ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Isothermal Vapor−Liquid Equilibrium Data for the Hexafluoroethane (R116) + Propane System at Temperatures from (263 to 323) K

View Author Information
Thermodynamics Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, Durban, South Africa, and MINES ParisTech, CEP/TEP - Centre énergétique et procédés, CNRS FRE 2861, CNRS FRE 2861, 35 Rue Saint Honoré, 77305 Fontainebleau, France
* Corresponding author. E-mail: [email protected]. Tel.: +27 31 2603128. Fax: +27 31 2601118.
†University of KwaZulu-Natal.
‡CEP/TEP - Centre énergétique et procédés.
Cite this: J. Chem. Eng. Data 2009, 54, 4, 1292–1296
Publication Date (Web):March 10, 2009
https://doi.org/10.1021/je800849s
Copyright © 2009 American Chemical Society

    Article Views

    454

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Isothermal vapor−liquid equilibrium data are presented for the system hexafluoroethane (R116) + propane. Measurements were performed for six isotherms (three isotherms below and three above the critical temperature of R116) ranging from (263.3 to 323.19) K, with pressure ranging from (0.344 to 3.851) MPa. The measurements were undertaken using a “static-analytic” type apparatus, with sampling of the equilibrium phases via pneumatic capillary samplers (Rolsi, Armine’s patent). The apparatus as well as the samplers were developed in the CEP/TEP laboratory. The uncertainties in the measurements were within ± 0.01 K, ± 0.0003 MPa, and < 2.0 % for temperatures, pressures, and mole fractions, respectively. The full set of isothermal vapor−liquid equilibrium data was correlated with the Peng−Robinson equation of state, incorporating the Mathias−Copeman alpha function, with the Wong−Sandler mixing rule utilizing the NRTL activity coefficient model.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 29 publications.

    1. Mark D. Williams-Wynn, Paramespri Naidoo, Deresh Ramjugernath. Isothermal Bubble Pressure Data for the Binary System of C2F6 and n-Octane. Journal of Chemical & Engineering Data 2018, 63 (12) , 4795-4800. https://doi.org/10.1021/acs.jced.8b00825
    2. Mark D. Williams-Wynn, Francisco Adrián Sánchez, Paramespri Naidoo, Selva Pereda, Deresh Ramjugernath. Modeling of Trifluoromethane (R-23) or Hexafluoroethane (R-116) and Alkane Binary Mixtures using the Group-Contribution with Association Equation of State. Industrial & Engineering Chemistry Research 2018, 57 (31) , 10640-10648. https://doi.org/10.1021/acs.iecr.8b01933
    3. Deresh Ramjugernath, Alain Valtz, Dominique Richon, Mark D. Williams-Wynn, Christophe Coquelet. Isothermal Vapor–Liquid Equilibrium Data for Binary Mixtures of Hexafluoroethane (R116) + n-Pentane or n-Hexane at Two Temperatures, 288 and 296 K. Journal of Chemical & Engineering Data 2018, 63 (5) , 1228-1233. https://doi.org/10.1021/acs.jced.7b00836
    4. Deresh Ramjugernath, Alain Valtz, Dominique Richon, Mark D. Williams-Wynn, and Christophe Coquelet . Isothermal Vapor–Liquid Equilibrium Data for the Hexafluoroethane (R116) + n-Butane System at Temperatures from 273 to 323 K. Journal of Chemical & Engineering Data 2017, 62 (10) , 3483-3487. https://doi.org/10.1021/acs.jced.7b00485
    5. Hamed Hashemi, Saeedeh Babaee, Paramespri Naidoo, Amir H. Mohammadi, and Deresh Ramjugernath . Experimental Measurements and Thermodynamic Modeling of Clathrate Hydrate Dissociation Conditions for Refrigerants R116, R23, and Their Mixture R508B. Journal of Chemical & Engineering Data 2014, 59 (11) , 3907-3911. https://doi.org/10.1021/je5007955
    6. Mulamba Marc Tshibangu, Xavier Courtial, Christophe Coquelet, Paramespri Naidoo, and Deresh Ramjugernath . Isothermal Vapor–Liquid Equilibrium Data and Modeling for the Ethane (R170) + Perfluoropropane (R218) System at Temperatures from (264 to 308) K. Journal of Chemical & Engineering Data 2013, 58 (5) , 1316-1320. https://doi.org/10.1021/je4000857
    7. Shalendra C. Subramoney, Alain Valtz, Christophe Coquelet, Dominique Richon, Paramespri Naidoo, and Deresh Ramjugernath . Vapor–Liquid Equilibrium Measurements and Modeling for the Ethane (R-170) + 1,1,2,3,3,3-Hexafluoro-1-propene (R-1216) Binary System. Journal of Chemical & Engineering Data 2012, 57 (11) , 2947-2955. https://doi.org/10.1021/je300431n
    8. Elise El Ahmar, Alain Valtz, Paramespri Naidoo, Christophe Coquelet, and Deresh Ramjugernath . Isothermal Vapor−Liquid Equilibrium Data for the Perfluorobutane (R610) + Ethane System at Temperatures from (263 to 353) K. Journal of Chemical & Engineering Data 2011, 56 (5) , 1918-1924. https://doi.org/10.1021/je1009398
    9. W. M. Nelson, S. C. Subramoney, A. Valtz, C. Coquelet, D. Richon, P. Naidoo, and D. Ramjugernath . Vapor−Liquid Equilibrium Data for Binary Systems Consisting of Either Hexafluoropropene (HFP) or 2,2,3-Trifluoro-3-(trifluoromethyl)oxirane (HFPO) with Carbon Dioxide (R-744) or 2,2-Dichloro-1,1,1-trifluoroethane (R-123). Journal of Chemical & Engineering Data 2011, 56 (1) , 74-78. https://doi.org/10.1021/je100841y
    10. Christophe Coquelet, Alain Valtz, Paramespri Naidoo, Deresh Ramjugernath and Dominique Richon . Isothermal Vapor−Liquid Equilibrium Data for the Hexafluoropropylene (R1216) + Propylene System at Temperatures from (263.17 to 353.14) K. Journal of Chemical & Engineering Data 2010, 55 (4) , 1636-1639. https://doi.org/10.1021/je900703f
    11. Eric W. Lemmon and Mark O. McLinden, Wolfgang Wagner. Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. Journal of Chemical & Engineering Data 2009, 54 (12) , 3141-3180. https://doi.org/10.1021/je900217v
    12. Jean-Noël Jaubert, Jun-Wei Qian, Silvia Lasala, Romain Privat. The impressive impact of including enthalpy and heat capacity of mixing data when parameterising equations of state. Application to the development of the E-PPR78 (Enhanced-Predictive-Peng-Robinson-78) model.. Fluid Phase Equilibria 2022, 560 , 113456. https://doi.org/10.1016/j.fluid.2022.113456
    13. Imad Anoune, Zoubeyr Mimoune, Hakim Madani, Abdelkrim Merzougui. New modified PC-SAFT pure component parameters for accurate VLE and critical phenomena description. Fluid Phase Equilibria 2021, 532 , 112916. https://doi.org/10.1016/j.fluid.2020.112916
    14. Yanbin Qin, Nanxi Li, Hua Zhang, Baolin Liu, Chunfei Wu, Zilong Wang. Experimental investigation on vapor liquid equilibrium and azeotropic behavior for the 1,1,1,2-tetrafluoroethane (R134a) + propane (R290) system at temperatures from 253.15 to 303.15 K. International Journal of Refrigeration 2020, 120 , 209-220. https://doi.org/10.1016/j.ijrefrig.2020.09.004
    15. Stephanie Peper, José M.S. Fonseca, Ralf Dohrn. High-pressure fluid-phase equilibria: Trends, recent developments, and systems investigated (2009–2012). Fluid Phase Equilibria 2019, 484 , 126-224. https://doi.org/10.1016/j.fluid.2018.10.007
    16. Mark D. Williams-Wynn, Paramespri Naidoo, Deresh Ramjugernath. Isothermal vapour-liquid equilibrium data for the binary systems of CHF 3 with (n-nonane, n-decane, or n-undecane) and C 2 F 6 with (n-nonane or n-decane). Fluid Phase Equilibria 2018, 464 , 64-78. https://doi.org/10.1016/j.fluid.2018.02.015
    17. Mark D. Williams-Wynn, Jamal El Abbadi, Alain Valtz, Elodie Kovacs, Céline Houriez, Paramespri Naidoo, Christophe Coquelet, Deresh Ramjugernath. Experimental determination of the critical loci for R-23+(n-propane or n-hexane) and R-116+n-propane binary mixtures. The Journal of Chemical Thermodynamics 2017, 108 , 84-96. https://doi.org/10.1016/j.jct.2016.12.021
    18. Jun-Wei Qian, Romain Privat, Jean-Noël Jaubert, Christophe Coquelet, Deresh Ramjugernath. Fluid-phase-equilibrium prediction of fluorocompound-containing binary systems with the predictive E -PPR78 model. International Journal of Refrigeration 2017, 73 , 65-90. https://doi.org/10.1016/j.ijrefrig.2016.09.013
    19. Wael A. Fouad, Lourdes F. Vega. The phase and interfacial properties of azeotropic refrigerants: the prediction of aneotropes from molecular theory. Physical Chemistry Chemical Physics 2017, 19 (13) , 8977-8988. https://doi.org/10.1039/C6CP08031F
    20. Zoubir Tebbal, Wayne Michael Nelson, Paramespri Naidoo, Latifa Negadi, Deresh Ramjugernath. Binary vapour-liquid equilibrium data for C7 and C9 straight-chain perfluorocarbons with ethylene. Fluid Phase Equilibria 2016, 429 , 37-44. https://doi.org/10.1016/j.fluid.2016.08.015
    21. Yanxing Zhao, Maoqiong Gong, Xueqiang Dong, Haiyang Zhang, Hao Guo, Jianfeng Wu. Prediction of ternary azeotropic refrigerants with a simple method. Fluid Phase Equilibria 2016, 425 , 72-83. https://doi.org/10.1016/j.fluid.2016.05.010
    22. Haiyang Zhang, Maoqiong Gong, Huiya Li, Yanxing Zhao, Quan Zhong, Xueqiang Dong, Jun Shen, Jianfeng Wu. A simple model for temperature-independent k of the PR-vdW model for mixtures containing HCs, HFCs, PFCs, HFOs, CO2, RE170 and R13I1. Fluid Phase Equilibria 2016, 425 , 374-384. https://doi.org/10.1016/j.fluid.2016.06.029
    23. Mark D. Williams-Wynn, Paramespri Naidoo, Deresh Ramjugernath. Isothermal (vapour + liquid) equilibrium data for binary systems of (n-hexane + CO2 or CHF3). The Journal of Chemical Thermodynamics 2016, 94 , 31-42. https://doi.org/10.1016/j.jct.2015.10.009
    24. Shalendra Clinton Subramoney, Wayne Michael Nelson, Xavier Courtial, Paramespri Naidoo, Christophe Coquelet, Dominique Richon, Deresh Ramjugernath. Isothermal phase (vapour+liquid) equilibrium data for binary mixtures of propene (R1270) with either 1,1,2,3,3,3-hexafluoro-1-propene (R1216) or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane in the temperature range of (279 to 318)K. The Journal of Chemical Thermodynamics 2015, 90 , 100-105. https://doi.org/10.1016/j.jct.2015.06.017
    25. Saida Fedali, Hakim Madani, Cherif Bougriou. Modeling of the thermodynamic properties of the mixtures: Prediction of the position of azeotropes for binary mixtures. Fluid Phase Equilibria 2014, 379 , 120-127. https://doi.org/10.1016/j.fluid.2014.07.018
    26. Shalendra Clinton Subramoney, Paramespri Naidoo, Alain Valtz, Christophe Coquelet, Dominique Richon, Deresh Ramjugernath. Experimental (vapour+liquid) equilibrium data and modelling for binary mixtures of decafluorobutane with propane and 1-butene. The Journal of Chemical Thermodynamics 2013, 67 , 134-142. https://doi.org/10.1016/j.jct.2013.07.020
    27. Shalendra Clinton Subramoney, Xavier Courtial, Paramespri Naidoo, Christophe Coquelet, Dominique Richon, Deresh Ramjugernath. Isothermal vapor–liquid equilibrium data for the ethylene+1,1,2,3,3,3-hexafluoro-1-propene binary system between 258 and 308K at pressures up to 4.56MPa. Fluid Phase Equilibria 2013, 353 , 7-14. https://doi.org/10.1016/j.fluid.2013.05.018
    28. Shalendra Clinton Subramoney, Alain Valtz, Christophe Coquelet, Dominique Richon, Paramespri Naidoo, Deresh Ramjugernath. Experimental vapour–liquid equilibrium data and modeling for binary mixtures of 1-butene with 1,1,2,3,3,3-hexafluoro-1-propene, 2,2,3-trifluoro-3-(trifluoromethyl)oxirane, or difluoromethane. The Journal of Chemical Thermodynamics 2013, 61 , 18-26. https://doi.org/10.1016/j.jct.2013.01.017
    29. Andreas Köster, Prabir Nandi, Thorsten Windmann, Deresh Ramjugernath, Jadran Vrabec. Vapor–liquid equilibria of ethylene (C2H4)+decafluorobutane (C4F10) at 268–298K from experiment, molecular simulation and the Peng–Robinson equation of state. Fluid Phase Equilibria 2012, 336 , 104-112. https://doi.org/10.1016/j.fluid.2012.08.023

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect