ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Binary Vapor–Liquid and Vapor–Liquid–Liquid Equilibria of Hydrofluorocarbons (HFC-125 and HFC-143a) and Hydrofluoroethers (HFE-125 and HFE-143a) with Ionic Liquid [emim][Tf2N]

View Author Information
DuPont Central Research and Development, Experimental Station E304, Wilmington, Delaware 19880, and DuPont Fluoroproducts Laboratory, Chestnut Run Plaza 711, Wilmington, Delaware 19880
* Corresponding author. E-mail: [email protected]
†DuPont Central Research and Development.
‡DuPont Fluoroproducts Laboratory.
Cite this: J. Chem. Eng. Data 2008, 53, 2, 492–497
Publication Date (Web):December 30, 2007
https://doi.org/10.1021/je700588d
Copyright © 2008 American Chemical Society

    Article Views

    1202

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (397 KB)
    Supporting Info (1)»

    Abstract

    Solubility behaviors of binary HFC-125 (CF3−CF2H), HFE-125 (CF3−O−CF2H), HFC-143a (CF3−CH3), and HFE-143a (CF3−O−CH3) systems with room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) have been studied using a gravimetric microbalance method from (283 to 348) K and/or volumetric and cloud-point methods. Vapor–liquid equilibrium (VLE) data for HFC-125 + [emim][Tf2N] and HFE-125 + [emim][Tf2N] systems have been well correlated with our equation-of-state (EOS) model, which predicted vapor–liquid–liquid equilibria (VLLE) for both of these binary systems, and the VLLE have been experimentally proved. As for the binary systems of HFC-143a + [emim][Tf2N] and HFE-143a + [emim][Tf2N], only VLLE experiments have been made, and partial miscibility (temperature and composition: VLLE−Tx) data are well correlated with the NRTL (nonrandom two-liquids) activity model. While the immiscibility gap of the HFC-125 binary system is smaller than that of the HFE-125 system, the immiscibility behaviors for the HFC-143a and HFE-143a systems are opposite; the HFE-143a system is more soluble.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Materials and Tables S1 to S4. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 72 publications.

    1. Ethan A. Finberg, Max Cordry, Tessie L. May, Kalin R. Baca, Mark B. Shiflett. Ionic Liquid Selection for the Separation of Refrigerant Mixtures Using Extractive Distillation. Industrial & Engineering Chemistry Research 2023, Article ASAP.
    2. Kalin R. Baca, Abby N. Harders, Nicholas Starvaggi, Andrew D. Yancey, Yifei Wang, Emily Pentzer, Mark B. Shiflett. First Measurements of the Sorption of Difluoromethane and Pentafluoroethane in Encapsulated Ionic Liquids. Industrial & Engineering Chemistry Research 2023, 62 (36) , 14522-14536. https://doi.org/10.1021/acs.iecr.3c01745
    3. Alejandro Garciadiego, Bridgette J. Befort, Gabriela Franco, Mozammel Mazumder, Alexander W. Dowling. What Data Are Most Valuable to Screen Ionic Liquid Entrainers for Hydrofluorocarbon Refrigerant Reuse and Recycling?. Industrial & Engineering Chemistry Research 2022, 61 (50) , 18412-18425. https://doi.org/10.1021/acs.iecr.2c01928
    4. Ethan A. Finberg, Tessie L. May, Mark B. Shiflett. Multicomponent Refrigerant Separation Using Extractive Distillation with Ionic Liquids. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9795-9812. https://doi.org/10.1021/acs.iecr.2c00937
    5. Kalin R. Baca, Darren P. Broom, Mark G. Roper, Michael J. Benham, Mark B. Shiflett. First Measurements for the Simultaneous Sorption of Difluoromethane and Pentafluoroethane Mixtures in Ionic liquids Using the Integral Mass Balance Method. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9774-9784. https://doi.org/10.1021/acs.iecr.2c00497
    6. Hao Qin, Jie Cheng, Hantao Yu, Teng Zhou, Zhen Song. Hierarchical Ionic Liquid Screening Integrating COSMO-RS and Aspen Plus for Selective Recovery of Hydrofluorocarbons and Hydrofluoroolefins from a Refrigerant Blend. Industrial & Engineering Chemistry Research 2022, 61 (11) , 4083-4094. https://doi.org/10.1021/acs.iecr.1c04688
    7. Ethan A. Finberg, Mark B. Shiflett. Process Designs for Separating R-410A, R-404A, and R-407C Using Extractive Distillation and Ionic Liquid Entrainers. Industrial & Engineering Chemistry Research 2021, 60 (44) , 16054-16067. https://doi.org/10.1021/acs.iecr.1c02891
    8. Ilya Polishuk, Asaf Chiko, Esteban Cea-Klapp, José Matías Garrido. Implementation of CP-PC-SAFT and CS-SAFT-VR-Mie for Predicting the Thermodynamic Properties of C1–C3 Halocarbon Systems. II. Inter-Relation between Solubilities in Ionic Liquids, Their Pressure, Volume, and Temperature, and Critical Constants. Industrial & Engineering Chemistry Research 2021, 60 (35) , 13084-13093. https://doi.org/10.1021/acs.iecr.1c02720
    9. Daniel Jovell, Sergi B. Gómez, Malgorzata E. Zakrzewska, Ana V. M. Nunes, João M. M. Araújo, Ana B. Pereiro, Fèlix Llovell. Insight on the Solubility of R134a in Fluorinated Ionic Liquids and Deep Eutectic Solvents. Journal of Chemical & Engineering Data 2020, 65 (10) , 4956-4969. https://doi.org/10.1021/acs.jced.0c00588
    10. Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Vapor–Liquid Equilibria and Diffusion Coefficients of Difluoromethane, 1,1,1,2-Tetrafluoroethane, and 2,3,3,3-Tetrafluoropropene in Low-Viscosity Ionic Liquids. Journal of Chemical & Engineering Data 2020, 65 (9) , 4242-4251. https://doi.org/10.1021/acs.jced.0c00224
    11. Paulo J. Castro, Andres E. Redondo, Julio E. Sosa, Malgorzata E. Zakrzewska, Ana V. M. Nunes, João M. M. Araújo, Ana B. Pereiro. Absorption of Fluorinated Greenhouse Gases in Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2020, 59 (29) , 13246-13259. https://doi.org/10.1021/acs.iecr.0c01893
    12. Carlos G. Albà, Lourdes F. Vega, Fèlix Llovell. Assessment on Separating Hydrofluoroolefins from Hydrofluorocarbons at the Azeotropic Mixture R513A by Using Fluorinated Ionic Liquids: A Soft-SAFT Study. Industrial & Engineering Chemistry Research 2020, 59 (29) , 13315-13324. https://doi.org/10.1021/acs.iecr.0c02331
    13. David L. Minnick, Mark B. Shiflett. Solubility and Diffusivity of Bromodifluoromethane (Halon-1201) in Imidazolium Ionic Liquids: [C2C1im][Tf2N], [C4C1im][BF4], and [C4C1im][PF6]. Journal of Chemical & Engineering Data 2020, 65 (7) , 3277-3286. https://doi.org/10.1021/acs.jced.0c00022
    14. Julio E. Sosa, Rui P. P. L. Ribeiro, Paulo J. Castro, José P. B. Mota, João M. M. Araújo, Ana B. Pereiro. Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Industrial & Engineering Chemistry Research 2019, 58 (45) , 20769-20778. https://doi.org/10.1021/acs.iecr.9b04648
    15. David L. Minnick, Mark B. Shiflett. Solubility and Diffusivity of Chlorodifluoromethane in Imidazolium Ionic Liquids: [emim][Tf2N], [bmim][BF4], [bmim][PF6], and [emim][TFES]. Industrial & Engineering Chemistry Research 2019, 58 (25) , 11072-11081. https://doi.org/10.1021/acs.iecr.9b02419
    16. Xiaopo Wang, Yao Zhang, Dongbo Wang, and Yanjun Sun . Phase Equilibria of trans-1,3,3,3-Tetrafluoropropene with Three Imidazolium Ionic Liquids. Journal of Chemical & Engineering Data 2017, 62 (6) , 1825-1831. https://doi.org/10.1021/acs.jced.7b00047
    17. Xiangyang Liu, Maogang He, Nan Lv, Xuetao Qi, and Chao Su . Vapor–Liquid Equilibrium of Three Hydrofluorocarbons with [HMIM][Tf2N]. Journal of Chemical & Engineering Data 2015, 60 (5) , 1354-1361. https://doi.org/10.1021/je501069b
    18. Jialin Cai, Shensheng Zhen, Dengpan Gao, and Xianbao Cui . Phase Equilibrium (VLE, LLE, and VLLE) Data of the Ternary System: Ionic Liquid [OMIM][PF6] + Butan-1-ol + Butyl Acetate. Journal of Chemical & Engineering Data 2014, 59 (7) , 2171-2176. https://doi.org/10.1021/je5000296
    19. Matthias Seiler, Annett Kühn, Felix Ziegler, and Xinming Wang . Sustainable Cooling Strategies Using New Chemical System Solutions. Industrial & Engineering Chemistry Research 2013, 52 (47) , 16519-16546. https://doi.org/10.1021/ie401297u
    20. Kaihua Guo, Yin Bi, Li Sun, Hang Su, and Lixia Hungpu . Experiment and Correlation of Vapor–Liquid Equilibrium of Aqueous Solutions of Hydrophilic Ionic Liquids: 1-Ethyl-3-methylimidazolium Acetate and 1-Hexyl-3-methylimidazolium Chloride. Journal of Chemical & Engineering Data 2012, 57 (8) , 2243-2251. https://doi.org/10.1021/je3001987
    21. Rui Li, Xianbao Cui, Ying Zhang, Tianyang Feng, and Jialin Cai . Vapor–Liquid Equilibrium and Liquid–Liquid Equilibrium of Ethyl Acetate + Ethanol + 1-Ethyl-3-methylimidazolium Acetate. Journal of Chemical & Engineering Data 2012, 57 (3) , 911-917. https://doi.org/10.1021/je200869q
    22. Li Dong, Danxing Zheng, Guangming Sun, and Xianghong Wu . Vapor–Liquid Equilibrium Measurements of Difluoromethane + [Emim]OTf, Difluoromethane + [Bmim]OTf, Difluoroethane + [Emim]OTf, and Difluoroethane + [Bmim]OTf Systems. Journal of Chemical & Engineering Data 2011, 56 (9) , 3663-3668. https://doi.org/10.1021/je2005566
    23. Jialin Cai, Xianbao Cui, Ying Zhang, Rui Li, and Tianyang Feng . Isobaric Vapor–Liquid Equilibrium for Methanol + Methyl Acetate + 1-Octyl-3-methylimidazolium Hexafluorophosphate at 101.3 kPa. Journal of Chemical & Engineering Data 2011, 56 (6) , 2884-2888. https://doi.org/10.1021/je2000588
    24. Jialin Cai, Xianbao Cui, Ying Zhang, Rui Li, and Tianyang Feng. Vapor−Liquid Equilibrium and Liquid−Liquid Equilibrium of Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Acetate. Journal of Chemical & Engineering Data 2011, 56 (2) , 282-287. https://doi.org/10.1021/je100932m
    25. Mark B. Shiflett and Anne Marie S. Niehaus. Liquid−Liquid Equilibria in Binary Mixtures Containing Substituted Benzenes with Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2010, 55 (1) , 346-353. https://doi.org/10.1021/je9003614
    26. Mark B. Shiflett, Anne Marie S. Niehaus and A. Yokozeki . Liquid−Liquid Equilibria in Binary Mixtures Containing Chlorobenzene, Bromobenzene, and Iodobenzene with Ionic Liquid 1-Ethyl-3-methylimidazolim Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2009, 54 (7) , 2090-2094. https://doi.org/10.1021/je801005y
    27. Mark B. Shiflett and A. Yokozeki . Liquid−Liquid Equilibria in Binary Mixtures Containing Fluorinated Benzenes and Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2008, 53 (11) , 2683-2691. https://doi.org/10.1021/je8006474
    28. Linan Ji, Shashi Kant Shukla, Zhida Zuo, Xiaohua Lu, Xiaoyan Ji, Changsong Wang. An overview of the progress of new working pairs in absorption heat pumps. Energy Reports 2023, 9 , 703-729. https://doi.org/10.1016/j.egyr.2022.11.143
    29. Xiao Zhang, Liang Cai, Tao Chen, Jian Liu, Xiaosong Zhang. Thermodynamic screening and analysis of ionic liquids as absorbents paired with low-GWP refrigerants in absorption refrigeration systems. Energy 2023, 282 , 128414. https://doi.org/10.1016/j.energy.2023.128414
    30. Bridgette J. Befort, Alejandro Garciadiego, Jialu Wang, Ke Wang, Gabriela Franco, Edward J. Maginn, Alexander W. Dowling. Data science for thermodynamic modeling: Case study for ionic liquid and hydrofluorocarbon refrigerant mixtures. Fluid Phase Equilibria 2023, 572 , 113833. https://doi.org/10.1016/j.fluid.2023.113833
    31. Julio E. Sosa, Rui P.P.L. Ribeiro, Paulo J. Castro, José P.B. Mota, Ana B. Pereiro, João M.M. Araújo. Sorption of fluorinated greenhouse gases in silica-supported fluorinated ionic liquids. Journal of Environmental Chemical Engineering 2022, 10 (6) , 108580. https://doi.org/10.1016/j.jece.2022.108580
    32. Margarida L. Ferreira, Nicole S.M. Vieira, Paulo J. Castro, Lourdes F. Vega, João M.M. Araújo, Ana B. Pereiro. Understanding the phase and solvation behavior of fluorinated ionic liquids. Journal of Molecular Liquids 2022, 359 , 119285. https://doi.org/10.1016/j.molliq.2022.119285
    33. Antonio Marcilla, María del Mar Olaya, Paloma Carbonell-Hermida, Marta K. Wojtczuk, Héctor Rodríguez, Eva Rodil, Ana Soto. Acetone + 1-ethyl-3-methylimidazolium acetate phase diagram: A correlation challenge. Fluid Phase Equilibria 2022, 557 , 113419. https://doi.org/10.1016/j.fluid.2022.113419
    34. S. Sarmad, Jyri-Pekka Mikkola. Vapor-Liquid Equilibrium of Ionic Liquids. 2022, 1331-1351. https://doi.org/10.1007/978-981-33-4221-7_107
    35. Ana B. Pereiro, Julio E. Sosa, Rui P. P. L. Ribeiro, Paulo J. Castro, José P. B. Mota, João M. M. Araújo. Sorption of Fluorinated Greenhouse Gases in Silica-Supported Fluorinated Ionic Liquids. SSRN Electronic Journal 2022, 46 https://doi.org/10.2139/ssrn.4130037
    36. Salvador Asensio-Delgado, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Absorption separation of fluorinated refrigerant gases with ionic liquids: Equilibrium, mass transport, and process design. Separation and Purification Technology 2021, 276 , 119363. https://doi.org/10.1016/j.seppur.2021.119363
    37. Salvador Asensio-Delgado, Miguel Viar, Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Gas solubility and diffusivity of hydrofluorocarbons and hydrofluoroolefins in cyanide-based ionic liquids for the separation of refrigerant mixtures. Fluid Phase Equilibria 2021, 549 , 113210. https://doi.org/10.1016/j.fluid.2021.113210
    38. Asaf Chiko, Ilya Polishuk, Esteban Cea-Klapp, José Matías Garrido. Comparison of CP-PC-SAFT and SAFT-VR-Mie in Predicting Phase Equilibria of Binary Systems Comprising Gases and 1-Alkyl-3-methylimidazolium Ionic Liquids. Molecules 2021, 26 (21) , 6621. https://doi.org/10.3390/molecules26216621
    39. Elías N. Fierro, Claudio A. Faúndez, Ariana S. Muñoz. Influence of thermodynamically inconsistent data on modeling the solubilities of refrigerants in ionic liquids using an artificial neural network. Journal of Molecular Liquids 2021, 337 , 116417. https://doi.org/10.1016/j.molliq.2021.116417
    40. Nicole S.M. Vieira, Margarida L. Ferreira, Paulo J. Castro, João M.M. Araújo, Ana B. Pereiro. Fluorinated Ionic Liquids as Task-Specific Materials: An Overview of Current Research. 2021https://doi.org/10.5772/intechopen.96336
    41. Amirhossein Saali, Hossein Sakhaeinia, Mohammad Shokouhi. Modeling the Solubility of Carbon Dioxide and 1,1,1,2-Tetrafluoroethane in Ionic Liquids Using the van der Waals and Generic Redlich–Kwong Equations of State. Theoretical Foundations of Chemical Engineering 2021, 55 (1) , 129-139. https://doi.org/10.1134/S0040579521010127
    42. Fernando Pardo, Gabriel Zarca, Ane Urtiaga. Effect of feed pressure and long-term separation performance of Pebax-ionic liquid membranes for the recovery of difluoromethane (R32) from refrigerant mixture R410A. Journal of Membrane Science 2021, 618 , 118744. https://doi.org/10.1016/j.memsci.2020.118744
    43. S. Asensio-Delgado, D. Jovell, G. Zarca, A. Urtiaga, F. Llovell. Thermodynamic and process modeling of the recovery of R410A compounds with ionic liquids. International Journal of Refrigeration 2020, 118 , 365-375. https://doi.org/10.1016/j.ijrefrig.2020.04.013
    44. Yao Zhang, Xiucan Jia, Xiaopo Wang. Experimental investigation on the viscosity of [Hmim][Tf2N] saturated with R1234ze(E) or R1234yf. International Journal of Refrigeration 2020, 117 , 338-345. https://doi.org/10.1016/j.ijrefrig.2020.04.018
    45. Yao Zhang, Xiaopo Wang, Jiajia Yin. Viscosity of saturated mixtures of 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide with R600a and R152a. The Journal of Chemical Thermodynamics 2020, 141 , 105970. https://doi.org/10.1016/j.jct.2019.105970
    46. S. Sarmad, J. Mikkola. Vapor-Liquid Equilibrium of Ionic Liquids. 2020, 1-22. https://doi.org/10.1007/978-981-10-6739-6_107-1
    47. Abolfazl Shojaeian, Hooman Fatoorehchi. Modeling solubility of refrigerants in ionic liquids using Peng Robinson-Two State equation of state. Fluid Phase Equilibria 2019, 486 , 80-90. https://doi.org/10.1016/j.fluid.2019.01.003
    48. David L. Minnick, Tugba Turnaoglu, Maria Alejandra Rocha, Mark B. Shiflett. Review Article: Gas and vapor sorption measurements using electronic beam balances. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2018, 36 (5) https://doi.org/10.1116/1.5044552
    49. Yao Zhang, Jiajia Yin, Xiaopo Wang. Vapor-liquid equilibrium of 2,3,3,3-tetrafluoroprop-1-ene with 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methyl imidazolium hexafluorophosphate, and 1-octyl-3-methylimidazolium hexafluorophosphate. Journal of Molecular Liquids 2018, 260 , 203-208. https://doi.org/10.1016/j.molliq.2018.03.112
    50. Xiangyang Liu, Pei Pan, Maogang He. Vapor-liquid equilibrium and diffusion coefficients of R32 + [HMIM][FEP], R152a + [HMIM][FEP] and R161 + [HMIM][FEP]. Journal of Molecular Liquids 2018, 253 , 28-35. https://doi.org/10.1016/j.molliq.2018.01.032
    51. Maogang He, Sanguo Peng, Xiangyang Liu, Pei Pan, Yongdong He. Diffusion coefficients and Henry’s constants of hydrofluorocarbons in [HMIM][Tf 2 N], [HMIM][TfO], and [HMIM][BF 4 ]. The Journal of Chemical Thermodynamics 2017, 112 , 43-51. https://doi.org/10.1016/j.jct.2017.04.009
    52. Xiangyang Liu, Nan Lv, Chao Su, Maogang He. Solubilities of R32, R245fa, R227ea and R236fa in a phosphonium-based ionic liquid. Journal of Molecular Liquids 2016, 218 , 525-530. https://doi.org/10.1016/j.molliq.2016.02.041
    53. Suojiang Zhang, Qing Zhou, Xingmei Lu, Yuting Song, Xinxin Wang. Properties of 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide mixtures. 2016, 139-198. https://doi.org/10.1007/978-94-017-7573-1_11
    54. Xiangyang Liu, Xuetao Qi, Nan Lv, Maogang He. Gaseous absorption of fluorinated ethanes by ionic liquids. Fluid Phase Equilibria 2015, 405 , 1-6. https://doi.org/10.1016/j.fluid.2015.07.001
    55. Javad Hekayati, Aliakbar Roosta, Jafar Javanmardi. Thermodynamic modeling of refrigerants solubility in ionic liquids using original and ϵ*-Modified Sanchez–Lacombe equations of state. Fluid Phase Equilibria 2015, 403 , 14-22. https://doi.org/10.1016/j.fluid.2015.05.046
    56. José M.M.V. Sousa, José F.O. Granjo, António J. Queimada, Abel G.M. Ferreira, Nuno M.C. Oliveira, Isabel M.A. Fonseca. Solubility of hydrofluorocarbons in phosphonium-based ionic liquids: Experimental and modelling study. The Journal of Chemical Thermodynamics 2014, 79 , 184-191. https://doi.org/10.1016/j.jct.2014.08.001
    57. Danxing Zheng, Li Dong, Weijia Huang, Xianghong Wu, Nan Nie. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renewable and Sustainable Energy Reviews 2014, 37 , 47-68. https://doi.org/10.1016/j.rser.2014.04.046
    58. José M.M.V. Sousa, José F.O. Granjo, António J. Queimada, Abel G.M. Ferreira, Nuno M.C. Oliveira, Isabel M.A. Fonseca. Solubilities of hydrofluorocarbons in ionic liquids: Experimental and modelling study. The Journal of Chemical Thermodynamics 2014, 73 , 36-43. https://doi.org/10.1016/j.jct.2013.07.013
    59. Mark B. Shiflett, David R. Corbin, Beth A. Elliott, Shekhar Subramoney, Katsumi Kaneko, Akimichi Yokozeki. Sorption of trifluoromethane in activated carbon. Adsorption 2014, 20 (4) , 565-575. https://doi.org/10.1007/s10450-014-9601-4
    60. Maaike C. Kroon, Cor J. Peters. Supercritical Fluids in Ionic Liquids. 2014, 39-57. https://doi.org/10.1002/9781118839706.ch2
    61. David Rooney, Norfaizah AB Manan. Engineering Simulations. 2014, 117-148. https://doi.org/10.1002/9781118839706.ch5
    62. Mark B. Shiflett, David R. Corbin, Beth A. Elliott, A. Yokozeki. Sorption of trifluoromethane in zeolites and ionic liquid. The Journal of Chemical Thermodynamics 2013, 64 , 40-49. https://doi.org/10.1016/j.jct.2013.04.018
    63. Mark B. Shiflett, David R. Corbin, A. Yokozeki. Comparison of the Sorption of Trifluoromethane (R-23) on Zeolites and in an Ionic Liquid. Adsorption Science & Technology 2013, 31 (1) , 59-83. https://doi.org/10.1260/0263-6174.31.1.59
    64. Mark B. Shiflett, Akimichi Yokozeki. Phase Behaviour of Gases in Ionic Liquids. 2012, 349-386. https://doi.org/10.1002/9781118434987.ch11
    65. Filipa M. Maia, Ioannis Tsivintzelis, Oscar Rodriguez, Eugénia A. Macedo, Georgios M. Kontogeorgis. Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model. Fluid Phase Equilibria 2012, 332 , 128-143. https://doi.org/10.1016/j.fluid.2012.06.026
    66. Mark B. Shiflett, Beth A. Elliott, Steve R. Lustig, Subramaniam Sabesan, Manish S. Kelkar, A. Yokozeki. Phase Behavior of CO 2 in Room‐Temperature Ionic Liquid 1‐Ethyl‐3‐Ethylimidazolium Acetate. ChemPhysChem 2012, 13 (7) , 1806-1817. https://doi.org/10.1002/cphc.201200023
    67. José M.S. Fonseca, Ralf Dohrn, Stephanie Peper. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005–2008). Fluid Phase Equilibria 2011, 300 (1-2) , 1-69. https://doi.org/10.1016/j.fluid.2010.09.017
    68. A. Yokozeki, Mark B. Shiflett. Gas solubilities in ionic liquids using a generic van der Waals equation of state. The Journal of Supercritical Fluids 2010, 55 (2) , 846-851. https://doi.org/10.1016/j.supflu.2010.09.015
    69. S. Raeissi, L. Florusse, C.J. Peters. Scott–van Konynenburg phase diagram of carbon dioxide+alkylimidazolium-based ionic liquids. The Journal of Supercritical Fluids 2010, 55 (2) , 825-832. https://doi.org/10.1016/j.supflu.2010.09.042
    70. Qin Xin, Geoffrey G. Poon, John M. Prausnitz. Fluid-phase equilibria in binary systems containing an ionic liquid. Application of the Percus–Yevick–van der Waals equation of state. The Journal of Supercritical Fluids 2010, 55 (2) , 817-824. https://doi.org/10.1016/j.supflu.2010.09.043
    71. Yan Huo, Shuqian Xia, Shouzhi Yi, Peisheng Ma. Measurement and correlation of vapor pressure of benzene and thiophene with [BMIM][PF6] and [BMIM][BF4] ionic liquids. Fluid Phase Equilibria 2009, 276 (1) , 46-52. https://doi.org/10.1016/j.fluid.2008.09.018
    72. Rui Ferreira, Marijana Blesic, Joana Trindade, Isabel Marrucho, José N. Canongia Lopes, Luís Paulo N. Rebelo. Solubility of fluorinated compounds in a range of ionic liquids. Cloud-point temperature dependence on composition and pressure. Green Chemistry 2008, 10 (9) , 918. https://doi.org/10.1039/b805902k

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect