ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solubility Differences of Halocarbon Isomers in Ionic Liquid [emim][Tf2N]

View Author Information
DuPont Central Research and Development, Experimental Station E304, Wilmington, Delaware 19880, and DuPont Fluoroproducts Laboratory, Chestnut Run Plaza 711, Wilmington, Delaware 19880
Cite this: J. Chem. Eng. Data 2007, 52, 5, 2007–2015
Publication Date (Web):August 21, 2007
https://doi.org/10.1021/je700295e
Copyright © 2007 American Chemical Society

    Article Views

    1085

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (327 KB)
    Supporting Info (1)»

    Abstract

    Solubility behaviors of CFC-113 (CFCl2−CF2Cl), CFC-113a (CCl3−CF3), CFC-114 (CF2Cl−CF2Cl), CFC-114a (CFCl2−CF3), HCFC-123 (CHCl2−CF3), HCFC-123a (CHClF−CF2Cl), HCFC-124 (CHFCl−CF3), HCFC-124a (CHF2−CF2Cl), HFC-134 (CHF2−CHF2), and HFC-134a (CH2F−CF3) in room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) have been investigated using a gravimetric microbalance method from (283 to 348) K or volumetric and cloud-point methods. In the case of the perhalogenated compounds (CFC-113, CFC-114, and their isomers), the solubility behavior between isomers in the ionic liquid is practically identical with large immiscibility gaps. This suggests that the (present) ionic liquid cannot be used for these isomer separations. However, the monohydrogen substituted halocarbons (HCFC-123, HCFC-124, and their isomers) begin to show some difference (liquid−liquid immiscibility gap) in the ionic liquid. The isomer effect on the solubility in the ionic liquid becomes significant for the dihydrogen-substituted halocarbons (HFC-134 and HFC-134a), and these isomers can be separated using [emim][Tf2N] as an entrainer in an extractive distillation. This observation is consistent with our earlier findings for various HFCs in ionic liquids.

    *

     Corresponding author. E-mail:  [email protected].

     DuPont Central Research and Development.

     DuPont Fluoroproducts Laboratory.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Information on thermodynamic models 1 and 2 and Tables S1 to S3. This information is available free of charge via the Internet at http:  //pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 79 publications.

    1. Ethan A. Finberg, Max Cordry, Tessie L. May, Kalin R. Baca, Mark B. Shiflett. Ionic Liquid Selection for the Separation of Refrigerant Mixtures Using Extractive Distillation. Industrial & Engineering Chemistry Research 2023, Article ASAP.
    2. Kalin R. Baca, Abby N. Harders, Nicholas Starvaggi, Andrew D. Yancey, Yifei Wang, Emily Pentzer, Mark B. Shiflett. First Measurements of the Sorption of Difluoromethane and Pentafluoroethane in Encapsulated Ionic Liquids. Industrial & Engineering Chemistry Research 2023, 62 (36) , 14522-14536. https://doi.org/10.1021/acs.iecr.3c01745
    3. Alejandro Garciadiego, Bridgette J. Befort, Gabriela Franco, Mozammel Mazumder, Alexander W. Dowling. What Data Are Most Valuable to Screen Ionic Liquid Entrainers for Hydrofluorocarbon Refrigerant Reuse and Recycling?. Industrial & Engineering Chemistry Research 2022, 61 (50) , 18412-18425. https://doi.org/10.1021/acs.iecr.2c01928
    4. Ethan A. Finberg, Tessie L. May, Mark B. Shiflett. Multicomponent Refrigerant Separation Using Extractive Distillation with Ionic Liquids. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9795-9812. https://doi.org/10.1021/acs.iecr.2c00937
    5. Kalin R. Baca, Darren P. Broom, Mark G. Roper, Michael J. Benham, Mark B. Shiflett. First Measurements for the Simultaneous Sorption of Difluoromethane and Pentafluoroethane Mixtures in Ionic liquids Using the Integral Mass Balance Method. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9774-9784. https://doi.org/10.1021/acs.iecr.2c00497
    6. Julio E. Sosa, Rubén Santiago, Andres E. Redondo, Jocasta Avila, Luiz F. Lepre, Margarida Costa Gomes, João M. M. Araújo, José Palomar, Ana B. Pereiro. Design of Ionic Liquids for Fluorinated Gas Absorption: COSMO-RS Selection and Solubility Experiments. Environmental Science & Technology 2022, 56 (9) , 5898-5909. https://doi.org/10.1021/acs.est.2c00051
    7. Hao Qin, Jie Cheng, Hantao Yu, Teng Zhou, Zhen Song. Hierarchical Ionic Liquid Screening Integrating COSMO-RS and Aspen Plus for Selective Recovery of Hydrofluorocarbons and Hydrofluoroolefins from a Refrigerant Blend. Industrial & Engineering Chemistry Research 2022, 61 (11) , 4083-4094. https://doi.org/10.1021/acs.iecr.1c04688
    8. Ethan A. Finberg, Mark B. Shiflett. Process Designs for Separating R-410A, R-404A, and R-407C Using Extractive Distillation and Ionic Liquid Entrainers. Industrial & Engineering Chemistry Research 2021, 60 (44) , 16054-16067. https://doi.org/10.1021/acs.iecr.1c02891
    9. Ilya Polishuk, Asaf Chiko, Esteban Cea-Klapp, José Matías Garrido. Implementation of CP-PC-SAFT and CS-SAFT-VR-Mie for Predicting the Thermodynamic Properties of C1–C3 Halocarbon Systems. II. Inter-Relation between Solubilities in Ionic Liquids, Their Pressure, Volume, and Temperature, and Critical Constants. Industrial & Engineering Chemistry Research 2021, 60 (35) , 13084-13093. https://doi.org/10.1021/acs.iecr.1c02720
    10. Daniel Jovell, Sergi B. Gómez, Malgorzata E. Zakrzewska, Ana V. M. Nunes, João M. M. Araújo, Ana B. Pereiro, Fèlix Llovell. Insight on the Solubility of R134a in Fluorinated Ionic Liquids and Deep Eutectic Solvents. Journal of Chemical & Engineering Data 2020, 65 (10) , 4956-4969. https://doi.org/10.1021/acs.jced.0c00588
    11. Julio E. Sosa, Rubén Santiago, Daniel Hospital-Benito, Margarida Costa Gomes, João M. M. Araújo, Ana B. Pereiro, José Palomar. Process Evaluation of Fluorinated Ionic Liquids as F-Gas Absorbents. Environmental Science & Technology 2020, 54 (19) , 12784-12794. https://doi.org/10.1021/acs.est.0c05305
    12. Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Vapor–Liquid Equilibria and Diffusion Coefficients of Difluoromethane, 1,1,1,2-Tetrafluoroethane, and 2,3,3,3-Tetrafluoropropene in Low-Viscosity Ionic Liquids. Journal of Chemical & Engineering Data 2020, 65 (9) , 4242-4251. https://doi.org/10.1021/acs.jced.0c00224
    13. Paulo J. Castro, Andres E. Redondo, Julio E. Sosa, Malgorzata E. Zakrzewska, Ana V. M. Nunes, João M. M. Araújo, Ana B. Pereiro. Absorption of Fluorinated Greenhouse Gases in Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2020, 59 (29) , 13246-13259. https://doi.org/10.1021/acs.iecr.0c01893
    14. Carlos G. Albà, Lourdes F. Vega, Fèlix Llovell. Assessment on Separating Hydrofluoroolefins from Hydrofluorocarbons at the Azeotropic Mixture R513A by Using Fluorinated Ionic Liquids: A Soft-SAFT Study. Industrial & Engineering Chemistry Research 2020, 59 (29) , 13315-13324. https://doi.org/10.1021/acs.iecr.0c02331
    15. David L. Minnick, Mark B. Shiflett. Solubility and Diffusivity of Bromodifluoromethane (Halon-1201) in Imidazolium Ionic Liquids: [C2C1im][Tf2N], [C4C1im][BF4], and [C4C1im][PF6]. Journal of Chemical & Engineering Data 2020, 65 (7) , 3277-3286. https://doi.org/10.1021/acs.jced.0c00022
    16. Rubaiyet Abedin, Yan Shen, John C. Flake, Francisco R. Hung. Deep Eutectic Solvents Mixed with Fluorinated Refrigerants for Absorption Refrigeration: A Molecular Simulation Study. The Journal of Physical Chemistry B 2020, 124 (22) , 4536-4550. https://doi.org/10.1021/acs.jpcb.0c01860
    17. Julio E. Sosa, Rui P. P. L. Ribeiro, Paulo J. Castro, José P. B. Mota, João M. M. Araújo, Ana B. Pereiro. Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Industrial & Engineering Chemistry Research 2019, 58 (45) , 20769-20778. https://doi.org/10.1021/acs.iecr.9b04648
    18. Luiz Fernando Lepre, Dune Andre, Sandrine Denis-Quanquin, Arnaud Gautier, Agílio A. H. Pádua, Margarida Costa Gomes. Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16900-16906. https://doi.org/10.1021/acssuschemeng.9b04214
    19. David L. Minnick, Mark B. Shiflett. Solubility and Diffusivity of Chlorodifluoromethane in Imidazolium Ionic Liquids: [emim][Tf2N], [bmim][BF4], [bmim][PF6], and [emim][TFES]. Industrial & Engineering Chemistry Research 2019, 58 (25) , 11072-11081. https://doi.org/10.1021/acs.iecr.9b02419
    20. Rubaiyet Abedin, Sharareh Heidarian, John C. Flake, and Francisco R. Hung . Computational Evaluation of Mixtures of Hydrofluorocarbons and Deep Eutectic Solvents for Absorption Refrigeration Systems. Langmuir 2017, 33 (42) , 11611-11625. https://doi.org/10.1021/acs.langmuir.7b02003
    21. Xiaopo Wang, Yao Zhang, Dongbo Wang, and Yanjun Sun . Phase Equilibria of trans-1,3,3,3-Tetrafluoropropene with Three Imidazolium Ionic Liquids. Journal of Chemical & Engineering Data 2017, 62 (6) , 1825-1831. https://doi.org/10.1021/acs.jced.7b00047
    22. Qingguo Zhang, Yalin Lan, Hongwei Liu, Xinyuan Zhang, Xuelei Zhang, and Ying Wei . Estimation and Structural Effect on Physicochemical Properties of Alkylimidazolium-Based Ionic Liquids with Different Anions. Journal of Chemical & Engineering Data 2016, 61 (6) , 2002-2012. https://doi.org/10.1021/acs.jced.5b00860
    23. Xiangyang Liu, Maogang He, Nan Lv, Xuetao Qi, and Chao Su . Vapor–Liquid Equilibrium of Three Hydrofluorocarbons with [HMIM][Tf2N]. Journal of Chemical & Engineering Data 2015, 60 (5) , 1354-1361. https://doi.org/10.1021/je501069b
    24. Qi Cao, Xiaoxing Lu, Xi Wu, Yongsheng Guo, Li Xu, and Wenjun Fang . Density, Viscosity, and Conductivity of Binary Mixtures of the Ionic Liquid N-(2-Hydroxyethyl)piperazinium Propionate with Water, Methanol, or Ethanol. Journal of Chemical & Engineering Data 2015, 60 (3) , 455-463. https://doi.org/10.1021/je500380x
    25. Zhigang Lei, Chengna Dai, and Biaohua Chen . Gas Solubility in Ionic Liquids. Chemical Reviews 2014, 114 (2) , 1289-1326. https://doi.org/10.1021/cr300497a
    26. Matthias Seiler, Annett Kühn, Felix Ziegler, and Xinming Wang . Sustainable Cooling Strategies Using New Chemical System Solutions. Industrial & Engineering Chemistry Research 2013, 52 (47) , 16519-16546. https://doi.org/10.1021/ie401297u
    27. Sarah Kim and Paul A. Kohl . Theoretical and Experimental Investigation of an Absorption Refrigeration System Using R134/[bmim][PF6] Working Fluid. Industrial & Engineering Chemistry Research 2013, 52 (37) , 13459-13465. https://doi.org/10.1021/ie400985c
    28. Luís Fernández, Diego Montaño, Juan Ortega, and Francisco J. Toledo . Binary Liquid–Liquid Equilibria for Systems of Mono- or Disubstituted Haloalkanes (Cl, Br) and Pyridinium-Based Ionic Liquids. Advances in the Experimentation and Interpretation of Results. Industrial & Engineering Chemistry Research 2013, 52 (33) , 11758-11766. https://doi.org/10.1021/ie401710f
    29. Li Dong, Danxing Zheng, and Xianghong Wu . Working Pair Selection of Compression and Absorption Hybrid Cycles through Predicting the Activity Coefficients of Hydrofluorocarbon + Ionic Liquid Systems by the UNIFAC Model. Industrial & Engineering Chemistry Research 2012, 51 (12) , 4741-4747. https://doi.org/10.1021/ie202029d
    30. Li Dong, Danxing Zheng, Guangming Sun, and Xianghong Wu . Vapor–Liquid Equilibrium Measurements of Difluoromethane + [Emim]OTf, Difluoromethane + [Bmim]OTf, Difluoroethane + [Emim]OTf, and Difluoroethane + [Bmim]OTf Systems. Journal of Chemical & Engineering Data 2011, 56 (9) , 3663-3668. https://doi.org/10.1021/je2005566
    31. Mark B. Shiflett and Anne Marie S. Niehaus. Liquid−Liquid Equilibria in Binary Mixtures Containing Substituted Benzenes with Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2010, 55 (1) , 346-353. https://doi.org/10.1021/je9003614
    32. Mark B. Shiflett, Anne Marie S. Niehaus and A. Yokozeki . Liquid−Liquid Equilibria in Binary Mixtures Containing Chlorobenzene, Bromobenzene, and Iodobenzene with Ionic Liquid 1-Ethyl-3-methylimidazolim Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2009, 54 (7) , 2090-2094. https://doi.org/10.1021/je801005y
    33. Laura M. Sprunger, Jennifer Gibbs, Amy Proctor, William E. Acree, Jr., Michael H. Abraham, Yunjing Meng, Cong Yao and Jared L. Anderson . Linear Free Energy Relationship Correlations for Room Temperature Ionic Liquids: Revised Cation-Specific and Anion-Specific Equation Coefficients for Predictive Applications Covering a Much Larger Area of Chemical Space. Industrial & Engineering Chemistry Research 2009, 48 (8) , 4145-4154. https://doi.org/10.1021/ie801898j
    34. Koichi Kodama, Hideyuki Nanashima, Takeshi Ueki, Hisashi Kokubo and Masayoshi Watanabe. Lower Critical Solution Temperature Phase Behavior of Linear Polymers in Imidazolium-Based Ionic Liquids: Effects of Structural Modifications. Langmuir 2009, 25 (6) , 3820-3824. https://doi.org/10.1021/la803945n
    35. Mark B. Shiflett and A. Yokozeki . Liquid−Liquid Equilibria in Binary Mixtures Containing Fluorinated Benzenes and Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2008, 53 (11) , 2683-2691. https://doi.org/10.1021/je8006474
    36. A. Yokozeki and Mark B. Shiflett . Binary and Ternary Phase Diagrams of Benzene, Hexafluorobenzene, and Ionic Liquid [emim][Tf2N] Using Equations of State. Industrial & Engineering Chemistry Research 2008, 47 (21) , 8389-8395. https://doi.org/10.1021/ie800754u
    37. Mark B. Shiflett and A. Yokozeki . Binary Vapor–Liquid and Vapor–Liquid–Liquid Equilibria of Hydrofluorocarbons (HFC-125 and HFC-143a) and Hydrofluoroethers (HFE-125 and HFE-143a) with Ionic Liquid [emim][Tf2N]. Journal of Chemical & Engineering Data 2008, 53 (2) , 492-497. https://doi.org/10.1021/je700588d
    38. Linan Ji, Shashi Kant Shukla, Zhida Zuo, Xiaohua Lu, Xiaoyan Ji, Changsong Wang. An overview of the progress of new working pairs in absorption heat pumps. Energy Reports 2023, 9 , 703-729. https://doi.org/10.1016/j.egyr.2022.11.143
    39. Bridgette J. Befort, Alejandro Garciadiego, Jialu Wang, Ke Wang, Gabriela Franco, Edward J. Maginn, Alexander W. Dowling. Data science for thermodynamic modeling: Case study for ionic liquid and hydrofluorocarbon refrigerant mixtures. Fluid Phase Equilibria 2023, 572 , 113833. https://doi.org/10.1016/j.fluid.2023.113833
    40. Julio E. Sosa, Rui P.P.L. Ribeiro, Paulo J. Castro, José P.B. Mota, Ana B. Pereiro, João M.M. Araújo. Sorption of fluorinated greenhouse gases in silica-supported fluorinated ionic liquids. Journal of Environmental Chemical Engineering 2022, 10 (6) , 108580. https://doi.org/10.1016/j.jece.2022.108580
    41. Jianchun Chu, Ziwen Zhang, Xiangyang Liu, Maogang He. Estimating the solubility of HFC/HFO in ionic liquids from molecular structure using machine learning method. Chemical Engineering Research and Design 2022, 184 , 315-325. https://doi.org/10.1016/j.cherd.2022.06.015
    42. José M. Asensio-Delgado, Salvador Asensio-Delgado, Gabriel Zarca, Ane Urtiaga. Analysis of hybrid compression absorption refrigeration using low-GWP HFC or HFO/ionic liquid working pairs. International Journal of Refrigeration 2022, 134 , 232-241. https://doi.org/10.1016/j.ijrefrig.2021.11.013
    43. Alejandro Garciadiego, Mozammel Mazumder, Bridgette J. Befort, Alexander W. Dowling. Modeling and Optimization of Ionic Liquid Enabled Extractive Distillation of Ternary Azeotrope Mixtures. 2022, 307-312. https://doi.org/10.1016/B978-0-323-85159-6.50051-8
    44. S. Sarmad, Jyri-Pekka Mikkola. Vapor-Liquid Equilibrium of Ionic Liquids. 2022, 1331-1351. https://doi.org/10.1007/978-981-33-4221-7_107
    45. Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Absorption separation of fluorinated refrigerant gases with ionic liquids: Equilibrium, mass transport, and process design. Separation and Purification Technology 2021, 276 , 119363. https://doi.org/10.1016/j.seppur.2021.119363
    46. Salvador Asensio-Delgado, Miguel Viar, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Gas solubility and diffusivity of hydrofluorocarbons and hydrofluoroolefins in cyanide-based ionic liquids for the separation of refrigerant mixtures. Fluid Phase Equilibria 2021, 549 , 113210. https://doi.org/10.1016/j.fluid.2021.113210
    47. Asaf Chiko, Ilya Polishuk, Esteban Cea-Klapp, José Matías Garrido. Comparison of CP-PC-SAFT and SAFT-VR-Mie in Predicting Phase Equilibria of Binary Systems Comprising Gases and 1-Alkyl-3-methylimidazolium Ionic Liquids. Molecules 2021, 26 (21) , 6621. https://doi.org/10.3390/molecules26216621
    48. Yingying Yang, Zhonghua Shen, Weidong Wu, Li Wang, Qiguo Yang. Characteristics of CO2-ionic liquids/PEG200 as new working pairs for absorption-compression refrigeration system. Journal of Molecular Liquids 2021, 340 , 116840. https://doi.org/10.1016/j.molliq.2021.116840
    49. Takehiro Esaki, Hiroki Uchiyama, Yousuke Matsukuma. Characteristics of HFC-134a absorption rate with [Bmim][Tf2N] in falling film type absorber. AIP Advances 2021, 11 (6) https://doi.org/10.1063/5.0024191
    50. Amirhossein Saali, Hossein Sakhaeinia, Mohammad Shokouhi. Modeling the Solubility of Carbon Dioxide and 1,1,1,2-Tetrafluoroethane in Ionic Liquids Using the van der Waals and Generic Redlich–Kwong Equations of State. Theoretical Foundations of Chemical Engineering 2021, 55 (1) , 129-139. https://doi.org/10.1134/S0040579521010127
    51. Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Enhanced absorption separation of hydrofluorocarbon/hydrofluoroolefin refrigerant blends using ionic liquids. Separation and Purification Technology 2020, 249 , 117136. https://doi.org/10.1016/j.seppur.2020.117136
    52. S. Asensio-Delgado, D. Jovell, G. Zarca, A. Urtiaga, F. Llovell. Thermodynamic and process modeling of the recovery of R410A compounds with ionic liquids. International Journal of Refrigeration 2020, 118 , 365-375. https://doi.org/10.1016/j.ijrefrig.2020.04.013
    53. S. Sarmad, J. Mikkola. Vapor-Liquid Equilibrium of Ionic Liquids. 2020, 1-22. https://doi.org/10.1007/978-981-10-6739-6_107-1
    54. Abolfazl Shojaeian, Hooman Fatoorehchi. Modeling solubility of refrigerants in ionic liquids using Peng Robinson-Two State equation of state. Fluid Phase Equilibria 2019, 486 , 80-90. https://doi.org/10.1016/j.fluid.2019.01.003
    55. Khalil Parvaneh, Ali Rasoolzadeh, Alireza Shariati. Modeling the phase behavior of refrigerants with ionic liquids using the QC-PC-SAFT equation of state. Journal of Molecular Liquids 2019, 274 , 497-504. https://doi.org/10.1016/j.molliq.2018.10.116
    56. David L. Minnick, Tugba Turnaoglu, Maria Alejandra Rocha, Mark B. Shiflett. Review Article: Gas and vapor sorption measurements using electronic beam balances. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2018, 36 (5) https://doi.org/10.1116/1.5044552
    57. Xiangyang Liu, Pei Pan, Maogang He. Vapor-liquid equilibrium and diffusion coefficients of R32 + [HMIM][FEP], R152a + [HMIM][FEP] and R161 + [HMIM][FEP]. Journal of Molecular Liquids 2018, 253 , 28-35. https://doi.org/10.1016/j.molliq.2018.01.032
    58. Maogang He, Sanguo Peng, Xiangyang Liu, Pei Pan, Yongdong He. Diffusion coefficients and Henry’s constants of hydrofluorocarbons in [HMIM][Tf 2 N], [HMIM][TfO], and [HMIM][BF 4 ]. The Journal of Chemical Thermodynamics 2017, 112 , 43-51. https://doi.org/10.1016/j.jct.2017.04.009
    59. David L. Minnick, William J.R. Gilbert, M. Alejandra Rocha, Mark B. Shiflett. Thermodynamic measurement and modeling of vinyl fluoride solubility in aqueous lithium Bis(trifluoromethylsulfonyl)imide Li + Tf 2 N −  + H 2 O solutions. Fluid Phase Equilibria 2017, 444 , 61-68. https://doi.org/10.1016/j.fluid.2017.03.032
    60. Xiangyang Liu, Nan Lv, Chao Su, Maogang He. Solubilities of R32, R245fa, R227ea and R236fa in a phosphonium-based ionic liquid. Journal of Molecular Liquids 2016, 218 , 525-530. https://doi.org/10.1016/j.molliq.2016.02.041
    61. Xiangyang Liu, Xuetao Qi, Nan Lv, Maogang He. Gaseous absorption of fluorinated ethanes by ionic liquids. Fluid Phase Equilibria 2015, 405 , 1-6. https://doi.org/10.1016/j.fluid.2015.07.001
    62. Javad Hekayati, Aliakbar Roosta, Jafar Javanmardi. Thermodynamic modeling of refrigerants solubility in ionic liquids using original and ϵ*-Modified Sanchez–Lacombe equations of state. Fluid Phase Equilibria 2015, 403 , 14-22. https://doi.org/10.1016/j.fluid.2015.05.046
    63. Xiangyang Liu, Maogang He, Nan Lv, Xuetao Qi, Chao Su. Solubilities of R-161 and R-143a in 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase Equilibria 2015, 388 , 37-42. https://doi.org/10.1016/j.fluid.2014.12.026
    64. A. Vahid, E. J. Maginn. Monte Carlo simulation and SAFT modeling study of the solvation thermodynamics of dimethylformamide, dimethylsulfoxide, ethanol and 1-propanol in the ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide. Physical Chemistry Chemical Physics 2015, 17 (11) , 7449-7462. https://doi.org/10.1039/C4CP05961A
    65. Yoon Jo Kim, Miguel Gonzalez. Exergy analysis of an ionic-liquid absorption refrigeration system utilizing waste-heat from datacenters. International Journal of Refrigeration 2014, 48 , 26-37. https://doi.org/10.1016/j.ijrefrig.2014.08.008
    66. Danxing Zheng, Li Dong, Weijia Huang, Xianghong Wu, Nan Nie. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renewable and Sustainable Energy Reviews 2014, 37 , 47-68. https://doi.org/10.1016/j.rser.2014.04.046
    67. Mark B. Shiflett, David R. Corbin, Beth A. Elliott, Shekhar Subramoney, Katsumi Kaneko, Akimichi Yokozeki. Sorption of trifluoromethane in activated carbon. Adsorption 2014, 20 (4) , 565-575. https://doi.org/10.1007/s10450-014-9601-4
    68. Mark B. Shiflett, David R. Corbin, Beth A. Elliott, A. Yokozeki. Sorption of trifluoromethane in zeolites and ionic liquid. The Journal of Chemical Thermodynamics 2013, 64 , 40-49. https://doi.org/10.1016/j.jct.2013.04.018
    69. Mark B. Shiflett, David R. Corbin, A. Yokozeki. Comparison of the Sorption of Trifluoromethane (R-23) on Zeolites and in an Ionic Liquid. Adsorption Science & Technology 2013, 31 (1) , 59-83. https://doi.org/10.1260/0263-6174.31.1.59
    70. Mark B. Shiflett, Akimichi Yokozeki. Phase Behaviour of Gases in Ionic Liquids. 2012, 349-386. https://doi.org/10.1002/9781118434987.ch11
    71. Yoon Jo Kim, Sarah Kim, Yogendra K. Joshi, Andrei G. Fedorov, Paul A. Kohl. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid. Energy 2012, 44 (1) , 1005-1016. https://doi.org/10.1016/j.energy.2012.04.048
    72. Mark B. Shiflett, Beth A. Elliott, Steve R. Lustig, Subramaniam Sabesan, Manish S. Kelkar, A. Yokozeki. Phase Behavior of CO 2 in Room‐Temperature Ionic Liquid 1‐Ethyl‐3‐Ethylimidazolium Acetate. ChemPhysChem 2012, 13 (7) , 1806-1817. https://doi.org/10.1002/cphc.201200023
    73. Mark B. Shiflett, Anne Marie S. Niehaus, Beth A. Elliott, A. Yokozeki. Phase Behavior of N2O and CO2 in Room-Temperature Ionic Liquids [bmim][Tf2N], [bmim][BF4], [bmim][N(CN)2], [bmim][Ac], [eam][NO3], and [bmim][SCN]. International Journal of Thermophysics 2012, 33 (3) , 412-436. https://doi.org/10.1007/s10765-011-1150-4
    74. Mark B. Shiflett, Beth A. Elliott, A. Yokozeki. Phase behavior of vinyl fluoride in room-temperature ionic liquids [emim][Tf2N], [bmim][N(CN)2], [bmpy][BF4], [bmim][HFPS] and [omim][TFES]. Fluid Phase Equilibria 2012, 316 , 147-155. https://doi.org/10.1016/j.fluid.2011.11.030
    75. Mark B. Shiflett, Beth A. Elliott, Anne Marie S. Niehaus, A. Yokozeki. Separation of N 2 O and CO 2 using Room-Temperature Ionic Liquid [bmim][Ac]. Separation Science and Technology 2012, 47 (2) , 411-421. https://doi.org/10.1080/01496395.2011.627905
    76. Mark B. Shiflett, Andrew D. Shiflett, A. Yokozeki. Separation of tetrafluoroethylene and carbon dioxide using ionic liquids. Separation and Purification Technology 2011, 79 (3) , 357-364. https://doi.org/10.1016/j.seppur.2011.03.023
    77. A. Yokozeki, Mark B. Shiflett. Gas solubilities in ionic liquids using a generic van der Waals equation of state. The Journal of Supercritical Fluids 2010, 55 (2) , 846-851. https://doi.org/10.1016/j.supflu.2010.09.015
    78. Wei Ren, Aaron M. Scurto. Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a). Fluid Phase Equilibria 2009, 286 (1) , 1-7. https://doi.org/10.1016/j.fluid.2009.07.007
    79. Wei Ren, Aaron M. Scurto. Global phase behavior of imidazolium ionic liquids and compressed 1,1,1,2-tetrafluoroethane (R-134a). AIChE Journal 2009, 55 (2) , 486-493. https://doi.org/10.1002/aic.11657

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect