Solubility Differences of Halocarbon Isomers in Ionic Liquid [emim][Tf2N]
Abstract
Solubility behaviors of CFC-113 (CFCl2−CF2Cl), CFC-113a (CCl3−CF3), CFC-114 (CF2Cl−CF2Cl), CFC-114a (CFCl2−CF3), HCFC-123 (CHCl2−CF3), HCFC-123a (CHClF−CF2Cl), HCFC-124 (CHFCl−CF3), HCFC-124a (CHF2−CF2Cl), HFC-134 (CHF2−CHF2), and HFC-134a (CH2F−CF3) in room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) have been investigated using a gravimetric microbalance method from (283 to 348) K or volumetric and cloud-point methods. In the case of the perhalogenated compounds (CFC-113, CFC-114, and their isomers), the solubility behavior between isomers in the ionic liquid is practically identical with large immiscibility gaps. This suggests that the (present) ionic liquid cannot be used for these isomer separations. However, the monohydrogen substituted halocarbons (HCFC-123, HCFC-124, and their isomers) begin to show some difference (liquid−liquid immiscibility gap) in the ionic liquid. The isomer effect on the solubility in the ionic liquid becomes significant for the dihydrogen-substituted halocarbons (HFC-134 and HFC-134a), and these isomers can be separated using [emim][Tf2N] as an entrainer in an extractive distillation. This observation is consistent with our earlier findings for various HFCs in ionic liquids.
*
Corresponding author. E-mail: [email protected].
†
DuPont Central Research and Development.
‡
DuPont Fluoroproducts Laboratory.
Cited By
This article is cited by 79 publications.
- Ethan A. Finberg, Max Cordry, Tessie L. May, Kalin R. Baca, Mark B. Shiflett. Ionic Liquid Selection for the Separation of Refrigerant Mixtures Using Extractive Distillation. Industrial & Engineering Chemistry Research 2023, Article ASAP.
- Kalin R. Baca, Abby N. Harders, Nicholas Starvaggi, Andrew D. Yancey, Yifei Wang, Emily Pentzer, Mark B. Shiflett. First Measurements of the Sorption of Difluoromethane and Pentafluoroethane in Encapsulated Ionic Liquids. Industrial & Engineering Chemistry Research 2023, 62 (36) , 14522-14536. https://doi.org/10.1021/acs.iecr.3c01745
- Alejandro Garciadiego, Bridgette J. Befort, Gabriela Franco, Mozammel Mazumder, Alexander W. Dowling. What Data Are Most Valuable to Screen Ionic Liquid Entrainers for Hydrofluorocarbon Refrigerant Reuse and Recycling?. Industrial & Engineering Chemistry Research 2022, 61 (50) , 18412-18425. https://doi.org/10.1021/acs.iecr.2c01928
- Ethan A. Finberg, Tessie L. May, Mark B. Shiflett. Multicomponent Refrigerant Separation Using Extractive Distillation with Ionic Liquids. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9795-9812. https://doi.org/10.1021/acs.iecr.2c00937
- Kalin R. Baca, Darren P. Broom, Mark G. Roper, Michael J. Benham, Mark B. Shiflett. First Measurements for the Simultaneous Sorption of Difluoromethane and Pentafluoroethane Mixtures in Ionic liquids Using the Integral Mass Balance Method. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9774-9784. https://doi.org/10.1021/acs.iecr.2c00497
- Julio E. Sosa, Rubén Santiago, Andres E. Redondo, Jocasta Avila, Luiz F. Lepre, Margarida Costa Gomes, João M. M. Araújo, José Palomar, Ana B. Pereiro. Design of Ionic Liquids for Fluorinated Gas Absorption: COSMO-RS Selection and Solubility Experiments. Environmental Science & Technology 2022, 56 (9) , 5898-5909. https://doi.org/10.1021/acs.est.2c00051
- Hao Qin, Jie Cheng, Hantao Yu, Teng Zhou, Zhen Song. Hierarchical Ionic Liquid Screening Integrating COSMO-RS and Aspen Plus for Selective Recovery of Hydrofluorocarbons and Hydrofluoroolefins from a Refrigerant Blend. Industrial & Engineering Chemistry Research 2022, 61 (11) , 4083-4094. https://doi.org/10.1021/acs.iecr.1c04688
- Ethan A. Finberg, Mark B. Shiflett. Process Designs for Separating R-410A, R-404A, and R-407C Using Extractive Distillation and Ionic Liquid Entrainers. Industrial & Engineering Chemistry Research 2021, 60 (44) , 16054-16067. https://doi.org/10.1021/acs.iecr.1c02891
- Ilya Polishuk, Asaf Chiko, Esteban Cea-Klapp, José Matías Garrido. Implementation of CP-PC-SAFT and CS-SAFT-VR-Mie for Predicting the Thermodynamic Properties of C1–C3 Halocarbon Systems. II. Inter-Relation between Solubilities in Ionic Liquids, Their Pressure, Volume, and Temperature, and Critical Constants. Industrial & Engineering Chemistry Research 2021, 60 (35) , 13084-13093. https://doi.org/10.1021/acs.iecr.1c02720
- Daniel Jovell, Sergi B. Gómez, Malgorzata E. Zakrzewska, Ana V. M. Nunes, João M. M. Araújo, Ana B. Pereiro, Fèlix Llovell. Insight on the Solubility of R134a in Fluorinated Ionic Liquids and Deep Eutectic Solvents. Journal of Chemical & Engineering Data 2020, 65 (10) , 4956-4969. https://doi.org/10.1021/acs.jced.0c00588
- Julio E. Sosa, Rubén Santiago, Daniel Hospital-Benito, Margarida Costa Gomes, João M. M. Araújo, Ana B. Pereiro, José Palomar. Process Evaluation of Fluorinated Ionic Liquids as F-Gas Absorbents. Environmental Science & Technology 2020, 54 (19) , 12784-12794. https://doi.org/10.1021/acs.est.0c05305
- Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Vapor–Liquid Equilibria and Diffusion Coefficients of Difluoromethane, 1,1,1,2-Tetrafluoroethane, and 2,3,3,3-Tetrafluoropropene in Low-Viscosity Ionic Liquids. Journal of Chemical & Engineering Data 2020, 65 (9) , 4242-4251. https://doi.org/10.1021/acs.jced.0c00224
- Paulo J. Castro, Andres E. Redondo, Julio E. Sosa, Malgorzata E. Zakrzewska, Ana V. M. Nunes, João M. M. Araújo, Ana B. Pereiro. Absorption of Fluorinated Greenhouse Gases in Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2020, 59 (29) , 13246-13259. https://doi.org/10.1021/acs.iecr.0c01893
- Carlos G. Albà, Lourdes F. Vega, Fèlix Llovell. Assessment on Separating Hydrofluoroolefins from Hydrofluorocarbons at the Azeotropic Mixture R513A by Using Fluorinated Ionic Liquids: A Soft-SAFT Study. Industrial & Engineering Chemistry Research 2020, 59 (29) , 13315-13324. https://doi.org/10.1021/acs.iecr.0c02331
- David L. Minnick, Mark B. Shiflett. Solubility and Diffusivity of Bromodifluoromethane (Halon-1201) in Imidazolium Ionic Liquids: [C2C1im][Tf2N], [C4C1im][BF4], and [C4C1im][PF6]. Journal of Chemical & Engineering Data 2020, 65 (7) , 3277-3286. https://doi.org/10.1021/acs.jced.0c00022
- Rubaiyet Abedin, Yan Shen, John C. Flake, Francisco R. Hung. Deep Eutectic Solvents Mixed with Fluorinated Refrigerants for Absorption Refrigeration: A Molecular Simulation Study. The Journal of Physical Chemistry B 2020, 124 (22) , 4536-4550. https://doi.org/10.1021/acs.jpcb.0c01860
- Julio E. Sosa, Rui P. P. L. Ribeiro, Paulo J. Castro, José P. B. Mota, João M. M. Araújo, Ana B. Pereiro. Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Industrial & Engineering Chemistry Research 2019, 58 (45) , 20769-20778. https://doi.org/10.1021/acs.iecr.9b04648
- Luiz Fernando Lepre, Dune Andre, Sandrine Denis-Quanquin, Arnaud Gautier, Agílio A. H. Pádua, Margarida Costa Gomes. Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16900-16906. https://doi.org/10.1021/acssuschemeng.9b04214
- David L. Minnick, Mark B. Shiflett. Solubility and Diffusivity of Chlorodifluoromethane in Imidazolium Ionic Liquids: [emim][Tf2N], [bmim][BF4], [bmim][PF6], and [emim][TFES]. Industrial & Engineering Chemistry Research 2019, 58 (25) , 11072-11081. https://doi.org/10.1021/acs.iecr.9b02419
- Rubaiyet Abedin, Sharareh Heidarian, John C. Flake, and Francisco R. Hung . Computational Evaluation of Mixtures of Hydrofluorocarbons and Deep Eutectic Solvents for Absorption Refrigeration Systems. Langmuir 2017, 33 (42) , 11611-11625. https://doi.org/10.1021/acs.langmuir.7b02003
- Xiaopo Wang, Yao Zhang, Dongbo Wang, and Yanjun Sun . Phase Equilibria of trans-1,3,3,3-Tetrafluoropropene with Three Imidazolium Ionic Liquids. Journal of Chemical & Engineering Data 2017, 62 (6) , 1825-1831. https://doi.org/10.1021/acs.jced.7b00047
- Qingguo Zhang, Yalin Lan, Hongwei Liu, Xinyuan Zhang, Xuelei Zhang, and Ying Wei . Estimation and Structural Effect on Physicochemical Properties of Alkylimidazolium-Based Ionic Liquids with Different Anions. Journal of Chemical & Engineering Data 2016, 61 (6) , 2002-2012. https://doi.org/10.1021/acs.jced.5b00860
- Xiangyang Liu, Maogang He, Nan Lv, Xuetao Qi, and Chao Su . Vapor–Liquid Equilibrium of Three Hydrofluorocarbons with [HMIM][Tf2N]. Journal of Chemical & Engineering Data 2015, 60 (5) , 1354-1361. https://doi.org/10.1021/je501069b
- Qi Cao, Xiaoxing Lu, Xi Wu, Yongsheng Guo, Li Xu, and Wenjun Fang . Density, Viscosity, and Conductivity of Binary Mixtures of the Ionic Liquid N-(2-Hydroxyethyl)piperazinium Propionate with Water, Methanol, or Ethanol. Journal of Chemical & Engineering Data 2015, 60 (3) , 455-463. https://doi.org/10.1021/je500380x
- Zhigang Lei, Chengna Dai, and Biaohua Chen . Gas Solubility in Ionic Liquids. Chemical Reviews 2014, 114 (2) , 1289-1326. https://doi.org/10.1021/cr300497a
- Matthias Seiler, Annett Kühn, Felix Ziegler, and Xinming Wang . Sustainable Cooling Strategies Using New Chemical System Solutions. Industrial & Engineering Chemistry Research 2013, 52 (47) , 16519-16546. https://doi.org/10.1021/ie401297u
- Sarah Kim and Paul A. Kohl . Theoretical and Experimental Investigation of an Absorption Refrigeration System Using R134/[bmim][PF6] Working Fluid. Industrial & Engineering Chemistry Research 2013, 52 (37) , 13459-13465. https://doi.org/10.1021/ie400985c
- Luís Fernández, Diego Montaño, Juan Ortega, and Francisco J. Toledo . Binary Liquid–Liquid Equilibria for Systems of Mono- or Disubstituted Haloalkanes (Cl, Br) and Pyridinium-Based Ionic Liquids. Advances in the Experimentation and Interpretation of Results. Industrial & Engineering Chemistry Research 2013, 52 (33) , 11758-11766. https://doi.org/10.1021/ie401710f
- Li Dong, Danxing Zheng, and Xianghong Wu . Working Pair Selection of Compression and Absorption Hybrid Cycles through Predicting the Activity Coefficients of Hydrofluorocarbon + Ionic Liquid Systems by the UNIFAC Model. Industrial & Engineering Chemistry Research 2012, 51 (12) , 4741-4747. https://doi.org/10.1021/ie202029d
- Li Dong, Danxing Zheng, Guangming Sun, and Xianghong Wu . Vapor–Liquid Equilibrium Measurements of Difluoromethane + [Emim]OTf, Difluoromethane + [Bmim]OTf, Difluoroethane + [Emim]OTf, and Difluoroethane + [Bmim]OTf Systems. Journal of Chemical & Engineering Data 2011, 56 (9) , 3663-3668. https://doi.org/10.1021/je2005566
- Mark B. Shiflett and Anne Marie S. Niehaus. Liquid−Liquid Equilibria in Binary Mixtures Containing Substituted Benzenes with Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2010, 55 (1) , 346-353. https://doi.org/10.1021/je9003614
- Mark B. Shiflett, Anne Marie S. Niehaus and A. Yokozeki . Liquid−Liquid Equilibria in Binary Mixtures Containing Chlorobenzene, Bromobenzene, and Iodobenzene with Ionic Liquid 1-Ethyl-3-methylimidazolim Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2009, 54 (7) , 2090-2094. https://doi.org/10.1021/je801005y
- Laura M. Sprunger, Jennifer Gibbs, Amy Proctor, William E. Acree, Jr., Michael H. Abraham, Yunjing Meng, Cong Yao and Jared L. Anderson . Linear Free Energy Relationship Correlations for Room Temperature Ionic Liquids: Revised Cation-Specific and Anion-Specific Equation Coefficients for Predictive Applications Covering a Much Larger Area of Chemical Space. Industrial & Engineering Chemistry Research 2009, 48 (8) , 4145-4154. https://doi.org/10.1021/ie801898j
- Koichi Kodama, Hideyuki Nanashima, Takeshi Ueki, Hisashi Kokubo and Masayoshi Watanabe. Lower Critical Solution Temperature Phase Behavior of Linear Polymers in Imidazolium-Based Ionic Liquids: Effects of Structural Modifications. Langmuir 2009, 25 (6) , 3820-3824. https://doi.org/10.1021/la803945n
- Mark B. Shiflett and A. Yokozeki . Liquid−Liquid Equilibria in Binary Mixtures Containing Fluorinated Benzenes and Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2008, 53 (11) , 2683-2691. https://doi.org/10.1021/je8006474
- A. Yokozeki and Mark B. Shiflett . Binary and Ternary Phase Diagrams of Benzene, Hexafluorobenzene, and Ionic Liquid [emim][Tf2N] Using Equations of State. Industrial & Engineering Chemistry Research 2008, 47 (21) , 8389-8395. https://doi.org/10.1021/ie800754u
- Mark B. Shiflett and A. Yokozeki . Binary Vapor–Liquid and Vapor–Liquid–Liquid Equilibria of Hydrofluorocarbons (HFC-125 and HFC-143a) and Hydrofluoroethers (HFE-125 and HFE-143a) with Ionic Liquid [emim][Tf2N]. Journal of Chemical & Engineering Data 2008, 53 (2) , 492-497. https://doi.org/10.1021/je700588d
- Linan Ji, Shashi Kant Shukla, Zhida Zuo, Xiaohua Lu, Xiaoyan Ji, Changsong Wang. An overview of the progress of new working pairs in absorption heat pumps. Energy Reports 2023, 9 , 703-729. https://doi.org/10.1016/j.egyr.2022.11.143
- Bridgette J. Befort, Alejandro Garciadiego, Jialu Wang, Ke Wang, Gabriela Franco, Edward J. Maginn, Alexander W. Dowling. Data science for thermodynamic modeling: Case study for ionic liquid and hydrofluorocarbon refrigerant mixtures. Fluid Phase Equilibria 2023, 572 , 113833. https://doi.org/10.1016/j.fluid.2023.113833
- Julio E. Sosa, Rui P.P.L. Ribeiro, Paulo J. Castro, José P.B. Mota, Ana B. Pereiro, João M.M. Araújo. Sorption of fluorinated greenhouse gases in silica-supported fluorinated ionic liquids. Journal of Environmental Chemical Engineering 2022, 10 (6) , 108580. https://doi.org/10.1016/j.jece.2022.108580
- Jianchun Chu, Ziwen Zhang, Xiangyang Liu, Maogang He. Estimating the solubility of HFC/HFO in ionic liquids from molecular structure using machine learning method. Chemical Engineering Research and Design 2022, 184 , 315-325. https://doi.org/10.1016/j.cherd.2022.06.015
- José M. Asensio-Delgado, Salvador Asensio-Delgado, Gabriel Zarca, Ane Urtiaga. Analysis of hybrid compression absorption refrigeration using low-GWP HFC or HFO/ionic liquid working pairs. International Journal of Refrigeration 2022, 134 , 232-241. https://doi.org/10.1016/j.ijrefrig.2021.11.013
- Alejandro Garciadiego, Mozammel Mazumder, Bridgette J. Befort, Alexander W. Dowling. Modeling and Optimization of Ionic Liquid Enabled Extractive Distillation of Ternary Azeotrope Mixtures. 2022, 307-312. https://doi.org/10.1016/B978-0-323-85159-6.50051-8
- S. Sarmad, Jyri-Pekka Mikkola. Vapor-Liquid Equilibrium of Ionic Liquids. 2022, 1331-1351. https://doi.org/10.1007/978-981-33-4221-7_107
- Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Absorption separation of fluorinated refrigerant gases with ionic liquids: Equilibrium, mass transport, and process design. Separation and Purification Technology 2021, 276 , 119363. https://doi.org/10.1016/j.seppur.2021.119363
- Salvador Asensio-Delgado, Miguel Viar, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Gas solubility and diffusivity of hydrofluorocarbons and hydrofluoroolefins in cyanide-based ionic liquids for the separation of refrigerant mixtures. Fluid Phase Equilibria 2021, 549 , 113210. https://doi.org/10.1016/j.fluid.2021.113210
- Asaf Chiko, Ilya Polishuk, Esteban Cea-Klapp, José Matías Garrido. Comparison of CP-PC-SAFT and SAFT-VR-Mie in Predicting Phase Equilibria of Binary Systems Comprising Gases and 1-Alkyl-3-methylimidazolium Ionic Liquids. Molecules 2021, 26 (21) , 6621. https://doi.org/10.3390/molecules26216621
- Yingying Yang, Zhonghua Shen, Weidong Wu, Li Wang, Qiguo Yang. Characteristics of CO2-ionic liquids/PEG200 as new working pairs for absorption-compression refrigeration system. Journal of Molecular Liquids 2021, 340 , 116840. https://doi.org/10.1016/j.molliq.2021.116840
- Takehiro Esaki, Hiroki Uchiyama, Yousuke Matsukuma. Characteristics of HFC-134a absorption rate with [Bmim][Tf2N] in falling film type absorber. AIP Advances 2021, 11 (6) https://doi.org/10.1063/5.0024191
- Amirhossein Saali, Hossein Sakhaeinia, Mohammad Shokouhi. Modeling the Solubility of Carbon Dioxide and 1,1,1,2-Tetrafluoroethane in Ionic Liquids Using the van der Waals and Generic Redlich–Kwong Equations of State. Theoretical Foundations of Chemical Engineering 2021, 55 (1) , 129-139. https://doi.org/10.1134/S0040579521010127
- Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Enhanced absorption separation of hydrofluorocarbon/hydrofluoroolefin refrigerant blends using ionic liquids. Separation and Purification Technology 2020, 249 , 117136. https://doi.org/10.1016/j.seppur.2020.117136
- S. Asensio-Delgado, D. Jovell, G. Zarca, A. Urtiaga, F. Llovell. Thermodynamic and process modeling of the recovery of R410A compounds with ionic liquids. International Journal of Refrigeration 2020, 118 , 365-375. https://doi.org/10.1016/j.ijrefrig.2020.04.013
- S. Sarmad, J. Mikkola. Vapor-Liquid Equilibrium of Ionic Liquids. 2020, 1-22. https://doi.org/10.1007/978-981-10-6739-6_107-1
- Abolfazl Shojaeian, Hooman Fatoorehchi. Modeling solubility of refrigerants in ionic liquids using Peng Robinson-Two State equation of state. Fluid Phase Equilibria 2019, 486 , 80-90. https://doi.org/10.1016/j.fluid.2019.01.003
- Khalil Parvaneh, Ali Rasoolzadeh, Alireza Shariati. Modeling the phase behavior of refrigerants with ionic liquids using the QC-PC-SAFT equation of state. Journal of Molecular Liquids 2019, 274 , 497-504. https://doi.org/10.1016/j.molliq.2018.10.116
- David L. Minnick, Tugba Turnaoglu, Maria Alejandra Rocha, Mark B. Shiflett. Review Article: Gas and vapor sorption measurements using electronic beam balances. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2018, 36 (5) https://doi.org/10.1116/1.5044552
- Xiangyang Liu, Pei Pan, Maogang He. Vapor-liquid equilibrium and diffusion coefficients of R32 + [HMIM][FEP], R152a + [HMIM][FEP] and R161 + [HMIM][FEP]. Journal of Molecular Liquids 2018, 253 , 28-35. https://doi.org/10.1016/j.molliq.2018.01.032
- Maogang He, Sanguo Peng, Xiangyang Liu, Pei Pan, Yongdong He. Diffusion coefficients and Henry’s constants of hydrofluorocarbons in [HMIM][Tf 2 N], [HMIM][TfO], and [HMIM][BF 4 ]. The Journal of Chemical Thermodynamics 2017, 112 , 43-51. https://doi.org/10.1016/j.jct.2017.04.009
- David L. Minnick, William J.R. Gilbert, M. Alejandra Rocha, Mark B. Shiflett. Thermodynamic measurement and modeling of vinyl fluoride solubility in aqueous lithium Bis(trifluoromethylsulfonyl)imide Li + Tf 2 N − + H 2 O solutions. Fluid Phase Equilibria 2017, 444 , 61-68. https://doi.org/10.1016/j.fluid.2017.03.032
- Xiangyang Liu, Nan Lv, Chao Su, Maogang He. Solubilities of R32, R245fa, R227ea and R236fa in a phosphonium-based ionic liquid. Journal of Molecular Liquids 2016, 218 , 525-530. https://doi.org/10.1016/j.molliq.2016.02.041
- Xiangyang Liu, Xuetao Qi, Nan Lv, Maogang He. Gaseous absorption of fluorinated ethanes by ionic liquids. Fluid Phase Equilibria 2015, 405 , 1-6. https://doi.org/10.1016/j.fluid.2015.07.001
- Javad Hekayati, Aliakbar Roosta, Jafar Javanmardi. Thermodynamic modeling of refrigerants solubility in ionic liquids using original and ϵ*-Modified Sanchez–Lacombe equations of state. Fluid Phase Equilibria 2015, 403 , 14-22. https://doi.org/10.1016/j.fluid.2015.05.046
- Xiangyang Liu, Maogang He, Nan Lv, Xuetao Qi, Chao Su. Solubilities of R-161 and R-143a in 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase Equilibria 2015, 388 , 37-42. https://doi.org/10.1016/j.fluid.2014.12.026
- A. Vahid, E. J. Maginn. Monte Carlo simulation and SAFT modeling study of the solvation thermodynamics of dimethylformamide, dimethylsulfoxide, ethanol and 1-propanol in the ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide. Physical Chemistry Chemical Physics 2015, 17 (11) , 7449-7462. https://doi.org/10.1039/C4CP05961A
- Yoon Jo Kim, Miguel Gonzalez. Exergy analysis of an ionic-liquid absorption refrigeration system utilizing waste-heat from datacenters. International Journal of Refrigeration 2014, 48 , 26-37. https://doi.org/10.1016/j.ijrefrig.2014.08.008
- Danxing Zheng, Li Dong, Weijia Huang, Xianghong Wu, Nan Nie. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renewable and Sustainable Energy Reviews 2014, 37 , 47-68. https://doi.org/10.1016/j.rser.2014.04.046
- Mark B. Shiflett, David R. Corbin, Beth A. Elliott, Shekhar Subramoney, Katsumi Kaneko, Akimichi Yokozeki. Sorption of trifluoromethane in activated carbon. Adsorption 2014, 20 (4) , 565-575. https://doi.org/10.1007/s10450-014-9601-4
- Mark B. Shiflett, David R. Corbin, Beth A. Elliott, A. Yokozeki. Sorption of trifluoromethane in zeolites and ionic liquid. The Journal of Chemical Thermodynamics 2013, 64 , 40-49. https://doi.org/10.1016/j.jct.2013.04.018
- Mark B. Shiflett, David R. Corbin, A. Yokozeki. Comparison of the Sorption of Trifluoromethane (R-23) on Zeolites and in an Ionic Liquid. Adsorption Science & Technology 2013, 31 (1) , 59-83. https://doi.org/10.1260/0263-6174.31.1.59
- Mark B. Shiflett, Akimichi Yokozeki. Phase Behaviour of Gases in Ionic Liquids. 2012, 349-386. https://doi.org/10.1002/9781118434987.ch11
- Yoon Jo Kim, Sarah Kim, Yogendra K. Joshi, Andrei G. Fedorov, Paul A. Kohl. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid. Energy 2012, 44 (1) , 1005-1016. https://doi.org/10.1016/j.energy.2012.04.048
- Mark B. Shiflett, Beth A. Elliott, Steve R. Lustig, Subramaniam Sabesan, Manish S. Kelkar, A. Yokozeki. Phase Behavior of CO 2 in Room‐Temperature Ionic Liquid 1‐Ethyl‐3‐Ethylimidazolium Acetate. ChemPhysChem 2012, 13 (7) , 1806-1817. https://doi.org/10.1002/cphc.201200023
- Mark B. Shiflett, Anne Marie S. Niehaus, Beth A. Elliott, A. Yokozeki. Phase Behavior of N2O and CO2 in Room-Temperature Ionic Liquids [bmim][Tf2N], [bmim][BF4], [bmim][N(CN)2], [bmim][Ac], [eam][NO3], and [bmim][SCN]. International Journal of Thermophysics 2012, 33 (3) , 412-436. https://doi.org/10.1007/s10765-011-1150-4
- Mark B. Shiflett, Beth A. Elliott, A. Yokozeki. Phase behavior of vinyl fluoride in room-temperature ionic liquids [emim][Tf2N], [bmim][N(CN)2], [bmpy][BF4], [bmim][HFPS] and [omim][TFES]. Fluid Phase Equilibria 2012, 316 , 147-155. https://doi.org/10.1016/j.fluid.2011.11.030
- Mark B. Shiflett, Beth A. Elliott, Anne Marie S. Niehaus, A. Yokozeki. Separation of N 2 O and CO 2 using Room-Temperature Ionic Liquid [bmim][Ac]. Separation Science and Technology 2012, 47 (2) , 411-421. https://doi.org/10.1080/01496395.2011.627905
- Mark B. Shiflett, Andrew D. Shiflett, A. Yokozeki. Separation of tetrafluoroethylene and carbon dioxide using ionic liquids. Separation and Purification Technology 2011, 79 (3) , 357-364. https://doi.org/10.1016/j.seppur.2011.03.023
- A. Yokozeki, Mark B. Shiflett. Gas solubilities in ionic liquids using a generic van der Waals equation of state. The Journal of Supercritical Fluids 2010, 55 (2) , 846-851. https://doi.org/10.1016/j.supflu.2010.09.015
- Wei Ren, Aaron M. Scurto. Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a). Fluid Phase Equilibria 2009, 286 (1) , 1-7. https://doi.org/10.1016/j.fluid.2009.07.007
- Wei Ren, Aaron M. Scurto. Global phase behavior of imidazolium ionic liquids and compressed 1,1,1,2-tetrafluoroethane (R-134a). AIChE Journal 2009, 55 (2) , 486-493. https://doi.org/10.1002/aic.11657