Interactions between Water and Ammonium-Based Ionic Liquids: Experimental and COSMO-RS Studies. Industrial & Engineering Chemistry Research 2015, 54 (36) , 9013-9026. https://doi.org/10.1021/acs.iecr.5b01796
    7. Luis Fernández, Juan Ortega, José Palomar, Francisco Toledo, and Elena Marrero . Description of the Behavior of Dichloroalkanes-Containing Solutions with Three [bXmpy][BF4] Isomers, Using the Experimental Information of Thermodynamic Properties, 1H NMR Spectral and the COSMO-RS-Methodology. The Journal of Physical Chemistry B 2015, 119 (8) , 3527-3534. https://doi.org/10.1021/jp510884t
    8. Marta Królikowska, Kamil Paduszyński, Marek Królikowski, Paweł Lipiński, and Jerzy Antonowicz . Vapor–Liquid Phase Equilibria and Excess Thermal Properties of Binary Mixtures of Ethylsulfate-Based Ionic Liquids with Water: New Experimental Data, Correlations, and Predictions. Industrial & Engineering Chemistry Research 2014, 53 (47) , 18316-18325. https://doi.org/10.1021/ie503872p
    9. Marta Królikowska, Kamil Paduszyński, and Maciej Zawadzki . Measurements, Correlations, and Predictions of Thermodynamic Properties of N-Octylisoquinolinium Thiocyanate Ionic Liquid and Its Aqueous Solutions. Journal of Chemical & Engineering Data 2013, 58 (2) , 285-293. https://doi.org/10.1021/je300853z
    10. Mónica García-Mardones, Ignacio Gascón, M. Carmen López, Félix M. Royo, and Carlos Lafuente . Viscosimetric Study of Binary Mixtures Containing Pyridinium-Based Ionic Liquids and Alkanols. Journal of Chemical & Engineering Data 2012, 57 (12) , 3549-3556. https://doi.org/10.1021/je300557g
    11. Emilio J. González, Ángeles Domínguez, and Eugenia A. Macedo . Physical and Excess Properties of Eight Binary Mixtures Containing Water and Ionic Liquids. Journal of Chemical & Engineering Data 2012, 57 (8) , 2165-2176. https://doi.org/10.1021/je201334p
    12. Huiyong Wang, Jianji Wang, and Shibiao Zhang . Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide. Journal of Chemical & Engineering Data 2012, 57 (7) , 1939-1944. https://doi.org/10.1021/je300017m
    13. Rolf E. Isele-Holder, Brooks D. Rabideau, and Ahmed E. Ismail . Definition and Computation of Intermolecular Contact in Liquids Using Additively Weighted Voronoi Tessellation. The Journal of Physical Chemistry A 2012, 116 (18) , 4657-4666. https://doi.org/10.1021/jp3021886
    14. A. Blanco, A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza . Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone (NMP) + Water + Ethanol from T = (293.15 to 323.15) K. Journal of Chemical & Engineering Data 2012, 57 (4) , 1009-1014. https://doi.org/10.1021/je201152j
    15. Xiaoqi Sun, Huimin Luo, and Sheng Dai . Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel Cycle. Chemical Reviews 2012, 112 (4) , 2100-2128. https://doi.org/10.1021/cr200193x
    16. Mérièm Anouti, Johan Jacquemin, and Daniel Lemordant. Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents. Journal of Chemical & Engineering Data 2010, 55 (12) , 5719-5728. https://doi.org/10.1021/je100671v
    17. Nan-Nan Wang, Qing-Guo Zhang, Fu-Gen Wu, Qing-Zhong Li and Zhi-Wu Yu. Hydrogen Bonding Interactions between a Representative Pyridinium-Based Ionic Liquid [BuPy][BF4] and Water/Dimethyl Sulfoxide. The Journal of Physical Chemistry B 2010, 114 (26) , 8689-8700. https://doi.org/10.1021/jp103438q
    18. Surya S. Moganty and Ruth E. Baltus. Regular Solution Theory for Low Pressure Carbon Dioxide Solubility in Room Temperature Ionic Liquids: Ionic Liquid Solubility Parameter from Activation Energy of Viscosity. Industrial & Engineering Chemistry Research 2010, 49 (12) , 5846-5853. https://doi.org/10.1021/ie901837k
    19. Li-Yan Dai, Qian Li, Ming Lei and Ying-Qi Chen . Heat Capacities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures. Journal of Chemical & Engineering Data 2010, 55 (4) , 1704-1707. https://doi.org/10.1021/je9006579
    20. Pedro J. Carvalho, Teresa Regueira, Luis M. N. B. F. Santos, Josefa Fernandez and João A. P. Coutinho . Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure. Journal of Chemical & Engineering Data 2010, 55 (2) , 645-652. https://doi.org/10.1021/je900632q
    21. Jianji Wang, Shibiao Zhang, Huiyong Wang and Yuanchao Pei. Apparent Molar Volumes and Electrical Conductance of Ionic Liquids [Cnmim]Br (n = 8, 10, 12) in Ethylene Glycol, N,N-Dimethylformamide, and Dimethylsulfoxide at 298.15 K. Journal of Chemical & Engineering Data 2009, 54 (12) , 3252-3258. https://doi.org/10.1021/je9002306
    22. Lindsay E. Ficke, Héctor Rodríguez and Joan F. Brennecke. Heat Capacities and Excess Enthalpies of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids and Water. Journal of Chemical & Engineering Data 2008, 53 (9) , 2112-2119. https://doi.org/10.1021/je800248w
    23. Rile Ge, Christopher Hardacre, Johan Jacquemin, Paul Nancarrow and David W. Rooney. Heat Capacities of Ionic Liquids as a Function of Temperature at 0.1 MPa. Measurement and Prediction. Journal of Chemical & Engineering Data 2008, 53 (9) , 2148-2153. https://doi.org/10.1021/je800335v
    24. Manuel A. Iglesias-Otero, Jacobo Troncoso, Enrique Carballo and Luis Romaní. Densities and Excess Enthalpies for Ionic Liquids + Ethanol or + Nitromethane. Journal of Chemical & Engineering Data 2008, 53 (6) , 1298-1301. https://doi.org/10.1021/je700754k
    25. Ahmad S. Darwish, Rawan Abu Alwan, Abir Boublia, Tarek Lemaoui, Yacine Benguerba, Inas M. AlNashef, Fawzi Banat. Machine learning approach for mapping the heat capacity of deep eutectic solvents for sustainable energy applications. Fuel 2025, 381 , 133278. https://doi.org/10.1016/j.fuel.2024.133278
    26. Xinyan Liu, Jingzi Gao, Yuqiu Chen, Yingxue Fu, Yang Lei. Machine learning-assisted modeling study on the density and heat capacity of ionic liquid-organic solvent binary systems. Journal of Molecular Liquids 2023, 390 , 122972. https://doi.org/10.1016/j.molliq.2023.122972
    27. Fatemeh Seifikar, Saeid Azizian, Atefeh Nasri, Babak Jaleh. Comparative study on photo-thermal conversion properties of vanadium nanofluids prepared by laser ablation in H2O and polyethylene glycol. Journal of Industrial and Engineering Chemistry 2023, 123 , 72-80. https://doi.org/10.1016/j.jiec.2023.03.024
    28. Jacobo Troncoso. Effect of hydrophobic phenomena over the volumetric behavior of aqueous ionic liquid solutions. Journal of Molecular Liquids 2021, 333 , 115962. https://doi.org/10.1016/j.molliq.2021.115962
    29. Menad Nait Amar, Mohammed Abdelfetah Ghriga, Abdolhossein Hemmati-Sarapardeh. Application of gene expression programming for predicting density of binary and ternary mixtures of ionic liquids and molecular solvents. Journal of the Taiwan Institute of Chemical Engineers 2020, 117 , 63-74. https://doi.org/10.1016/j.jtice.2020.11.029
    30. Abolghasem Jouyban, Seyyedeh Narjes Mirheydari, Mohammad Barzegar-Jalali, Hemayat Shekaari, William E. Acree. Comprehensive models for density prediction of ionic liquid + molecular solvent mixtures at different temperatures. Physics and Chemistry of Liquids 2020, 58 (3) , 309-324. https://doi.org/10.1080/00319104.2019.1594222
    31. Ming Li, Yonglai Xue, Zhenjiang Liu, Jin Guo, Liyun Liu, Yuanyuan Zhang, Lu Gao, Lizhao Wang, Yin Cui, Daolin Du. Toxic effect and mechanism of four ionic liquids on seedling taproots of Arabidopsis thaliana. Environmental Science and Pollution Research 2018, 25 (15) , 14703-14712. https://doi.org/10.1007/s11356-018-1621-2
    32. Saeid Atashrouz, Hamed Mirshekar, Abdolhossein Hemmati-Sarapardeh, Mostafa Keshavarz Moraveji, Bahram Nasernejad. Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures. Korean Journal of Chemical Engineering 2017, 34 (2) , 425-439. https://doi.org/10.1007/s11814-016-0271-7
    33. Yizhak Marcus. Room Temperature Ionic Liquids. 2016, 123-220. https://doi.org/10.1007/978-3-319-30313-0_6
    34. Suojiang Zhang, Qing Zhou, Xingmei Lu, Yuting Song, Xinxin Wang. Properties of 1-butyl-3-methylpyridinium tetrafluoroborate mixtures. 2016, 1108-1118. https://doi.org/10.1007/978-94-017-7573-1_125
    35. Baoyou Liu, Yaru Liu. Properties for binary mixtures of (acetamide + KSCN) eutectic ionic liquid with ethanol at several temperatures. The Journal of Chemical Thermodynamics 2016, 92 , 1-7. https://doi.org/10.1016/j.jct.2015.08.036
    36. Pablo B. Sánchez, Moisés R. Currás, Marta M. Mato, Josefa Salgado, Josefa García. Density and viscosity study of pyridinium based ionic liquids as potential absorbents for natural refrigerants: Experimental and modelling. Fluid Phase Equilibria 2015, 405 , 37-45. https://doi.org/10.1016/j.fluid.2015.06.043
    37. Jens Abildskov, John P. O’Connell. Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis. Journal of Solution Chemistry 2015, 44 (3-4) , 558-592. https://doi.org/10.1007/s10953-015-0297-1
    38. Indra Bahadur, Trevor M. Letcher, Sangeeta Singh, Gan G. Redhi, Pannuru Venkatesu, Deresh Ramjugernath. Excess molar volumes of binary mixtures (an ionic liquid+water): A review. The Journal of Chemical Thermodynamics 2015, 82 , 34-46. https://doi.org/10.1016/j.jct.2014.10.003
    39. Ying Huang, Xiangping Zhang, Yongsheng Zhao, Shaojuan Zeng, Haifeng Dong, Suojiang Zhang. New models for predicting thermophysical properties of ionic liquid mixtures. Physical Chemistry Chemical Physics 2015, 17 (40) , 26918-26929. https://doi.org/10.1039/C5CP03446A
    40. Mohammad Shafiqur Rahman, Muhammad A. Saleh, Faisal Islam Chowdhury, M. Shamsuddin Ahmed, M. Mehedi Hasan Rocky, Shamim Akhtar. Density and viscosity for the solutions of 1-butanol with nitromethane and acetonitrile at 303.15 to 323.15K. Journal of Molecular Liquids 2014, 190 , 208-214. https://doi.org/10.1016/j.molliq.2013.11.011
    41. Lu JIANG, Liguang BAI, Jiqin ZHU, Biaohua CHEN. Thermodynamic Properties of Caprolactam Ionic Liquids. Chinese Journal of Chemical Engineering 2013, 21 (7) , 766-769. https://doi.org/10.1016/S1004-9541(13)60518-2
    42. Marta Królikowska, Kamil Paduszyński, Tadeusz Hofman, Jerzy Antonowicz. Heat capacities and excess enthalpies of the (N-hexylisoquinolinium thiocyanate ionic liquid + water) binary systems. The Journal of Chemical Thermodynamics 2012, 55 , 144-150. https://doi.org/10.1016/j.jct.2012.06.030
    43. Mónica García-Mardones, Alba Barrós, Isabel Bandrés, Héctor Artigas, Carlos Lafuente. Thermodynamic properties of binary mixtures combining two pyridinium-based ionic liquids and two alkanols. The Journal of Chemical Thermodynamics 2012, 51 , 17-24. https://doi.org/10.1016/j.jct.2012.02.023
    44. Hernando Guerrero, Mónica García-Mardones, Pilar Cea, Carlos Lafuente, Isabel Bandrés. Correlation of the volumetric behaviour of pyridinium-based ionic liquids with two different equations. Thermochimica Acta 2012, 531 , 21-27. https://doi.org/10.1016/j.tca.2011.12.020
    45. Jian-ying Wang, Xiang-jing Zhang, Yong-qi Hu, Guo-di Qi, Li-ya Liang. Properties of n-butylpyridinium nitrate ionic liquid and its binary mixtures with water. The Journal of Chemical Thermodynamics 2012, 45 (1) , 43-47. https://doi.org/10.1016/j.jct.2011.09.003
    46. Pablo Méndez-Castro, Jacobo Troncoso, Germán Pérez-Sánchez, José Peleteiro, Luis Romaní. Thermal properties of ionic systems near the liquid-liquid critical point. The Journal of Chemical Physics 2011, 135 (21) https://doi.org/10.1063/1.3663857
    47. Pei-Yin Lin, Allan N. Soriano, Rhoda B. Leron, Meng-Hui Li. Measurements and correlations of electrolytic conductivity and molar heat capacity for the aqueous ionic liquid systems containing [Emim][EtSO4] or [Emim][CF3SO3]. Experimental Thermal and Fluid Science 2011, 35 (6) , 1107-1112. https://doi.org/10.1016/j.expthermflusci.2011.03.005
    48. Javid Safarov, Ismail Kul, Waleed A. El-Awady, Astan Shahverdiyev, Egon Hassel. Thermodynamic properties of 1-butyl-3-methylpyridinium tetrafluoroborate. The Journal of Chemical Thermodynamics 2011, 43 (9) , 1315-1322. https://doi.org/10.1016/j.jct.2011.03.019
    49. Hui-Chun Hu, Allan N. Soriano, Rhoda B. Leron, Meng-Hui Li. Molar heat capacity of four aqueous ionic liquid mixtures. Thermochimica Acta 2011, 519 (1-2) , 44-49. https://doi.org/10.1016/j.tca.2011.02.027
    50. M. García-Mardones, V. Pérez-Gregorio, H. Guerrero, I. Bandrés, C. Lafuente. Thermodynamic study of binary mixtures containing 1-butylpyridinium tetrafluoroborate and methanol, or ethanol. The Journal of Chemical Thermodynamics 2010, 42 (12) , 1500-1505. https://doi.org/10.1016/j.jct.2010.07.014
    51. Yauheni U. Paulechka. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review. Journal of Physical and Chemical Reference Data 2010, 39 (3) https://doi.org/10.1063/1.3463478
    52. Emmerich Wilhelm, Jean-Pierre E. Grolier. Heat Capacities and Related Properties of Liquid Mixtures. 2010, 54-85. https://doi.org/10.1039/9781847559791-00054
    53. Pei-Yin Lin, Allan N. Soriano, Rhoda B. Leron, Meng-Hui Li. Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: Measurements and correlations. The Journal of Chemical Thermodynamics 2010, 42 (8) , 994-998. https://doi.org/10.1016/j.jct.2010.03.017
    54. Mérièm Anouti, Annie Vigeant, Johan Jacquemin, Catherine Brigouleix, Daniel Lemordant. Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents. The Journal of Chemical Thermodynamics 2010, 42 (7) , 834-845. https://doi.org/10.1016/j.jct.2010.01.013
    55. P. Alfaro, E. Langa, J.F. Martínez-López, J.S. Urieta, A.M. Mainar. Thermophysical properties of the binary mixtures (1,8-cineole+1-alkanol) at T=(298.15 and 313.15)K and at atmospheric pressure. The Journal of Chemical Thermodynamics 2010, 42 (2) , 291-303. https://doi.org/10.1016/j.jct.2009.08.016
    56. Pei-Yin Lin, Allan N. Soriano, Alvin R. Caparanga, Meng-Hui Li. Molar heat capacity and electrolytic conductivity of aqueous solutions of [Bmim][MeSO4] and [Bmim][triflate]. Thermochimica Acta 2009, 496 (1-2) , 105-109. https://doi.org/10.1016/j.tca.2009.07.006
    57. Silu Wang, Johan Jacquemin, Pascale Husson, Christopher Hardacre, Margarida F. Costa Gomes. Liquid–liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature. The Journal of Chemical Thermodynamics 2009, 41 (11) , 1206-1214. https://doi.org/10.1016/j.jct.2009.05.009
    58. Gonzalo García-Miaja, Jacobo Troncoso, Luis Romaní. Excess molar properties for binary systems of alkylimidazolium-based ionic liquids+nitromethane. Experimental results and ERAS-model calculations. The Journal of Chemical Thermodynamics 2009, 41 (3) , 334-341. https://doi.org/10.1016/j.jct.2008.09.002
    59. Ya-Hung Yu, Allan N. Soriano, Meng-Hui Li. Heat capacity and electrical conductivity of aqueous mixtures of [Bmim][BF4] and [Bmim][PF6]. Journal of the Taiwan Institute of Chemical Engineers 2009, 40 (2) , 205-212. https://doi.org/10.1016/j.jtice.2008.09.006
    60. Gonzalo García-Miaja, Jacobo Troncoso, Luis Romaní. Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids+water. The Journal of Chemical Thermodynamics 2009, 41 (2) , 161-166. https://doi.org/10.1016/j.jct.2008.10.002
    61. David Rooney, Johan Jacquemin, Ramesh Gardas. Thermophysical Properties of Ionic Liquids. 2009, 185-212. https://doi.org/10.1007/128_2008_32
    62. Ya-Hung Yu, Allan N. Soriano, Meng-Hui Li. Heat capacities and electrical conductivities of 1-ethyl-3-methylimidazolium-based ionic liquids. The Journal of Chemical Thermodynamics 2009, 41 (1) , 103-108. https://doi.org/10.1016/j.jct.2008.07.013
    63. Ya-Hung Yu, Allan N. Soriano, Meng-Hui Li. Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids. Thermochimica Acta 2009, 482 (1-2) , 42-48. https://doi.org/10.1016/j.tca.2008.10.015
    64. Gonzalo García-Miaja, Jacobo Troncoso, Luis Romaní. Excess properties for binary systems ionic liquid+ethanol: Experimental results and theoretical description using the ERAS model. Fluid Phase Equilibria 2008, 274 (1-2) , 59-67. https://doi.org/10.1016/j.fluid.2008.09.004

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2007, 52, 6, 2261–2265
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je7002836
    Published October 19, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    933

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.