ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Vapor Pressures of Gallium Trifluoride, Trichloride, and Triiodide and Their Standard Sublimation Enthalpies

View Author Information
Istituto per lo Studio dei Materiali Nanostrutturati, Sezione Roma 1, CNR Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
* Corresponding author: Tel.: +390649913636. Fax: +390649913951. E-mail: [email protected]
†Istituto per lo Studio dei Materiali Nanostrutturati, Sezione Roma 1, CNR Dipartimento di Chimica.
‡Dipartimento di Chimica.
Cite this: J. Chem. Eng. Data 2010, 55, 1, 98–102
Publication Date (Web):August 4, 2009
https://doi.org/10.1021/je900276q
Copyright © 2009 American Chemical Society

    Article Views

    1201

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The vapor pressures of gallium trihalides GaF3, GaCl3, and GaI3 were measured by a torsion effusion apparatus, and their temperature dependences fit the following equations: log(p/Pa) = (14.30 ± 0.30) − (12600 ± 200)/(T/K) (from 808 to 958 K), log(p/Pa) = 13.80 − 3800/(T/K) (from 289 to 308 K), and log(p/Pa) = (14.00 ± 0.50) − (5130 ± 150)/(T/K) (from 345 to 401 K) for GaF3, GaCl3, and GaI3, respectively. Both GaF3 and GaI3 vaporize practically congruently in monomeric form while GaCl3 is in dimer form. Treating the vapor pressures by second- and third-law methods, the selected standard enthalpies ΔH°(298 K) = (252 ± 4) kJ·mol−1, (89 ± 2) kJ·mol−1, and (100.5 ± 2.0) kJ·mol−1 associated with the sublimation of GaF3, GaCl3, and GaI3, respectively, were obtained.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 24 publications.

    1. Ann Lii-Rosales, Virginia L. Johnson, Andrew S. Cavanagh, Andreas Fischer, Thorsten Lill, Sandeep Sharma, Steven M. George. Effectiveness of Different Ligands on Silane Precursors for Ligand Exchange to Etch Metal Fluorides. Chemistry of Materials 2022, 34 (19) , 8641-8653. https://doi.org/10.1021/acs.chemmater.2c01603
    2. Neelay M. Phadke, Jeroen Van der Mynsbrugge, Erum Mansoor, Andrew Bean Getsoian, Martin Head-Gordon, Alexis T. Bell. Characterization of Isolated Ga3+ Cations in Ga/H-MFI Prepared by Vapor-Phase Exchange of H-MFI Zeolite with GaCl3. ACS Catalysis 2018, 8 (7) , 6106-6126. https://doi.org/10.1021/acscatal.8b01254
    3. Angus Rockett. Processing and characterization of chalcopyrite semiconductors for photovoltaic applications. Journal of Vacuum Science & Technology A 2024, 42 (2) https://doi.org/10.1116/6.0003227
    4. Maxim Khomenko, Anton Sokolov, Andrey Tverjanovich, Maria Bokova, Mohammad Kassem, Takeshi Usuki, Eugene Bychkov. Gallium Trichloride Fluid: Dimer Dissociation Mechanism, Local Structure, and Atomic Dynamics. Molecules 2024, 29 (6) , 1358. https://doi.org/10.3390/molecules29061358
    5. Shohei Nakamura, Atsushi Tanide, Takahiro Kimura, Soichi Nadahara, Kenji Ishikawa, Osamu Oda, Masaru Hori. GaN damage-free cyclic etching by sequential exposure to Cl2 plasma and Ar plasma with low Ar+-ion energy at substrate temperature of 400 °C. Journal of Applied Physics 2023, 133 (4) https://doi.org/10.1063/5.0131685
    6. Elizabeth Palmiotti, Sylvain Marsillac, Angus Rockett. A thermodynamic evaluation of metal halides for the recrystallization of Cu(In,Ga)Se 2. Progress in Photovoltaics: Research and Applications 2023, 31 (1) , 17-25. https://doi.org/10.1002/pip.3604
    7. Benjamin Belfore, Deewakar Poudel, Thomas Lepetit, Elizabeth Palmiotti, Tasnuva Ashrafee, Angus Rockett, Nicolas Barreau, Sylvain Marsillac. High-Rate and Low-Temperature Fabrication of Cu(In,Ga)Se 2 Solar Cells Using AgBr Induced Recrystallization. IEEE Journal of Photovoltaics 2022, 12 (6) , 1406-1411. https://doi.org/10.1109/JPHOTOV.2022.3214425
    8. Takahiro Ishihara, Daisuke Ohori, Xuelun Wang, Kazuhiko Endo, Nobuhiro Natori, Daisuke Sato, Yiming Li, Seiji Samukawa. Hydrogen Iodide (HI) Neutral Beam Etching for InGaN/GaN Micro-LED. 2022, 48-51. https://doi.org/10.1109/NANO54668.2022.9928699
    9. Kevin G. Crawford, James Grant, Dilini Tania Hemakumara, Xu Li, Iain Thayne, David A. J. Moran. High synergy atomic layer etching of AlGaN/GaN with HBr and Ar. Journal of Vacuum Science & Technology A 2022, 40 (4) https://doi.org/10.1116/6.0001862
    10. Thibaut Meyer, Camille Petit-Etienne, Erwine Pargon. Influence of the carrier wafer during GaN etching in Cl2 plasma. Journal of Vacuum Science & Technology A 2022, 40 (2) https://doi.org/10.1116/6.0001478
    11. Cai Zhang, Xin Jin, Yan Liang, Liu Yang, Jing Li, Rui Wang, Baodan Liu, Xuewei Lv, Xin Jiang. Homogeneous and well-aligned GaN nanowire arrays via a modified HVPE process and their cathodoluminescence properties. Nanoscale 2022, 14 (4) , 1459-1467. https://doi.org/10.1039/D1NR07753H
    12. Benjamin Belfore, Deewakar Poudel, Shankar Karki, Sina Soltanmohammad, Elizabeth Palmiotti, Thomas Lepetit, Angus Rockett, Sylvain Marsillac. Recrystallization of Cu(In,Ga)Se2 Semiconductor Thin Films via InCl3 Treatment. Thin Solid Films 2021, 735 , 138897. https://doi.org/10.1016/j.tsf.2021.138897
    13. Daisuke Ohori, Takahiro Sawada, Kenta Sugawara, Masaya Okada, Ken Nakata, Kazutaka Inoue, Daisuke Sato, Seiji Samukawa. Selective atomic layer reaction between GaN and SiN in HBr neutral beam etching. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2021, 39 (4) https://doi.org/10.1116/6.0000867
    14. Benjamin Belfore, Deewakar Poudel, Elizabeth Palmiotti, Grace Rajan, Shankar Karki, Angus Rockett, Sylvain Marsillac. Ex-Situ Recrystallization of CIGS via Metal Halides. 2020, 1102-1104. https://doi.org/10.1109/PVSC45281.2020.9300941
    15. Daisuke Ohori, Takahiro Sawada, Kenta Sugawara, Masaya Okada, Ken Nakata, Kazutaka Inoue, Daisuke Sato, Hideyuki Kurihara, Seiji Samukawa. Atomic-layer etching of GaN by using an HBr neutral beam. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38 (3) https://doi.org/10.1116/6.0000126
    16. Cai Zhang, Xiaoyuan Liu, Jing Li, Xinglai Zhang, Wenjing Yang, Xin Jin, Fei Liu, Jinlei Yao, Xin Jiang, Baodan Liu. Investigation of catalyst-assisted growth of nonpolar GaN nanowires via a modified HVPE process. Nanoscale 2020, 12 (7) , 4393-4399. https://doi.org/10.1039/C9NR09781C
    17. Nao Takekawa, Machi Takahashi, Mayuko Kobayashi, Ichiro Kanosue, Hiroyuki Uno, Kikurou Takemoto, Hisashi Murakami. GaN growth via tri-halide vapor phase epitaxy using solid source of GaCl 3 : investigation of the growth dependence on NH 3 and additional Cl 2. Japanese Journal of Applied Physics 2019, 58 (SC) , SC1022. https://doi.org/10.7567/1347-4065/ab09da
    18. Matthew T. Hardy, Brian P. Downey, David J. Meyer, Neeraj Nepal, David F. Storm, D. Scott Katzer. Epitaxial ScAlN Etch-Stop Layers Grown by Molecular Beam Epitaxy for Selective Etching of AlN and GaN. IEEE Transactions on Semiconductor Manufacturing 2017, 30 (4) , 475-479. https://doi.org/10.1109/TSM.2017.2749201
    19. Zecheng Liu, Masato Imamura, Atsuki Asano, Kenji Ishikawa, Keigo Takeda, Hiroki Kondo, Osamu Oda, Makoto Sekine, Masaru Hori. Reduction of chlorine radical chemical etching of GaN under simultaneous plasma-emitted photon irradiation. Applied Physics Express 2017, 10 (8) , 086502. https://doi.org/10.7567/APEX.10.086502
    20. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11–C192. Journal of Physical and Chemical Reference Data 2017, 46 (1) https://doi.org/10.1063/1.4970519
    21. Fathi Aqra. Surface tension of molten metal halide salts. Journal of Molecular Liquids 2014, 200 , 120-121. https://doi.org/10.1016/j.molliq.2014.09.052
    22. C Thomas, Y Tamura, T Okada, A Higo, S Samukawa. Estimation of activation energy and surface reaction mechanism of chlorine neutral beam etching of GaAs for nanostructure fabrication. Journal of Physics D: Applied Physics 2014, 47 (27) , 275201. https://doi.org/10.1088/0022-3727/47/27/275201
    23. S.Yu. Nekrasov, Art.A. Migdisov, A.E. Williams-Jones, A.Yu. Bychkov. An experimental study of the solubility of Gallium(III) oxide in HCl-bearing water vapour. Geochimica et Cosmochimica Acta 2013, 119 , 137-148. https://doi.org/10.1016/j.gca.2013.05.037
    24. Vladimir A. Kuimov, Ping‐Kuei Liao, Ling‐Song Chiou, Hong‐Chih You, Ching‐Shiang Fang, C. W. Liu. Unexpected One‐Electron Oxidation of a Secondary Phosphite Selenide Cp(CO) 2 FeP(Se)(O i Pr) 2 by GaCl 3 and InCl 3 – Rare Examples of Di‐ and Triselenide Formation. European Journal of Inorganic Chemistry 2013, 2013 (12) , 2083-2092. https://doi.org/10.1002/ejic.201201322

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect