ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Conductivities of Binary Mixtures of Ionic Liquids with Polar Solvents

View Author Information
Institut für Physikalische and Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
* To whom correspondence should be addressed. E-mail: [email protected]
†Part of the special issue “Robin H. Stokes Festschrift”.
Cite this: J. Chem. Eng. Data 2009, 54, 2, 472–479
Publication Date (Web):October 25, 2008
https://doi.org/10.1021/je800468h
Copyright © 2008 American Chemical Society

    Article Views

    3355

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Data for the conductivity, κ, of selected binary mixtures of the ionic liquids [emim][BF4], [bmim][BF4], [bmim][PF6], [bmim][DCA], and [hmim][BF4] with polar solvents (water, propylene carbonate, dimethylsulfoxide, methanol, dichloromethane) at 25 °C are reported. Additionally, mixture densities, ρ, were determined to convert κ into molar conductivity, Λ. The obtained results were fitted by appropriate interpolation formulas. Where possible, data were compared with information from the literature. Electrode polarization and sample purity, including [BF4] hydrolysis, were considered as possible sources of errors in κ. The effect of viscosity on the accuracy of ρ and thus Λ was checked.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Graphs of the time-dependent conductivity of hydrolyzing [bmim][BF4] + W and of representative fits with eq 1. Tables of the fit parameters for κ and Λ obtained with eqs 1 to 3. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 259 publications.

    1. Yingjie Xu, Yujun Guo. New Local Composition Model for Correlating of the Molar Conductivity of Ionic Liquid–Solvent Systems over the Whole Concentration Range. The Journal of Physical Chemistry B 2024, Article ASAP.
    2. Pedro Velho, Berta N. Estevinho, Eugénia A. Macedo. Thermophysical Properties of Mixtures Containing Cholinium l-Alaninate and Water, Ethanol, or Propan-1-ol. Journal of Chemical & Engineering Data 2024, 69 (2) , 338-347. https://doi.org/10.1021/acs.jced.3c00247
    3. Aafia Sheikh, Athar Yaseen Khan, Safeer Ahmed. Physicochemical Properties of Choline Chloride/Acetic Acid as a Deep Eutectic Solvent and Its Binary Solutions with DMSO at 298.15 to 353.15 K. ACS Omega 2024, 9 (3) , 3730-3745. https://doi.org/10.1021/acsomega.3c07739
    4. Saman Naseri Boroujeni, Bjørn Maribo-Mogensen, Xiaodong Liang, Georgios M. Kontogeorgis. New Electrical Conductivity Model for Electrolyte Solutions Based on the Debye–Hückel–Onsager Theory. The Journal of Physical Chemistry B 2023, 127 (46) , 9954-9975. https://doi.org/10.1021/acs.jpcb.3c03381
    5. Rohit Chauhan, Rohan Sartape, Amey Thorat, Jindal K. Shah, Meenesh R. Singh. Theory-Enabled High-Throughput Screening of Ion Dissociation Explains Conductivity Enhancements in Diluted Ionic Liquid Mixtures. ACS Sustainable Chemistry & Engineering 2023, 11 (41) , 14932-14946. https://doi.org/10.1021/acssuschemeng.3c03307
    6. Wenxiao Guo, Beichen Liu, Matthew A. Gebbie. Suppressing Co-Ion Generation via Cationic Proton Donors to Amplify Driving Forces for Electrochemical CO2 Reduction. The Journal of Physical Chemistry C 2023, 127 (29) , 14243-14254. https://doi.org/10.1021/acs.jpcc.3c04004
    7. Sapna Rana, Ramesh C. Thakur, Harpreet Kaur, Akshay Sharma, Renuka Sharma, Vikas Thakur, Harmanjit Singh, Ishrat Fatma. Investigating the Solvation Behavior of Some Lithium Salts in Binary Aqueous Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([EMIM][BF4]) at Equidistant Temperatures (T = 298.15, 303.15, 308.15, 313.15, 318.15) K. Journal of Chemical & Engineering Data 2023, 68 (6) , 1291-1304. https://doi.org/10.1021/acs.jced.3c00037
    8. Dmytro Dudariev, Volodymyr Koverga, Oleg Kalugin, François-Alexandre Miannay, Kamil Polok, Toshiyuki Takamuku, Pál Jedlovszky, Abdenacer Idrissi. Insight to the Local Structure of Mixtures of Imidazolium-Based Ionic Liquids and Molecular Solvents from Molecular Dynamics Simulations and Voronoi Analysis. The Journal of Physical Chemistry B 2023, 127 (11) , 2534-2545. https://doi.org/10.1021/acs.jpcb.2c08818
    9. Markéta Havlová, Vladimír Dohnal. Phase Equilibria, Thermodynamic Behavior, and Transport Properties of Aqueous Solutions of [BMPYR] Trifluoromethanesulfonate and [BMPYR] Tricyanomethanide. Journal of Chemical & Engineering Data 2022, 67 (9) , 2108-2127. https://doi.org/10.1021/acs.jced.2c00096
    10. Jinlei Cui, Xiaobo Lin, Wei Zhao, Peter T. Cummings, Marek Pruski, Takeshi Kobayashi. NMR and Theoretical Study of In-Pore Diffusivity of Ionic Liquid–Solvent Mixtures. The Journal of Physical Chemistry B 2022, 126 (26) , 4889-4898. https://doi.org/10.1021/acs.jpcb.2c00860
    11. Kenneth R. Harris, Mitsuhiro Kanakubo. Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Hexyl-3-methylimidazolium Tetrafluoroborate and 1-Ethyl- and 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amides. Journal of Chemical & Engineering Data 2021, 66 (12) , 4618-4628. https://doi.org/10.1021/acs.jced.1c00628
    12. Nishith Maity, Piotr Piatkowski, Kamil Polok, François-Alexandre Miannay, Abdenacer Idrissi. Effect of the Mixture Composition of BmimBF4–Acetonitrile on the Excited-State Relaxation Dynamics of a Solar-Cell Dye D149: An Ultrafast Transient Absorption Study. The Journal of Physical Chemistry C 2021, 125 (32) , 17841-17852. https://doi.org/10.1021/acs.jpcc.1c05008
    13. Tsun-Mei Chang, Stephanie E. Billeck. Structure, Molecular Interactions, and Dynamics of Aqueous [BMIM][BF4] Mixtures: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2021, 125 (4) , 1227-1240. https://doi.org/10.1021/acs.jpcb.0c09731
    14. Yong Zheng, Yongjun Zheng, Qian Wang, Zhen Wang. Density, Viscosity, and Electrical Conductivity of 1-Alkyl-3-methylimidazolium Dicyanamide Ionic Liquids. Journal of Chemical & Engineering Data 2021, 66 (1) , 480-493. https://doi.org/10.1021/acs.jced.0c00754
    15. Vira Agieienko, Richard Buchner. A Comprehensive Study of Density, Viscosity, and Electrical Conductivity of (Choline Chloride + Glycerol) Deep Eutectic Solvent and Its Mixtures with Dimethyl Sulfoxide. Journal of Chemical & Engineering Data 2021, 66 (1) , 780-792. https://doi.org/10.1021/acs.jced.0c00869
    16. Dovilė Lengvinaitė, Vytautas Klimavičius, Vytautas Balevicius, Kęstutis Aidas. Computational NMR Study of Ion Pairing of 1-Decyl-3-methyl-imidazolium Chloride in Molecular Solvents. The Journal of Physical Chemistry B 2020, 124 (47) , 10776-10786. https://doi.org/10.1021/acs.jpcb.0c07450
    17. Abner Massari Sampaio, Leonardo José Amaral Siqueira. Ether-Functionalized Sulfonium Ionic Liquid and Its Binary Mixtures with Acetonitrile as Electrolyte for Electrochemical Double Layer Capacitors: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2020, 124 (30) , 6679-6689. https://doi.org/10.1021/acs.jpcb.0c02643
    18. John P. Stoppelman, Jesse G. McDaniel. Proton Transport in [BMIM+][BF4–]/Water Mixtures Near the Percolation Threshold. The Journal of Physical Chemistry B 2020, 124 (28) , 5957-5970. https://doi.org/10.1021/acs.jpcb.0c02487
    19. Evgeniya A. Saverina, Daria Y. Zinchenko, Sofia D. Farafonova, Alexey S. Galushko, Andrei A. Novikov, Maxim V. Gorbachevskii, Valentine P. Ananikov, Mikhail P. Egorov, Viatcheslav V. Jouikov, Mikhail A. Syroeshkin. Porous Silicon Preparation by Electrochemical Etching in Ionic Liquids. ACS Sustainable Chemistry & Engineering 2020, 8 (27) , 10259-10264. https://doi.org/10.1021/acssuschemeng.0c03133
    20. Heloísa Emi Hoga, Gustavo Vieira Olivieri, Ricardo Belchior Torres. Experimental Measurements of Volumetric and Acoustic Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Hexafluorophosphate with Molecular Solvents. Journal of Chemical & Engineering Data 2020, 65 (7) , 3406-3419. https://doi.org/10.1021/acs.jced.9b01032
    21. Vira Agieienko, Richard Buchner. Variation of Density, Viscosity, and Electrical Conductivity of the Deep Eutectic Solvent Reline, Composed of Choline Chloride and Urea at a Molar Ratio of 1:2, Mixed with Dimethylsulfoxide as a Cosolvent. Journal of Chemical & Engineering Data 2020, 65 (4) , 1900-1910. https://doi.org/10.1021/acs.jced.9b01105
    22. Snežana Papović, Milan Vraneš, Aleksandar Tot, István Szilágyi, Bojana Katana, Khalaf Alenezi, Slobodan Gadžurić. Physicochemical Investigations of a Binary Mixture Containing Ionic Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide and Diethyl Carbonate. Journal of Chemical & Engineering Data 2020, 65 (1) , 68-80. https://doi.org/10.1021/acs.jced.9b00738
    23. Richard Buchner, Wolfgang Wachter, Glenn Hefter. Systematic Variations of Ion Hydration in Aqueous Alkali Metal Fluoride Solutions. The Journal of Physical Chemistry B 2019, 123 (50) , 10868-10876. https://doi.org/10.1021/acs.jpcb.9b09694
    24. Ray Matsumoto, Matthew W. Thompson, Peter T. Cummings. Ion Pairing Controls Physical Properties of Ionic Liquid-Solvent Mixtures. The Journal of Physical Chemistry B 2019, 123 (46) , 9944-9955. https://doi.org/10.1021/acs.jpcb.9b08509
    25. Vira Agieienko, Richard Buchner. Densities, Viscosities, and Electrical Conductivities of Pure Anhydrous Reline and Its Mixtures with Water in the Temperature Range (293.15 to 338.15) K. Journal of Chemical & Engineering Data 2019, 64 (11) , 4763-4774. https://doi.org/10.1021/acs.jced.9b00145
    26. Joan F. Brennecke (Editor-in-Chief). Celebrating JCED’s High Impact Authors. Journal of Chemical & Engineering Data 2019, 64 (11) , 4607-4610. https://doi.org/10.1021/acs.jced.9b01050
    27. Jesse G. McDaniel, Archana Verma. On the Miscibility and Immiscibility of Ionic Liquids and Water. The Journal of Physical Chemistry B 2019, 123 (25) , 5343-5356. https://doi.org/10.1021/acs.jpcb.9b02187
    28. Guzmán Carissimi, Mercedes G. Montalbán, F. Guillermo Díaz Baños, Gloria Víllora. Density, Refractive Index and Volumetric Properties of Water–Ionic Liquid Binary Systems with Imidazolium-Based Cations and Tetrafluoroborate, Triflate and Octylsulfate Anions at T = 293 to 343 K and p = 0.1 MPa. Journal of Chemical & Engineering Data 2019, 64 (3) , 979-994. https://doi.org/10.1021/acs.jced.8b00854
    29. Brian Conway, Caleb Uitvlugt, Mark Maroncelli. Simulations of 1-Butyl-3-methylimidazolium Tetrafluoroborate + Acetonitrile Mixtures: Force-Field Validation and Frictional Characteristics. The Journal of Physical Chemistry B 2018, 122 (29) , 7385-7393. https://doi.org/10.1021/acs.jpcb.8b04341
    30. Jesse G. McDaniel, Chang Yun Son. Ion Correlation and Collective Dynamics in BMIM/BF4-Based Organic Electrolytes: From Dilute Solutions to the Ionic Liquid Limit. The Journal of Physical Chemistry B 2018, 122 (28) , 7154-7169. https://doi.org/10.1021/acs.jpcb.8b04886
    31. Yanli Fu, Xianbao Cui, Ying Zhang, Tianyang Feng, Jie He, Xuemei Zhang, Xue Bai, Qinglong Cheng. Measurement and Correlation of the Electrical Conductivity of the Ionic Liquid [BMIM][TFSI] in Binary Organic Solvents. Journal of Chemical & Engineering Data 2018, 63 (5) , 1180-1189. https://doi.org/10.1021/acs.jced.7b00646
    32. Stephen Fletcher, Iain Kirkpatrick, Rob Thring, Roderick Dring, Joshua L. Tate, Harry R.M. Geary, and Victoria Jane Black . Ternary Mixtures of Sulfolanes and Ionic Liquids for Use in High-Temperature Supercapacitors. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2612-2620. https://doi.org/10.1021/acssuschemeng.7b04117
    33. Yiping Huang, Zheng Wan, Zhen Yang, Yuanhui Ji, Li Li, Deshuai Yang, Meihua Zhu, and Xiangshu Chen . Concentration-Dependent Hydrogen Bond Behavior of Ethylammonium Nitrate Protic Ionic Liquid–Water Mixtures Explored by Molecular Dynamics Simulations. Journal of Chemical & Engineering Data 2017, 62 (8) , 2340-2349. https://doi.org/10.1021/acs.jced.7b00205
    34. Reza Haghbakhsh, Khalil Parvaneh, and Alireza Shariati . Viscosities of Pure Ionic Liquids Using Combinations of Free Volume Theory or Friction Theory with the Cubic, the Cubic Plus Association, and the Perturbed-Chain Statistical Associating Fluid Theory Equations of State at High Pressures. Industrial & Engineering Chemistry Research 2017, 56 (8) , 2247-2258. https://doi.org/10.1021/acs.iecr.6b04193
    35. Nandhibatla V Sastry and Indravijaysinh R Ravalji . Densities, Speeds of Sound, and Excess and Partial Excess Properties of Room Temperature Ionic Liquids of Type [Cnpy][X] or [Cn4mpy][X] (Where n = 6 or 8, [X] = Cl– or Br–) + Water Binary Mixtures at T = (308.15 and 318.15) K. Journal of Chemical & Engineering Data 2016, 61 (11) , 3834-3848. https://doi.org/10.1021/acs.jced.6b00460
    36. Mohammad H. Kowsari and Leila Tohidifar . Tracing Dynamics, Self-Diffusion, and Nanoscale Structural Heterogeneity of Pure and Binary Mixtures of Ionic Liquid 1-Hexyl-2,3-dimethylimidazolium Bis(fluorosulfonyl)imide with Acetonitrile: Insights from Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2016, 120 (41) , 10824-10838. https://doi.org/10.1021/acs.jpcb.6b08396
    37. Pablo B. Sánchez, Josefa García, Josefa Salgado, and Elisa González-Romero . Studies of Volumetric and Transport Properties of Ionic Liquid–Water Mixtures and Its Viability To Be Used in Absorption Systems. ACS Sustainable Chemistry & Engineering 2016, 4 (9) , 5068-5077. https://doi.org/10.1021/acssuschemeng.6b01541
    38. Andreas Hofmann, Matthias Migeot, and Thomas Hanemann . Investigation of Binary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide and Ethylene Carbonate. Journal of Chemical & Engineering Data 2016, 61 (1) , 114-123. https://doi.org/10.1021/acs.jced.5b00338
    39. Siyun Xu, Sirui Xing, Shin-Shem Pei, Vladislav Ivaništšev, Ruth Lynden-Bell, and Steven Baldelli . Molecular Response of 1-Butyl-3-Methylimidazolium Dicyanamide Ionic Liquid at the Graphene Electrode Interface Investigated by Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2015, 119 (46) , 26009-26019. https://doi.org/10.1021/acs.jpcc.5b08736
    40. Andreas Nazet, Sophia Sokolov, Thomas Sonnleitner, Takashi Makino, Mitsuhiro Kanakubo, and Richard Buchner . Densities, Viscosities, and Conductivities of the Imidazolium Ionic Liquids [Emim][Ac], [Emim][FAP], [Bmim][BETI], [Bmim][FSI], [Hmim][TFSI], and [Omim][TFSI]. Journal of Chemical & Engineering Data 2015, 60 (8) , 2400-2411. https://doi.org/10.1021/acs.jced.5b00285
    41. Pablo Díaz-Rodríguez, John Cancilla, Gemma Matute, and José S. Torrecilla . Conductivity of Ionic Liquids: A Neural Network Approach. Industrial & Engineering Chemistry Research 2015, 54 (1) , 55-58. https://doi.org/10.1021/ie503556a
    42. Kathleen M. Barra, Randy P. Sabatini, Zachery P. McAtee, and Mark P. Heitz . Solvation and Rotation Dynamics in the Trihexyl(tetradecyl)phosphonium Chloride Ionic Liquid/Methanol Cosolvent System. The Journal of Physical Chemistry B 2014, 118 (45) , 12979-12992. https://doi.org/10.1021/jp5092784
    43. Anirban Mondal and Sundaram Balasubramanian . A Molecular Dynamics Study of Collective Transport Properties of Imidazolium-Based Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data 2014, 59 (10) , 3061-3068. https://doi.org/10.1021/je500132u
    44. Bogdan A. Marekha, Oleg N. Kalugin, Marc Bria, Richard Buchner, and Abdenacer Idrissi . Translational Diffusion in Mixtures of Imidazolium ILs with Polar Aprotic Molecular Solvents. The Journal of Physical Chemistry B 2014, 118 (20) , 5509-5517. https://doi.org/10.1021/jp501561s
    45. Siyun Xu, Sirui Xing, Shin-Shem Pei, and Steven Baldelli . Sum Frequency Generation Spectroscopy Study of an Ionic Liquid at a Graphene-BaF2 (111) Interface. The Journal of Physical Chemistry B 2014, 118 (19) , 5203-5210. https://doi.org/10.1021/jp502500u
    46. Min Liang, Xin-Xing Zhang, Anne Kaintz, Nikolaus P. Ernsting, and Mark Maroncelli . Solvation Dynamics in a Prototypical Ionic Liquid + Dipolar Aprotic Liquid Mixture: 1-Butyl-3-methylimidazolium Tetrafluoroborate + Acetonitrile. The Journal of Physical Chemistry B 2014, 118 (5) , 1340-1352. https://doi.org/10.1021/jp412086t
    47. Marija Bešter-Rogač, Alexander Stoppa, and Richard Buchner . Ion Association of Imidazolium Ionic Liquids in Acetonitrile. The Journal of Physical Chemistry B 2014, 118 (5) , 1426-1435. https://doi.org/10.1021/jp412344a
    48. Xin-Xing Zhang, Min Liang, Johannes Hunger, Richard Buchner, and Mark Maroncelli . Dielectric Relaxation and Solvation Dynamics in a Prototypical Ionic Liquid + Dipolar Protic Liquid Mixture: 1-Butyl-3-Methylimidazolium Tetrafluoroborate + Water. The Journal of Physical Chemistry B 2013, 117 (49) , 15356-15368. https://doi.org/10.1021/jp4043528
    49. Matthias Seiler, Annett Kühn, Felix Ziegler, and Xinming Wang . Sustainable Cooling Strategies Using New Chemical System Solutions. Industrial & Engineering Chemistry Research 2013, 52 (47) , 16519-16546. https://doi.org/10.1021/ie401297u
    50. Mert Atilhan, Johan Jacquemin, David Rooney, Majeda Khraisheh, and Santiago Aparicio . Viscous Behavior of Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research 2013, 52 (47) , 16774-16785. https://doi.org/10.1021/ie403065u
    51. Youngseon Shim and Hyung J. Kim . Dielectric Relaxation and Solvation Dynamics in a Room-Temperature Ionic Liquid: Temperature Dependence. The Journal of Physical Chemistry B 2013, 117 (39) , 11743-11752. https://doi.org/10.1021/jp406353j
    52. Catarina M. S. S. Neves, Kiki Adi Kurnia, João A. P. Coutinho, Isabel M. Marrucho, José N. Canongia Lopes, Mara G. Freire, and Luís Paulo N. Rebelo . Systematic Study of the Thermophysical Properties of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions. The Journal of Physical Chemistry B 2013, 117 (35) , 10271-10283. https://doi.org/10.1021/jp405913b
    53. Xin-Xing Zhang, Min Liang, Nikolaus P. Ernsting, and Mark Maroncelli . Conductivity and Solvation Dynamics in Ionic Liquids. The Journal of Physical Chemistry Letters 2013, 4 (7) , 1205-1210. https://doi.org/10.1021/jz400359r
    54. Doris Rengstl, Olivier Diat, Regina Klein, and Werner Kunz . Influence of Chain Length and Double Bond on the Aqueous Behavior of Choline Carboxylate Soaps. Langmuir 2013, 29 (8) , 2506-2519. https://doi.org/10.1021/la304431c
    55. Ying Wei, Yi Jin, Zhi-Jing Wu, Yang Yang, Qing-Guo Zhang, and Zhen-Hui Kang . Synthesis and Physicochemical Properties of Amino Acid Ionic Liquid 1-Butyl-3-methylimidazolium Aspartate and Binary Mixture with Methanol. Journal of Chemical & Engineering Data 2013, 58 (2) , 349-356. https://doi.org/10.1021/je300932n
    56. E. Rilo, J. Vila, S. García-Garabal, L. M. Varela, and O. Cabeza . Electrical Conductivity of Seven Binary Systems Containing 1-Ethyl-3-methyl Imidazolium Alkyl Sulfate Ionic Liquids with Water or Ethanol at Four Temperatures. The Journal of Physical Chemistry B 2013, 117 (5) , 1411-1418. https://doi.org/10.1021/jp309891j
    57. Johannes Hunger, Roland Neueder, Richard Buchner, and Alexander Apelblat . A Conductance Study of Guanidinium Chloride, Thiocyanate, Sulfate, and Carbonate in Dilute Aqueous Solutions: Ion-Association and Carbonate Hydrolysis Effects. The Journal of Physical Chemistry B 2013, 117 (2) , 615-622. https://doi.org/10.1021/jp311425v
    58. Yushu Chen, Fabrice Mutelet, and Jean-Noël Jaubert . Modeling the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids with the PC-SAFT Equation of State. The Journal of Physical Chemistry B 2012, 116 (49) , 14375-14388. https://doi.org/10.1021/jp309944t
    59. Viktoriya A. Nikitina, Andreas Nazet, Thomas Sonnleitner, and Richard Buchner . Properties of Sodium Tetrafluoroborate Solutions in 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Journal of Chemical & Engineering Data 2012, 57 (11) , 3019-3025. https://doi.org/10.1021/je300603d
    60. Olga Iulian and Oana Ciocirlan . Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents. Journal of Chemical & Engineering Data 2012, 57 (10) , 2640-2646. https://doi.org/10.1021/je300316a
    61. Vitaly V. Chaban, Iuliia V. Voroshylova, Oleg N. Kalugin, and Oleg V. Prezhdo . Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids. The Journal of Physical Chemistry B 2012, 116 (26) , 7719-7727. https://doi.org/10.1021/jp3034825
    62. Alexander Stoppa, Johannes Hunger, Glenn Hefter, and Richard Buchner . Structure and Dynamics of 1-N-Alkyl-3-N-Methylimidazolium Tetrafluoroborate + Acetonitrile Mixtures. The Journal of Physical Chemistry B 2012, 116 (25) , 7509-7521. https://doi.org/10.1021/jp3020673
    63. Jaroslav Klomfar, Monika Součková, and Jaroslav Pátek . P–ρ–T Measurements for 1-Ethyl and 1-Butyl-3-methylimidazolium Dicyanamides from Their Melting Temperature to 353 K and up to 60 MPa in Pressure. Journal of Chemical & Engineering Data 2012, 57 (4) , 1213-1221. https://doi.org/10.1021/je201283n
    64. Xiaohu Li, George C. Schatz, and David J. Nesbitt . Anion Effects in the Scattering of CO2 from the Room-Temperature Ionic Liquids [bmim][BF4] and [bmim][Tf2N]: Insights from Quantum Mechanics/Molecular Mechanics Trajectories. The Journal of Physical Chemistry B 2012, 116 (11) , 3587-3602. https://doi.org/10.1021/jp2123357
    65. Xiujuan Zhong, Zhen Fan, Zhiping Liu, and Dapeng Cao . Local Structure Evolution and its Connection to Thermodynamic and Transport Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and Water Mixtures by Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2012, 116 (10) , 3249-3263. https://doi.org/10.1021/jp3001543
    66. Jaroslav Klomfar, Monika Součková, and Jaroslav Pátek . P–ρ–T Measurements for 1-Alkyl-3-methylimidazolium-Based Ionic Liquids with Tetrafluoroborate and a Trifluoromethanesulfonate Anion. Journal of Chemical & Engineering Data 2012, 57 (3) , 708-720. https://doi.org/10.1021/je200903m
    67. Agnieszka Boruń and Adam Bald . Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in N,N-Dimethylformamide at Temperatures from (283.15 to 318.15) K. Journal of Chemical & Engineering Data 2012, 57 (2) , 475-481. https://doi.org/10.1021/je201014c
    68. Raquel G. Seoane, Sandra Corderí, Elena Gómez, Noelia Calvar, Emilio J. González, Eugenia A. Macedo, and Ángeles Domínguez . Temperature Dependence and Structural Influence on the Thermophysical Properties of Eleven Commercial Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51 (5) , 2492-2504. https://doi.org/10.1021/ie2029255
    69. Hafiz M. A. Rahman, Glenn Hefter, and Richard Buchner . Hydration of Formate and Acetate Ions by Dielectric Relaxation Spectroscopy. The Journal of Physical Chemistry B 2012, 116 (1) , 314-323. https://doi.org/10.1021/jp207504d
    70. Qing-Guo Zhang, Si-Si Sun, Slawomir Pitula, Qing-Shan Liu, Urs Welz-Biermann, and Jia-Jun Zhang . Electrical Conductivity of Solutions of Ionic Liquids with Methanol, Ethanol, Acetonitrile, and Propylene Carbonate. Journal of Chemical & Engineering Data 2011, 56 (12) , 4659-4664. https://doi.org/10.1021/je200616t
    71. Saadia Shaukat and Richard Buchner . Densities, Viscosities [from (278.15 to 318.15) K], and Electrical Conductivities (at 298.15 K) of Aqueous Solutions of Choline Chloride and Chloro-Choline Chloride. Journal of Chemical & Engineering Data 2011, 56 (12) , 4944-4949. https://doi.org/10.1021/je200856f
    72. Marta L. S. Batista, Catarina M. S. S. Neves, Pedro J. Carvalho, Rafiqul Gani, and João A. P. Coutinho . Chameleonic Behavior of Ionic Liquids and Its Impact on the Estimation of Solubility Parameters. The Journal of Physical Chemistry B 2011, 115 (44) , 12879-12888. https://doi.org/10.1021/jp207369g
    73. T. Méndez-Morales, J. Carrete, O. Cabeza, L. J. Gallego, and L. M. Varela . Molecular Dynamics Simulations of the Structural and Thermodynamic Properties of Imidazolium-Based Ionic Liquid Mixtures. The Journal of Physical Chemistry B 2011, 115 (38) , 11170-11182. https://doi.org/10.1021/jp206341z
    74. Jaroslav Klomfar, Monika Součková, and Jaroslav Pátek . Temperature Dependence of the Surface Tension and Density at 0.1 MPa for 1-Ethyl- and 1-Butyl-3-methylimidazolium Dicyanamide. Journal of Chemical & Engineering Data 2011, 56 (8) , 3454-3462. https://doi.org/10.1021/je200502j
    75. J. N. Canongia Lopes, Margarida F. Costa Gomes, Pascale Husson, Agílio A. H. Pádua, Luis Paulo N. Rebelo, Sabine Sarraute, and Mohammad Tariq . Polarity, Viscosity, and Ionic Conductivity of Liquid Mixtures Containing [C4C1im][Ntf2] and a Molecular Component. The Journal of Physical Chemistry B 2011, 115 (19) , 6088-6099. https://doi.org/10.1021/jp2012254
    76. Marija Bešter-Rogač, Johannes Hunger, Alexander Stoppa, and Richard Buchner . 1-Ethyl-3-methylimidazolium Ethylsulfate in Water, Acetonitrile, and Dichloromethane: Molar Conductivities and Association Constants. Journal of Chemical & Engineering Data 2011, 56 (4) , 1261-1267. https://doi.org/10.1021/je101130e
    77. Oana Ciocirlan, Oana Croitoru, and Olga Iulian . Densities and Viscosities for Binary Mixtures of 1-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid with Molecular Solvents. Journal of Chemical & Engineering Data 2011, 56 (4) , 1526-1534. https://doi.org/10.1021/je101206u
    78. Snehasis Daschakraborty and Ranjit Biswas . Stokes Shift Dynamics in (Ionic Liquid + Polar Solvent) Binary Mixtures: Composition Dependence. The Journal of Physical Chemistry B 2011, 115 (14) , 4011-4024. https://doi.org/10.1021/jp200407m
    79. Yu-Feng Hu, Hong-Da Chu, Ji-Guang Li, Zhi-Chang Liu, Xiao-Ming Peng, Shan Ling, and Jin-Zhu Zhang . Extension of the Simple Equations for Prediction of the Properties of Mixed Electrolyte Solutions to the Mixed Ionic Liquid Solutions. Industrial & Engineering Chemistry Research 2011, 50 (7) , 4161-4165. https://doi.org/10.1021/ie1022496
    80. Anna Płaczek, Glenn Hefter, Hafiz M. A. Rahman, and Richard Buchner . Dielectric Relaxation Study of the Ion Solvation and Association of NaCF3SO3, Mg(CF3SO3)2, and Ba(ClO4)2 in N,N-Dimethylformamide. The Journal of Physical Chemistry B 2011, 115 (10) , 2234-2242. https://doi.org/10.1021/jp1116307
    81. Jaroslav Klomfar, Monika Součková, and Jaroslav Pátek . Experimental p−ρ−T Data for 1-Butyl-3-methylimidazolium Tetrafluoroborate at Temperatures from (240 to 353) K and at Pressures up to 60 MPa. Journal of Chemical & Engineering Data 2011, 56 (3) , 426-436. https://doi.org/10.1021/je1007907
    82. Monika Geppert-Rybczyńska, Jochen K. Lehmann, Tim Peppel, Martin Köckerling, and Andreas Heintz . Studies of Physicochemical and Thermodynamic Properties of the Paramagnetic 1-Alkyl-3-methylimidazolium Ionic Liquids (EMIm)2[Co(NCS)4] and (BMIm)2[Co(NCS)4]. Journal of Chemical & Engineering Data 2010, 55 (12) , 5534-5538. https://doi.org/10.1021/je100563b
    83. Moises R. Currás, Margarida F. Costa Gomes, Pascale Husson, Agilio A. H. Padua, and Josefa Garcia . Calorimetric and Volumetric Study on Binary Mixtures 2,2,2-Trifluoroethanol + (1-Butyl-3-methylimidazolium Tetrafluoroborate or 1-Ethyl-3-methylimidazolium Tetrafluoroborate). Journal of Chemical & Engineering Data 2010, 55 (12) , 5504-5512. https://doi.org/10.1021/je100693c
    84. Enrico Baciocchi, Cinzia Chiappe, Chiara Fasciani, Osvaldo Lanzalunga, and Andrea Lapi. Reaction of Singlet Oxygen with Thioanisole in Ionic Liquid−Acetonitrile Binary Mixtures. Organic Letters 2010, 12 (22) , 5116-5119. https://doi.org/10.1021/ol102263w
    85. Shuhang Ren, Yucui Hou, Weize Wu, and Weina Liu . Purification of Ionic Liquids: Sweeping Solvents by Nitrogen. Journal of Chemical & Engineering Data 2010, 55 (11) , 5074-5077. https://doi.org/10.1021/je100641a
    86. Esther Rilo, Juan Vila, Manuel García, Luis M. Varela, and Oscar Cabeza. Viscosity and Electrical Conductivity of Binary Mixtures of CnMIM-BF4 with Ethanol at 288 K, 298 K, 308 K, and 318 K. Journal of Chemical & Engineering Data 2010, 55 (11) , 5156-5163. https://doi.org/10.1021/je100687x
    87. Johannes Hunger, Stefan Niedermayer, and Richard Buchner, Glenn Hefter. Are Nanoscale Ion Aggregates Present in Aqueous Solutions of Guanidinium Salts?. The Journal of Physical Chemistry B 2010, 114 (43) , 13617-13627. https://doi.org/10.1021/jp101520h
    88. Marija Bešter-Rogač, Johannes Hunger, Alexander Stoppa and Richard Buchner . Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO. Journal of Chemical & Engineering Data 2010, 55 (5) , 1799-1803. https://doi.org/10.1021/je900531b
    89. Alexander Stoppa, Oliver Zech, Werner Kunz and Richard Buchner. The Conductivity of Imidazolium-Based Ionic Liquids from (−35 to 195) °C. A. Variation of Cation’s Alkyl Chain. Journal of Chemical & Engineering Data 2010, 55 (5) , 1768-1773. https://doi.org/10.1021/je900789j
    90. Oliver Zech, Alexander Stoppa, Richard Buchner and Werner Kunz. The Conductivity of Imidazolium-Based Ionic Liquids from (248 to 468) K. B. Variation of the Anion. Journal of Chemical & Engineering Data 2010, 55 (5) , 1774-1778. https://doi.org/10.1021/je900793r
    91. Esther Rilo, Juan Vila, José Pico, Sandra García-Garabal, Luisa Segade, Luis M. Varela and Oscar Cabeza. Electrical Conductivity and Viscosity of Aqueous Binary Mixtures of 1-Alkyl-3-methyl Imidazolium Tetrafluoroborate at Four Temperatures. Journal of Chemical & Engineering Data 2010, 55 (2) , 639-644. https://doi.org/10.1021/je900600c
    92. Oleg Borodin. Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids. The Journal of Physical Chemistry B 2009, 113 (33) , 11463-11478. https://doi.org/10.1021/jp905220k
    93. Johannes Hunger, Alexander Stoppa and Richard Buchner, Glenn Hefter. Dipole Correlations in the Ionic Liquid 1-N-Ethyl-3-N-methylimidazolium Ethylsulfate and Its Binary Mixtures with Dichloromethane. The Journal of Physical Chemistry B 2009, 113 (28) , 9527-9537. https://doi.org/10.1021/jp9024574
    94. Majid Moosavi, Mehrangiz Torkzadeh, Zahra Akbarinezhad. Molecular dynamics investigation of ionanofluids (INFs): Towards a deeper understanding of their thermophysical, structural and dynamical properties. Journal of Molecular Liquids 2024, 124 , 124355. https://doi.org/10.1016/j.molliq.2024.124355
    95. Amita Mahapatra, Joyoti Ghosh, Sahadev Barik, Subhakanta Parida, Moloy Sarkar. Understanding the influence of ethylene glycol on the microscopic behavior of imidazolium-based monocationic and dicationic ionic liquid. Chemical Physics Impact 2023, 7 , 100331. https://doi.org/10.1016/j.chphi.2023.100331
    96. Linan Ji, Shashi Kant Shukla, Zhida Zuo, Xiaohua Lu, Xiaoyan Ji, Changsong Wang. An overview of the progress of new working pairs in absorption heat pumps. Energy Reports 2023, 9 , 703-729. https://doi.org/10.1016/j.egyr.2022.11.143
    97. Nashiour Rohman, Tariq Mohiuddin, Imran Khan. Dodecyltrimethylammonium bromide-styrene microemulsion dielectric investigation in aqueous media. Canadian Journal of Chemistry 2023, 101 (11) , 882-891. https://doi.org/10.1139/cjc-2022-0262
    98. Yevheniia Smortsova, François-Alexandre Miannay, Oleg Kalugin, Toshiyuki Takamuku, Abdenacer Idrissi. Effect of the mixture composition of BmimBF4/PC on the solvation structure of C153 in as seen from molecular dynamics study. Journal of Molecular Liquids 2023, 390 , 123015. https://doi.org/10.1016/j.molliq.2023.123015
    99. Jessica B. Clark, Tai Bowling-Charles, Shamma Jabeen Proma, Biswajit Biswas, David T. Limmer, Heather C. Allen. Structural evolution of water-in-propylene carbonate mixtures revealed by polarized Raman spectroscopy and molecular dynamics. Physical Chemistry Chemical Physics 2023, 25 (35) , 23963-23976. https://doi.org/10.1039/D3CP02181E
    100. Raúl Lois-Cuns, Martín Otero-Lema, Alejandro Rivera-Pousa, Pablo Vallet, Juan J. Parajó, Oscar Cabeza, Hadrián Montes-Campos, Trinidad Méndez-Morales, Luis M. Varela. Mixtures of ethylammonium nitrate and ethylene carbonate: Bulk and interfacial analysis. Journal of Molecular Liquids 2023, 385 , 122361. https://doi.org/10.1016/j.molliq.2023.122361
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect