ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Influence of the Temperature on the Liquid–Liquid Equilibria of Heptane + Toluene + Sulfolane and Heptane + m-Xylene + Sulfolane

View Author Information
Department of Environmental Engineering, Kun Shan University, Tainan 710, Taiwan, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, and Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
* Corresponding author. E-mail: [email protected]
†Kun Shan University.
‡National Taipei University of Technology.
§National University of Kaohsiung.
Cite this: J. Chem. Eng. Data 2008, 53, 3, 760–764
Publication Date (Web):January 23, 2008
https://doi.org/10.1021/je700611f
Copyright © 2008 American Chemical Society

    Article Views

    465

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (115 KB)

    Abstract

    Equilibrium tie line data have been determined at (298.15, 323.15, 348.15, and 373.15) K for the ternary liquid–liquid equilibria (LLE) of heptane + (toluene or m-xylene) + sulfolane systems. The relative mutual solubility of toluene is higher than that of m-xylene in heptane + sulfolane mixtures. The tie line data were correlated with the UNIQUAC and NRTL models. The calculated values based on the UNIQUAC model were found to be better than those based on the NRTL model; the average root-mean-square deviation between the phase composition obtained from experiment and that from calculation was 0.5111 for UNIQUAC compared to 0.6475 for NRTL. The values of selectivity and the distribution coefficient were derived from the equilibrium data at different temperatures.

    Cited By

    This article is cited by 41 publications.

    1. Yan Ding, Yicang Guo, Yuhang Sun, Tianyi Sun, Qing Ye, Jinlong Li, Patrice Paricaud, Changjun Peng. Mixed Ionic Liquids as Entrainers for Aromatic Extraction Processes: Energy, Economic, and Environmental Evaluations. Industrial & Engineering Chemistry Research 2022, 61 (43) , 16193-16208. https://doi.org/10.1021/acs.iecr.2c02124
    2. Jaber Yousefi Seyf, Mohammad Asgari. Parametrization of PC-SAFT EoS for Solvents Reviewed for Use in Pharmaceutical Process Design: VLE, LLE, VLLE, and SLE Study. Industrial & Engineering Chemistry Research 2022, 61 (23) , 8252-8268. https://doi.org/10.1021/acs.iecr.2c00429
    3. Yuanyuan Lyu, Joan F. Brennecke, Mark A. Stadtherr. Review of Recent Aromatic–Aliphatic–Ionic Liquid Ternary Liquid–Liquid Equilibria and Their Modeling by COSMO-RS. Industrial & Engineering Chemistry Research 2020, 59 (19) , 8871-8893. https://doi.org/10.1021/acs.iecr.0c00581
    4. Bakusele Kabane, Vasanthakumar Arumugam, Rajasekhar Chokkareddy, Gan G. Redhi. Assessment of Pyrrolidinium-Based Ionic Liquid for the Separation of Binary Mixtures Based on Activity Coefficients at Infinite Dilution. Journal of Chemical & Engineering Data 2019, 64 (12) , 5105-5112. https://doi.org/10.1021/acs.jced.9b00341
    5. Roberto I. Canales and Joan F. Brennecke . Comparison of Ionic Liquids to Conventional Organic Solvents for Extraction of Aromatics from Aliphatics. Journal of Chemical & Engineering Data 2016, 61 (5) , 1685-1699. https://doi.org/10.1021/acs.jced.6b00077
    6. Wenjun Fang, Dongbei Shao, Xiaoxing Lu, Yongsheng Guo, and Li Xu . Extraction of Aromatics from Hydrocarbon Fuels Using N-Alkyl Piperazinium-Based Ionic Liquids. Energy & Fuels 2012, 26 (4) , 2154-2160. https://doi.org/10.1021/ef201955n
    7. Wen-Churng Lin . Liquid–Liquid Equilibria of the Ternary Systems Undecane + 1,4-Diethylbenzene + Tetrahydrothiophene 1,1-Dioxide and Tridecane + 1,4-Diethylbenzene + Tetrahydrothiophene 1,1-Dioxide at T = (323.15, 348.15, and 373.15) K. Journal of Chemical & Engineering Data 2011, 56 (12) , 4486-4490. https://doi.org/10.1021/je200465z
    8. Irene Domínguez, Emilio J. González, Raquel González, and Ángeles Domínguez . Extraction of Benzene from Aliphatic Compounds Using Commercial Ionic Liquids as Solvents: Study of the Liquid–Liquid Equilibrium at T = 298.15 K. Journal of Chemical & Engineering Data 2011, 56 (8) , 3376-3383. https://doi.org/10.1021/je200334e
    9. Elena Gómez, Irene Domínguez, Begoña González, and Ángeles Domínguez . Liquid−Liquid Equilibria of the Ternary Systems of Alkane + Aromatic + 1-Ethylpyridinium Ethylsulfate Ionic Liquid at T = (283.15 and 298.15) K. Journal of Chemical & Engineering Data 2010, 55 (11) , 5169-5175. https://doi.org/10.1021/je100716c
    10. G. Wytze Meindersma, Antje R. Hansmeier and André B. de Haan. Ionic Liquids for Aromatics Extraction. Present Status and Future Outlook. Industrial & Engineering Chemistry Research 2010, 49 (16) , 7530-7540. https://doi.org/10.1021/ie100703p
    11. Emilio J. González, Noelia Calvar, Begoña González and Ángeles Domínguez . Liquid−Liquid Equilibrium for Ternary Mixtures of Hexane + Aromatic Compounds + [EMpy][ESO4] at T = 298.15 K. Journal of Chemical & Engineering Data 2010, 55 (2) , 633-638. https://doi.org/10.1021/je900557u
    12. Bakusele Kabane, Rafael de P Soares, Nirmala Deenadayalu, Indra Bahadur. Pre-screening of 1-ethyl-3-methylimidazolium tetrachloroaluminate and influence of diethylene glycol on the ionic liquid in separation of molecular solutes: Activity coefficients at infinite dilution and COSMO-SAC modelling. Fluid Phase Equilibria 2023, 571 , 113808. https://doi.org/10.1016/j.fluid.2023.113808
    13. Wenyang Fan, Chunliang Ge, Delong Ding, Liping Deng, Jun Gao, Dongmei Xu. Research on separation sulfides from fuel oil using sulfolane: Liquid-liquid equilibrium and mechanism exploration. The Journal of Chemical Thermodynamics 2023, 182 , 107036. https://doi.org/10.1016/j.jct.2023.107036
    14. Marek Królikowski, Marta Kasprzyk-Niedzicka, Marta Królikowska, Barbara Gąsiorowska. Physicochemical characterization and activity coefficients at infinite dilution of molecular compound in poly(ethylene glycol)dimethyl ether and the eutectic mixture composed of poly(ethylene glycol) with cyclic carbonate. The Journal of Chemical Thermodynamics 2022, 169 , 106747. https://doi.org/10.1016/j.jct.2022.106747
    15. Wenyang Fan, Huiwen Huang, Qing Li, Jun Gao, Dongmei Xu, Yinglong Wang. Liquid-liquid equilibria for separation of benzothiophene from model fuel oil: Solvent screening and thermodynamic modeling. The Journal of Chemical Thermodynamics 2022, 167 , 106693. https://doi.org/10.1016/j.jct.2021.106693
    16. Aline M.M. Bessa, Regiane S. Pinheiro, Filipe X. Feitosa, Hosiberto B. de Sant'Ana, Rílvia S. de Santiago-Aguiar. Low viscosity lactam-based ionic liquids with carboxylate anions: Application in the separation of systems toluene/heptane, cyclohexene/cyclohexane, and phenol/water. Journal of Molecular Liquids 2022, 346 , 117720. https://doi.org/10.1016/j.molliq.2021.117720
    17. Fadoua Farghi, Mohamed Larouech, Mohammed Kaddami. Effect of Methanol Concentration in the Mixed Solvent Dimethyl Sulfoxide + Methanol in the Extraction of Toluene from Heptane: Experimental Measurements and Thermodynamic Modeling. International Journal of Thermophysics 2021, 42 (9) https://doi.org/10.1007/s10765-021-02883-0
    18. Midong Shi, Wei Zeng, Shixian Song, Meiting Zhou, Wei Wang. Measurement and correlation of ternary (liquid–liquid) equilibrium data for n-heptane + p-xylene + (furfural or dimethyl sulfoxide) system at 303.15 K and 323.15 K. The Journal of Chemical Thermodynamics 2020, 149 , 106175. https://doi.org/10.1016/j.jct.2020.106175
    19. Bakusele Kabane, Gan G. Redhi. Evaluation of an imidazolium-based ionic liquid as a separation solvent for binary mixtures based on limiting activity coefficient data. South African Journal of Chemical Engineering 2020, 32 , 32-38. https://doi.org/10.1016/j.sajce.2020.01.004
    20. Congfei Yao, Yucui Hou, Ying Sun, Weize Wu, Shuhang Ren, Hui Liu. Extraction of aromatics from aliphatics using a hydrophobic dicationic ionic liquid adjusted with small-content water. Separation and Purification Technology 2020, 236 , 116287. https://doi.org/10.1016/j.seppur.2019.116287
    21. Fadoua Farghi, Mohammed Kaddami. Experimental Measurements and Correlation of Liquid Extraction of o-Xylene from Octane Using Mixed Solvents Including Dimethyl Sulfoxide and Methanol at 298.15 K. International Journal of Thermophysics 2020, 41 (2) https://doi.org/10.1007/s10765-019-2596-z
    22. Bakusele Kabane, Gan G. Redhi. Application of trihexyltetradecylphosphonium dicyanamide ionic liquid for various types of separations problems: Activity coefficients at infinite dilution measurements utilizing GLC method. Fluid Phase Equilibria 2019, 493 , 181-187. https://doi.org/10.1016/j.fluid.2019.03.023
    23. Jaber Yousefi Seyf, Abolfazl Shojaeian. Vapor-liquid (azeotropic systems) and liquid-liquid equilibrium calculations using UNIFAC and NRTL-SAC activity coefficient models. Fluid Phase Equilibria 2019, 494 , 33-44. https://doi.org/10.1016/j.fluid.2019.04.029
    24. F. Farghi, M. Kaddami. Phase Diagrams of Ternary and Quaternary Systems Containing Heptane, Toluene, Dimethylsulfoxide, Methanol, and Ethanol at 298.15 K. Russian Journal of Physical Chemistry A 2018, 92 (12) , 2502-2506. https://doi.org/10.1134/S0036024418120105
    25. Mobin Enayati, Babak Mokhtarani, Ali Sharifi, Sanam Anvari, Mojtaba Mirzaei. Liquid–liquid extraction of toluene from alkane with pyridinium based ionic liquid ([BPy][NO 3 ] and [HPy][NO 3 ]) at 298.15 K and atmospheric pressure. The Journal of Chemical Thermodynamics 2016, 102 , 316-321. https://doi.org/10.1016/j.jct.2016.07.030
    26. Marek Królikowski. Liquid–liquid extraction of p-xylene from their mixtures with alkanes using 1-butyl-1-methylmorpholinium tricyanomethanide and 1-butyl-3-methylimidazolium tricyanomethanide ionic liquids. Fluid Phase Equilibria 2016, 412 , 107-114. https://doi.org/10.1016/j.fluid.2015.12.032
    27. Francisca Maria Rodrigues Mesquita, Regiane Silva Pinheiro, Rílvia S. Santiago-Aguiar, Hosiberto B. de Sant’Ana. Measurement of phase equilibria data for the extraction of toluene from alkane using different solvents. Fluid Phase Equilibria 2015, 404 , 49-54. https://doi.org/10.1016/j.fluid.2015.06.016
    28. Francisca Maria Rodrigues Mesquita, Regiane Silva Pinheiro, Hosiberto B. de Sant’Ana, Rílvia S. Santiago-Aguiar. Removal of aromatic hydrocarbons from hydrocarbon mixture using glycols at 303.15 K and 333.15 K and atmospheric pressure: Experimental and calculated data by NRTL and UNIQUAC models. Fluid Phase Equilibria 2015, 387 , 135-142. https://doi.org/10.1016/j.fluid.2014.12.027
    29. Huanyang Yu, Zhenzhen Cai, Jingjing Guan, Zuosen Shi, Zhanchen Cui. Crosslinked polystyrene beads modified with sulfonyl groups and their application in aromatic/aliphatic hydrocarbons separation. Chemical Research in Chinese Universities 2014, 30 (6) , 1066-1070. https://doi.org/10.1007/s40242-014-4156-1
    30. Huan Yang Yu. Polystyrene Beads Modified with Ester Group and their Application in N-Heptane/Toluene Separation. Advanced Materials Research 2014, 1048 , 423-426. https://doi.org/10.4028/www.scientific.net/AMR.1048.423
    31. Babak Mokhtarani, Javad Musavi, Mehdi Parvini. Extraction of toluene from alkane using [Bmim][NO3] or [Omim][NO3] ionic liquid at 298.15K and atmospheric pressure. Fluid Phase Equilibria 2014, 363 , 41-47. https://doi.org/10.1016/j.fluid.2013.11.020
    32. Mitesh R. Shah, Ganapati D. Yadav. Prediction of liquid−liquid equilibria of (aromatic + aliphatic + ionic liquid) systems using the Cosmo-SAC model. The Journal of Chemical Thermodynamics 2012, 49 , 62-69. https://doi.org/10.1016/j.jct.2012.01.012
    33. Wytze (G.W.) Meindersma, Ferdy (S.A.F.) Onink, Antje R. Hansmeier, André B. de Haan. Long Term Pilot Plant Experience on Aromatics Extraction with Ionic Liquids. Separation Science and Technology 2012, 47 (2) , 337-345. https://doi.org/10.1080/01496395.2011.620590
    34. I. Domínguez, N. Calvar, E. Gómez, A. Domínguez. Separation of Benzene from Heptane Using Tree Ionic Liquids: BMimMSO4, BMimNTf2, and PMimNTf2. Procedia Engineering 2012, 42 , 1597-1605. https://doi.org/10.1016/j.proeng.2012.07.553
    35. G.W. Meindersma, Bart T.J. Simons, André B. de Haan. Physical properties of 3-methyl-N-butylpyridinium tetracyanoborate and 1-butyl-1-methylpyrrolidinium tetracyanoborate and ternary LLE data of [3-mebupy]B(CN)4 with an aromatic and an aliphatic hydrocarbon at T=303.2K and 328.2K and p=0.1MPa. The Journal of Chemical Thermodynamics 2011, 43 (11) , 1628-1640. https://doi.org/10.1016/j.jct.2011.05.022
    36. Wytze (G.W.) Meindersma, Tim van Acker, André B. de Haan. Physical properties of 3-methyl-N-butylpyridinium tricyanomethanide and ternary LLE data with an aromatic and an aliphatic hydrocarbon at T=(303.2 and 328.2)K and p=0.1MPa. Fluid Phase Equilibria 2011, 307 (1) , 30-38. https://doi.org/10.1016/j.fluid.2011.05.002
    37. Emilio J. González, Noelia Calvar, Irene Domínguez, Ángeles Domínguez. Extraction of toluene from aliphatic compounds using an ionic liquid as solvent: Influence of the alkane on the (liquid+liquid) equilibrium. The Journal of Chemical Thermodynamics 2011, 43 (4) , 562-568. https://doi.org/10.1016/j.jct.2010.11.013
    38. Emilio J. González, Noelia Calvar, Begoña González, Ángeles Domínguez. Separation of toluene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T=298.15K and atmospheric pressure. The Journal of Chemical Thermodynamics 2010, 42 (6) , 752-757. https://doi.org/10.1016/j.jct.2010.01.008
    39. Emilio J. González, Noelia Calvar, Elena Gómez, Ángeles Domínguez. Separation of benzene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at several temperatures and atmospheric pressure: Effect of the size of the aliphatic hydrocarbons. The Journal of Chemical Thermodynamics 2010, 42 (1) , 104-109. https://doi.org/10.1016/j.jct.2009.07.017
    40. Emilio J. González, Noelia Calvar, Begoña González, Ángeles Domínguez. (Liquid+liquid) equilibria for ternary mixtures of (alkane+benzene+[EMpy] [ESO4]) at several temperatures and atmospheric pressure. The Journal of Chemical Thermodynamics 2009, 41 (11) , 1215-1221. https://doi.org/10.1016/j.jct.2009.05.008
    41. A. A. Gaile, A. S. Erzhenkov, L. L. Koldobskaya, I. A. Solovykh. Liquid-liquid phase equilibrium in the system heptane-toluene-mixed extractant triethylene glycol-sulfolane-water. Russian Journal of Applied Chemistry 2009, 82 (7) , 1172-1177. https://doi.org/10.1134/S1070427209070040

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect