ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Phase Behavior for the Aqueous Two-Phase Systems Containing the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate and Kosmotropic Salts

View Author Information
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
* Corresponding author. Tel.: +086 051188790683. Fax: +086 051188791800. E-mail: [email protected]; [email protected]
Cite this: J. Chem. Eng. Data 2010, 55, 3, 1087–1092
Publication Date (Web):September 9, 2009
https://doi.org/10.1021/je900533h
Copyright © 2009 American Chemical Society

    Article Views

    1241

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (202 KB)

    Abstract

    Liquid−liquid equilibria (LLE) for the aqueous 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) + kosmotropic salt (Na3PO4, Na2CO3, Na2SO4, NaH2PO4, NaCl) systems have been determined experimentally at T= 298.15 K and in part at T = (313.15 to 333.15) K. The binodal curves are fitted to an empirical nonlinear expression developed by Merchuk, and the tie lines were described by the Othmer−Tobias and Bancroft equations. Factors affecting the binodal curves such as salts and temperature are also studied. It was found that the salting-out ability of different salts may also be related to the Gibbs energy of hydration of the ions, and the order of salting-out ability of the anions follows the Hofmerister series for the strength of the kosmotropic salts. It was also demonstrated that the two-phase area was expanded with a decrease in temperature. [Bmim]BF4 could be recovered from aqueous solution using the aqueous two-phase system (ATPS), and the recovery efficiency could reach 98.77 %. The recovery efficiency was influenced by the concentrations of the salts and their Homeister series: Na3PO4 > Na2CO3 > Na2SO4 > NaH2PO4 > NaCl. These data are exposed to be useful for the development and design of the extraction process using ILs based on the ATPS. This proposed method also provided an effective route for the recovery of hydrophilic IL from aqueous solutions.

    Cited By

    This article is cited by 99 publications.

    1. Zhiyong Su, Xin Guo, Siqi Jiang, Jisheng Li, Yangyang Xin, Shuai Zhang, Yufeng Hu, Zhichang Liu. Liquid–Liquid Equilibrium Data for [Mmim][DMP] + Salt Aqueous Biphasic Systems and Their Application for [Mmim][DMP] Recovery. Journal of Chemical & Engineering Data 2022, 67 (9) , 2573-2582. https://doi.org/10.1021/acs.jced.2c00452
    2. Yuqiu Chen, Xianglei Meng, Yingjun Cai, Xiaodong Liang, Georgios M. Kontogeorgis. Optimal Aqueous Biphasic Systems Design for the Recovery of Ionic Liquids. Industrial & Engineering Chemistry Research 2021, 60 (43) , 15730-15740. https://doi.org/10.1021/acs.iecr.1c03341
    3. Rachel Schurhammer, Georges Wipff. Formation of Aqueous Biphasic Systems with an Ionic Liquid Induced by Metallic Salts: Nanoscopic Views from Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2018, 122 (44) , 10143-10157. https://doi.org/10.1021/acs.jpcb.8b06193
    4. Xueyan Wu, Yang Liu, Yongjie Zhao, Kit-Leong Cheong. Effect of Salt Type and Alkyl Chain Length on the Binodal Curve of an Aqueous Two-Phase System Composed of Imidazolium Ionic Liquids. Journal of Chemical & Engineering Data 2018, 63 (9) , 3297-3304. https://doi.org/10.1021/acs.jced.8b00188
    5. João Paulo Silva e Silva, Silvana Mattedi, and Geormenny Rocha dos Santos . Studying the Liquid–Liquid Equilibrium of Systems Water +2-Hydroxyethylammonium Propanoate or 2-Hydroxyethylammonium Butanoate or 2-Hydroxyethylammonium Pentanoate +1-Pentanol at 293.15, 313.15, and 333.15 K: Experimental Determination and Thermodynamic Modeling. Journal of Chemical & Engineering Data 2017, 62 (11) , 3758-3768. https://doi.org/10.1021/acs.jced.7b00497
    6. Yuliang Li, Rong Huang, Qi Zhu, Yonghong Yu, and Jing Hu . Phase behavior at Different Temperatures of an Aqueous Two-Phase Ionic Liquid Containing ([BPy] NO3 + Ammonium Sulfate and Sodium Sulfate + Water). Journal of Chemical & Engineering Data 2017, 62 (2) , 796-803. https://doi.org/10.1021/acs.jced.6b00844
    7. Yuliang Li, Xiaojia Lu, Rong Huang, Qi Zhu, and Yating Xie . Phase Behavior of Inorganic Salts Sodium Succinate and Ammonium Citrate in N-Ethylpyridinium Tetrafluoroborate Solution at Different Temperatures. Journal of Chemical & Engineering Data 2016, 61 (7) , 2380-2390. https://doi.org/10.1021/acs.jced.5b01099
    8. Yuliang Li, Xiaojia Lu, Wenting He, Rong Huang, Yingjie Zhao, and Zhiqiang Wang . Influence of the Salting-Out Ability and Temperature on the Liquid–Liquid Equilibria of Aqueous Two-Phase Systems Based on Ionic Liquid–Organic Salts–Water. Journal of Chemical & Engineering Data 2016, 61 (1) , 475-486. https://doi.org/10.1021/acs.jced.5b00657
    9. Yang Lu, Biao Cong, Juan Han, Yun Wang, Zhenjiang Tan, and Yongsheng Yan . Measurement and Correlation of Phase Equilibria in Aqueous Two-Phase Systems Containing Polyoxyethylene Cetyl Ether and Potassium Salt at Different Temperatures. Journal of Chemical & Engineering Data 2015, 60 (4) , 1193-1201. https://doi.org/10.1021/je501165h
    10. Lihua Cao, Yang Lu, Tongfan Hao, Zhenjiang Tan, Juan Han, Yun Wang, and Yongsheng Yan . Measurement and Correlation of Phase Equilibria in Aqueous Two-Phase Systems Containing Polyoxyethylene Lauryl Ether and Sulfate Salt at Different Temperatures. Journal of Chemical & Engineering Data 2014, 59 (12) , 4184-4192. https://doi.org/10.1021/je500835f
    11. Yuliang Li, Xiao Shu, Xuewen Zhang, and Weisheng Guan . Liquid–Liquid Equilibria of the Aqueous Two-Phase Systems Composed of the N-Ethylpyridinium Tetrafluoroborate Ionic Liquid and Ammonium Sulfate/Anhydrous Sodium Carbonate/Sodium Dihydrogen Phosphate and Water at 298.15 K. Journal of Chemical & Engineering Data 2014, 59 (2) , 176-182. https://doi.org/10.1021/je301276s
    12. Kiki A. Kurnia, Mara G. Freire, and João A. P. Coutinho . Effect of Polyvalent Ions in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. The Journal of Physical Chemistry B 2014, 118 (1) , 297-308. https://doi.org/10.1021/jp411933a
    13. Jing Gao, Li Chen, Zongcheng Yan, and Suzhuang Yu . Influence of Aprotic Solvents on the Phase Behavior of Ionic Liquid Based Aqueous Biphasic Systems. Journal of Chemical & Engineering Data 2013, 58 (6) , 1535-1541. https://doi.org/10.1021/je3010563
    14. Hekun Lv, Zhenxi Jiang, Yanhong Li, and Baozeng Ren . Liquid–Liquid Equilibria of the Aqueous Two-Phase Systems of Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate and Sodium Dihydrogen Phosphate/Disodium Hydrogen Phosphate or Their Mixtures. Journal of Chemical & Engineering Data 2012, 57 (9) , 2379-2386. https://doi.org/10.1021/je300195c
    15. Liang Wang, Hong Zhu, Chunhong Ma, Yongsheng Yan, and Qingwei Wang . Measurement and Correlation of Phase Diagram Data for Aqueous Two-Phase Systems Containing 1-Ethyl-3-methylimidazolium Dimethyl Phosphate + K3PO4/K2HPO4/K2CO3 + H2O Ionic Liquids at (298.15, 308.15, and 318.15) K. Journal of Chemical & Engineering Data 2012, 57 (3) , 681-687. https://doi.org/10.1021/je2004758
    16. Sónia P. M. Ventura, Sílvia G. Sousa, Luísa S. Serafim, Álvaro S. Lima, Mara G. Freire, and João A. P. Coutinho . Ionic-Liquid-Based Aqueous Biphasic Systems with Controlled pH: The Ionic Liquid Anion Effect. Journal of Chemical & Engineering Data 2012, 57 (2) , 507-512. https://doi.org/10.1021/je2010787
    17. Sónia P. M. Ventura, Sílvia G. Sousa, Luísa S. Serafim, Álvaro S. Lima, Mara G. Freire, and João A. P. Coutinho . Ionic Liquid Based Aqueous Biphasic Systems with Controlled pH: The Ionic Liquid Cation Effect. Journal of Chemical & Engineering Data 2011, 56 (11) , 4253-4260. https://doi.org/10.1021/je200714h
    18. Ana Filipa M. Cláudio, Ana M. Ferreira, Shahla Shahriari, Mara G. Freire, and João A. P. Coutinho . Critical Assessment of the Formation of Ionic-Liquid-Based Aqueous Two-Phase Systems in Acidic Media. The Journal of Physical Chemistry B 2011, 115 (38) , 11145-11153. https://doi.org/10.1021/jp204865a
    19. Cuilan Yu, Juan Han, Shiping Hu, Yongsheng Yan, and Yanfang Li . Phase Diagrams for Aqueous Two-Phase Systems Containing the 1-Ethyl-3-methylimidazolium Tetrafluoroborate/1-Propyl-3-methylimidazolium Tetrafluoroborate and Trisodium Phosphate/Sodium Sulfite/Sodium Dihydrogen Phosphate at 298.15 K: Experiment and Correlation. Journal of Chemical & Engineering Data 2011, 56 (9) , 3577-3584. https://doi.org/10.1021/je200379r
    20. Juan Han, Yun Wang, Yanfang Li, Cuilan Yu, and Yongsheng Yan . Equilibrium Phase Behavior of Aqueous Two-Phase Systems Containing 1-Alkyl-3-methylimidazolium Tetrafluoroborate and Ammonium Tartrate at Different Temperatures: Experimental Determination and Correlation. Journal of Chemical & Engineering Data 2011, 56 (9) , 3679-3687. https://doi.org/10.1021/je2006055
    21. Rahmat Sadeghi, Bahar Mostafa, Elham Parsi, and Yasaman Shahebrahimi. Toward an Understanding of the Salting-Out Effects in Aqueous Ionic Liquid Solutions: Vapor−Liquid Equilibria, Liquid−Liquid Equilibria, Volumetric, Compressibility, and Conductivity Behavior. The Journal of Physical Chemistry B 2010, 114 (49) , 16528-16541. https://doi.org/10.1021/jp108609b
    22. Yuqiu Chen, Xinyan Liu, Yang Lei, Xiaodong Liang, Rafiqul Gani, Georgios M. Kontogeorgis. A novel hybrid process design for efficient recovery of hydrophilic ionic liquids from dilute aqueous solutions. AIChE Journal 2023, 69 (11) https://doi.org/10.1002/aic.18198
    23. Lirong Nie, Ziwei Zheng, Mingxia Lu, Shun Yao, Dong Guo. Phase Behavior of Ionic Liquid-Based Aqueous Two-Phase Systems. International Journal of Molecular Sciences 2022, 23 (20) , 12706. https://doi.org/10.3390/ijms232012706
    24. Afonso C. Martins, Jordana Benfica, Germán Peréz-Sanchéz, Seishi Shimizu, Tânia E. Sintra, Nicolas Schaeffer, João A. P. Coutinho. Assessing the hydrotropic effect in the presence of electrolytes: competition between solute salting-out and salt-induced hydrotrope aggregation. Physical Chemistry Chemical Physics 2022, 24 (36) , 21645-21654. https://doi.org/10.1039/D2CP00749E
    25. Camila Vallejos-Michea, Yahaira Barrueto, Yecid P. Jimenez. Life cycle analysis of the ionic liquid leaching process of valuable metals from electronic wastes. Journal of Cleaner Production 2022, 348 , 131357. https://doi.org/10.1016/j.jclepro.2022.131357
    26. Yuqiu Chen, Xiaodong Liang, John M. Woodley, Georgios M. Kontogeorgis. Modelling study on phase equilibria behavior of ionic liquid-based aqueous biphasic systems. Chemical Engineering Science 2022, 247 , 116904. https://doi.org/10.1016/j.ces.2021.116904
    27. Shuai Xu, Qi Zhu, Shaojie Xu, Manjing Yuan, Xuliang Lin, Wenjing Lin, Yanlin Qin, Yuliang Li. The phase behavior of n-ethylpyridinium tetrafluoroborate and sodium-based salts ATPS and its application in 2-chlorophenol extraction. Chinese Journal of Chemical Engineering 2021, 33 , 76-82. https://doi.org/10.1016/j.cjche.2020.07.024
    28. Paula Berton, Hongzhe Tian, Robin D. Rogers. Phase Behavior of Aqueous Biphasic Systems with Choline Alkanoate Ionic Liquids and Phosphate Solutions: The Influence of pH. Molecules 2021, 26 (6) , 1702. https://doi.org/10.3390/molecules26061702
    29. Fatemeh Ahmadi, Mohsen Pirdashti, Seyyed Mohammad Arzideh, Ianatul Khoiroh. Phase behavior for 1-butyl-3-methylimidazolium tetrafluoroborate with sodium oxalate/succinate/formate aqueous two-phase systems at 298.15 and 308.15 K. Journal of Dispersion Science and Technology 2020, 42 (1) , 67-74. https://doi.org/10.1080/01932691.2019.1659147
    30. Yuqi Ke, Jingzhu Zhang, Yuanbang Xie, Qiwei Yang, Qilong Ren, Huabin Xing. Aqueous Biphasic Systems Containing Customizable Poly(Ionic Liquid)s for Highly Efficient Extractions. ChemSusChem 2020, 13 (7) , 1906-1914. https://doi.org/10.1002/cssc.201902214
    31. Dongdong Wang, Yang Lu, Zhuo Sun, Wei Liang, Dongshu Sun, Changli Qi, ChengZhuo Sheng, Xiaopeng Yu. Measurement and correlation of phase equilibria in aqueous two-phase systems containing ionic liquid ([EOMiM]Br) and potassium citrate/ammonium citrate/potassium tartrate at different temperatures. Korean Journal of Chemical Engineering 2020, 37 (2) , 332-340. https://doi.org/10.1007/s11814-019-0439-z
    32. Anne M. Hofmeister. Heat transport processes on planetary scales. 2020, 59-88. https://doi.org/10.1016/B978-0-12-818430-1.00003-3
    33. Xu Bao, Zhaohui Chen, Juan Han, Yun Wang, Chunmei Li, Liang Ni. Liquid–Liquid Equilibrium of Imidazolium Ionic Liquids + Phosphate + Water Aqueous Two-Phase Systems and Correlation. Journal of Solution Chemistry 2019, 48 (8-9) , 1167-1187. https://doi.org/10.1007/s10953-019-00896-w
    34. Shuang Li, Shuni Li, Quanguo Zhai, Yucheng Jiang, Mancheng Hu. Solid – liquid and liquid – liquid equilibrium of the systems composed of [C mim]Cl/Br (n = 2, 4, 6, 8) + Rb2SO4/Cs2SO4 + H2O. Journal of Molecular Liquids 2019, 273 , 455-462. https://doi.org/10.1016/j.molliq.2018.10.014
    35. Shashi Kant Shukla, Shubha Pandey, Siddharth Pandey. Applications of ionic liquids in biphasic separation: Aqueous biphasic systems and liquid–liquid equilibria. Journal of Chromatography A 2018, 1559 , 44-61. https://doi.org/10.1016/j.chroma.2017.10.019
    36. Hongpeng Yang, Lei Zhang, Li Chen, Cunshan Zhou, Xiaojie Yu, Abu El-Gasim A. Yagoub, Haile Ma. Effect of ionic liquid based imidazolium as an additive on the formation of polymer/salt aqueous biphasic systems. Journal of Molecular Liquids 2018, 256 , 1-8. https://doi.org/10.1016/j.molliq.2018.01.182
    37. Mengyao Fang, Yujuan Chen, Yuanchao Pei, Zhijun Wang, Kelei Zhuo, Guangyue Bai. Construction of two-ionic liquid-based aqueous two-phase systems for extraction of pyritinol hydrochloride. Journal of Molecular Liquids 2018, 253 , 228-232. https://doi.org/10.1016/j.molliq.2018.01.035
    38. Pik Ki Wan, John Chi-Wei Lan, Po-Wei Chen, Joo Shun Tan, Hui Suan Ng. Recovery of intracellular ectoine from Halomonas salina cells with poly(propylene) glycol/salt aqueous biphasic system. Journal of the Taiwan Institute of Chemical Engineers 2018, 82 , 28-32. https://doi.org/10.1016/j.jtice.2017.11.003
    39. Helena Passos, Teresa B. V. Dinis, Ana Filipa M. Cláudio, Mara G. Freire, João A. P. Coutinho. Hydrogen bond basicity of ionic liquids and molar entropy of hydration of salts as major descriptors in the formation of aqueous biphasic systems. Physical Chemistry Chemical Physics 2018, 20 (20) , 14234-14241. https://doi.org/10.1039/C8CP01401A
    40. Li-rong Nie, Hang Song, Alula Yohannes, Siwei Liang, Shun Yao. Extraction in cholinium-based magnetic ionic liquid aqueous two-phase system for the determination of berberine hydrochloride in Rhizoma coptidis. RSC Advances 2018, 8 (44) , 25201-25209. https://doi.org/10.1039/C8RA01745J
    41. Jingjing Zhou, Hong Sui, Zhidan Jia, Ziqi Yang, Lin He, Xingang Li. Recovery and purification of ionic liquids from solutions: a review. RSC Advances 2018, 8 (57) , 32832-32864. https://doi.org/10.1039/C8RA06384B
    42. V.P. Priyanka, Anusha Basaiahgari, Ramesh L. Gardas. Enhanced partitioning of tryptophan in aqueous biphasic systems formed by benzyltrialkylammonium based ionic liquids: Evaluation of thermophysical and phase behavior. Journal of Molecular Liquids 2017, 247 , 207-214. https://doi.org/10.1016/j.molliq.2017.09.111
    43. Alejandro González‐Mora, Federico Ruiz‐Ruiz, Jorge Benavides, Richard C Willson, Marco Rito‐Palomares. Recovery and primary purification of bacteriophage M13 using aqueous two‐phase systems. Journal of Chemical Technology & Biotechnology 2017, 92 (11) , 2808-2816. https://doi.org/10.1002/jctb.5359
    44. Vanessa S. Sampaio, Renata C. F. Bonomo, Cristiane M. Veloso, Rita C. S. Sousa, Evaldo C. S. Júnior, Rafael C. I. Fontan, Michelle C. Pignata, Karine A. Santos, Olga R. R. Gandolfi. Partitioning Behavior of Lysozyme and α-lactalbumin in Aqueous Two-Phase System Formed by Ionic Liquids and Potassium Phosphate. International Journal of Food Engineering 2017, 13 (10) https://doi.org/10.1515/ijfe-2017-0274
    45. Susana P. F. Costa, Ana M. O. Azevedo, Paula C. A. G. Pinto, M. Lúcia M. F. S. Saraiva. Environmental Impact of Ionic Liquids: Recent Advances in (Eco)toxicology and (Bio)degradability. ChemSusChem 2017, 10 (11) , 2321-2347. https://doi.org/10.1002/cssc.201700261
    46. Cínthia das Dores Aguiar, Poliana Aparecida Lopes Machado, Bruno Giordano Alvarenga, Nelson Henrique Teixeira Lemes, Luciano Sindra Virtuoso. Phase behaviour at different temperatures of ionic liquid based aqueous two-phase systems containing {[Bmim]BF4+ salt sulfate (Zn2+ or Ni2+) + water}. The Journal of Chemical Thermodynamics 2017, 108 , 105-117. https://doi.org/10.1016/j.jct.2017.01.008
    47. Linqiu Li, Mingyuan Huang, Junli Shao, Bokun Lin, Qing Shen. Rapid determination of alkaloids in Macleaya cordata using ionic liquid extraction followed by multiple reaction monitoring UPLC–MS/MS analysis. Journal of Pharmaceutical and Biomedical Analysis 2017, 135 , 61-66. https://doi.org/10.1016/j.jpba.2016.12.016
    48. Daniela de Araujo Sampaio, Filipe Hobi Bordon Sosa, Andrieli Dias Martins, Luciana Igarashi Mafra, Carlos Itsuo Yamamoto, Michèle Oberson de Souza, Fernanda de Castilhos, Marcos Rogério Mafra. Assessment of Sodium Salt Anions ( $$\text{SO}_{4}^{2-}$$ SO 4 2 - and $$\text{NO}_{3}^{-}$$ NO 3 - ) Influence on Caffeine Partitioning in Polyethylene Glycol and 1-Butyl-3-Methylimidazolium Tetrafluoroborate Based ATPS. Journal of Solution Chemistry 2016, 45 (12) , 1857-1878. https://doi.org/10.1007/s10953-016-0547-x
    49. Yang Lu, Bo Chen, Miao Yu, Juan Han, Yun Wang, Zhenjiang Tan, Yongsheng Yan. Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC. Food Chemistry 2016, 210 , 1-8. https://doi.org/10.1016/j.foodchem.2016.04.074
    50. Haoran Wu, Shun Yao, Guofei Qian, Hang Song. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution. Journal of Chromatography A 2016, 1461 , 1-9. https://doi.org/10.1016/j.chroma.2016.06.081
    51. Yuliang Li, Rong Huang, Ziyue He, Na Li, Xiaojia Lu. Phase behavior of an aqueous two-phase ionic liquid containing (N-butylpyridiniumtetrafluoroborate + sulfate salts + water) at different temperatures. Journal of Molecular Liquids 2016, 216 , 174-184. https://doi.org/10.1016/j.molliq.2015.12.068
    52. Arabinda Chakraborty, Kamalika Sen. Impact of pH and temperature on phase diagrams of different aqueous biphasic systems. Journal of Chromatography A 2016, 1433 , 41-55. https://doi.org/10.1016/j.chroma.2016.01.016
    53. Isabel M. Marrucho, Mara G. Freire. Aqueous Biphasic Systems Based on Ionic Liquids for Extraction, Concentration and Purification Approaches. 2016, 91-119. https://doi.org/10.1007/978-3-662-48520-0_5
    54. Sónia P. M. Ventura, João A. P. Coutinho. Toward the Recovery and Reuse of the ABS Phase-Forming Components. 2016, 285-315. https://doi.org/10.1007/978-3-662-52875-4_12
    55. Olga Kuzmina. Methods of IL Recovery and Destruction. 2016, 205-248. https://doi.org/10.1016/B978-0-444-63713-0.00005-5
    56. Yuliang Li, Yingjie Zhao, Rong Huang, Qianqian Cui, Xiaojia Lu, Huan Guo. A thermodynamic study on the phase behaviour of ethanol and 2-propanol in aqueous ammonium sulphate/sodium sulphate solution. Journal of Molecular Liquids 2015, 211 , 924-933. https://doi.org/10.1016/j.molliq.2015.08.021
    57. Yuliang Li, Qinxin Luo, Zhongyu Xu. Temperature-dependent phase behavior of ionic liquid solutions containing N-butylpyridinium nitrate, water, and either sodium or ammonium citrate. Fluid Phase Equilibria 2015, 403 , 118-128. https://doi.org/10.1016/j.fluid.2015.06.024
    58. Enrique Alvarez‐Guerra, Angel Irabien. Ionic liquid‐based three phase partitioning ( ILTPP ) systems for whey protein recovery: ionic liquid selection. Journal of Chemical Technology & Biotechnology 2015, 90 (5) , 939-946. https://doi.org/10.1002/jctb.4401
    59. André M. da Costa Lopes, Rafał Bogel‐Łukasik. Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts. ChemSusChem 2015, 8 (6) , 947-965. https://doi.org/10.1002/cssc.201402950
    60. Enrique Alvarez-Guerra, Angel Irabien. Optimization of ionic liquid recycling in Ionic Liquid-based Three Phase Partitioning processes. 2015, 1475-1480. https://doi.org/10.1016/B978-0-444-63577-8.50091-7
    61. Teresa B. V. Dinis, Helena Passos, Diana L. D. Lima, Valdemar I. Esteves, João A. P. Coutinho, Mara G. Freire. One-step extraction and concentration of estrogens for an adequate monitoring of wastewater using ionic-liquid-based aqueous biphasic systems. Green Chemistry 2015, 17 (4) , 2570-2579. https://doi.org/10.1039/C5GC00077G
    62. Aliakbar Paraj, Ali Haghtalab, Babak Mokhtarani. [1-Ethyl-2,3-dimethyl-imidazolium][ethylsulfate]-based aqueous two phase systems: New experimental data and modeling. Fluid Phase Equilibria 2014, 382 , 212-218. https://doi.org/10.1016/j.fluid.2014.09.001
    63. Yuliang Li, Mengshi Zhang, Hang Su, Qian Liu, Cheng Shen. Liquid–liquid equilibria of ionic liquid 1-butyl-pyridinium tetrafluoroborate and ammonium citrate/trisodium citrate/sodium succinate/sodium acetate aqueous two-phase systems at 303.15K: Experiment and correlation. Journal of Molecular Liquids 2014, 199 , 115-122. https://doi.org/10.1016/j.molliq.2014.08.026
    64. Enrique Alvarez‐Guerra, Angel Irabien, Sónia P. M. Ventura, João A. P. Coutinho. Ionic liquid recovery alternatives in ionic liquid‐based three‐phase partitioning (ILTPP). AIChE Journal 2014, 60 (10) , 3577-3586. https://doi.org/10.1002/aic.14530
    65. Tânia E. Sintra, Rafaela Cruz, Sónia P.M. Ventura, João A.P. Coutinho. Phase diagrams of ionic liquids-based aqueous biphasic systems as a platform for extraction processes. The Journal of Chemical Thermodynamics 2014, 77 , 206-213. https://doi.org/10.1016/j.jct.2013.10.024
    66. Yuliang Li, Mengshi Zhang, Jinna Wu, Jianglin Shi, Cheng Shen. Liquid–liquid equilibria of ionic liquid N-butylpyridinium tetrafluoroborate and disodium hydrogen phosphate/sodium chloride/sodium sulfate/ammonium sulfate aqueous two-phase systems at T = 298.15 K: Experiment and correlation. Fluid Phase Equilibria 2014, 378 , 44-50. https://doi.org/10.1016/j.fluid.2014.06.013
    67. Jesús Simental-Martínez, Bertha Montalvo-Hernández, Marco Rito-Palomares, Jorge Benavides. Application of Aqueous Two-Phase Systems for the Recovery of Bioactive Low-Molecular Weight Compounds. Separation Science and Technology 2014, 49 (12) , 1872-1882. https://doi.org/10.1080/01496395.2014.904878
    68. Enrique Alvarez-Guerra, Sónia P.M. Ventura, João A.P. Coutinho, Angel Irabien. Ionic liquid-based three phase partitioning (ILTPP) systems: Ionic liquid recovery and recycling. Fluid Phase Equilibria 2014, 371 , 67-74. https://doi.org/10.1016/j.fluid.2014.03.009
    69. Enrique Alvarez-Guerra, Angel Irabien. Ionic Liquid-Based Three Phase Partitioning (ILTPP) for Lactoferrin Recovery. Separation Science and Technology 2014, 49 (7) , 957-965. https://doi.org/10.1080/01496395.2013.878722
    70. Ngoc Lan Mai, Kihun Ahn, Yoon-Mo Koo. Methods for recovery of ionic liquids—A review. Process Biochemistry 2014, 49 (5) , 872-881. https://doi.org/10.1016/j.procbio.2014.01.016
    71. Chengzhuo Sheng, Juan Han, Yun Wang, Bo Chen, Yu Liu, Guocai Zhang, Yongsheng Yan, Xiaohong Zhao. Liquid–liquid equilibria of ionic liquid 1-(2-methoxyethyl)-3-methylimidazolium bromide + potassium carbonate, potassium phosphate, dipotassium phosphate + water aqueous two-phase systems. Fluid Phase Equilibria 2014, 364 , 55-61. https://doi.org/10.1016/j.fluid.2013.11.046
    72. Enrique Alvarez-Guerra, Angel Irabien. Separation of Proteins by Ionic Liquid-Based Three-Phase Partitioning. 2014, 207-234. https://doi.org/10.1016/B978-0-444-63257-9.00006-7
    73. Hosein Hooshyar, Rahmat Sadeghi. Aqueous biphasic formation, volumetric and compressibility behaviour in tetrabutylammonium bromide-inorganic salts aqueous systems. The Journal of Chemical Thermodynamics 2013, 67 , 120-127. https://doi.org/10.1016/j.jct.2013.07.027
    74. Yuliang Li, Mengshi Zhang, Qian Liu, Hang Su. Phase behaviour for aqueous two-phase systems containing the ionic liquid 1-butylpyridinium tetrafluoroborate/1-butyl-4-methylpyridinium tetrafluoroborate and organic salts (sodium tartrate/ammonium citrate/trisodium citrate) at different temperatures. The Journal of Chemical Thermodynamics 2013, 66 , 80-87. https://doi.org/10.1016/j.jct.2013.06.011
    75. Ali Haghtalab, Aliakbar Paraj, Babak Mokhtarani. [1-Ethyl-3-Methyl-Imidazolium][EthylSulfate]-based aqueous two phase systems: New experimental data and new modelling. The Journal of Chemical Thermodynamics 2013, 65 , 83-90. https://doi.org/10.1016/j.jct.2013.05.026
    76. Yang Lu, Tongfan Hao, Shiping Hu, Juan Han, Zhenjiang Tan, Yongsheng Yan. Measurement and correlation of phase diagram data for acetone and sulfate aqueous two-phase systems at different temperatures. Thermochimica Acta 2013, 568 , 209-217. https://doi.org/10.1016/j.tca.2013.07.002
    77. Yuliang Li, Qian Liu, Mengshi Zhang, Hang Su. Liquid–liquid equilibrium of the [4-MBP][BF4]–NaCl–H2O systems at T= 293.15, 303.15, 313.15, and 323.15 K: Experimentation and correlation. Thermochimica Acta 2013, 565 , 234-240. https://doi.org/10.1016/j.tca.2013.05.013
    78. Guanwei Yin, Shuni Li, Quanguo Zhai, Yucheng Jiang, Mancheng Hu. Phase behavior of aqueous two-phase systems composed of 1-alkyl-3-methylimidazolium bromide+Rb2CO3/Cs2CO3+water. Thermochimica Acta 2013, 566 , 149-154. https://doi.org/10.1016/j.tca.2013.05.025
    79. Bruno Giordano Alvarenga, Luciano Sindra Virtuoso, Nelson Henrique Teixeira Lemes, Pedro Orival Luccas. Phase behaviour at different temperatures of an aqueous two-phase ionic liquid containing ([Bmim]BF4+manganese sulfate+water). The Journal of Chemical Thermodynamics 2013, 61 , 45-50. https://doi.org/10.1016/j.jct.2013.01.025
    80. Yanfang Li, Juan Han, Yongsheng Yan, Bo Chen, Guocai Zhang, Yu Liu, Chengzhuo Sheng. Simultaneous extraction and determination of sulfadiazine and sulfamethoxazole in water samples and aquaculture products using [Bmim]BF4/(NH4)3C6H5O7 aqueous two-phase system coupled with HPLC. Journal of the Iranian Chemical Society 2013, 10 (2) , 339-346. https://doi.org/10.1007/s13738-012-0164-6
    81. Yun Wang, Juan Han, Jiao Liu, Yutao Hu, Chengzhuo Sheng, Yingchun Wu. Liquid–liquid equilibrium phase behavior of iminazolium-based ionic liquid aqueous two-phase systems composed of 1-alkyl-3-methyl imidazolium tetrafluoroborate and different electrolytes ZnSO4, MgSO4 and Li2SO4 at 298.15K: Experimental and correlation. Thermochimica Acta 2013, 557 , 68-76. https://doi.org/10.1016/j.tca.2013.01.014
    82. Hekun Lv, Dan Guo, Zhenxi Jiang, Yanhong Li, Baozeng Ren. Phase behavior of aqueous two-phase systems composed of 1-ethyl-3-methylimidazolium tetrafluoroborate and phosphate-based salts at different temperatures. Fluid Phase Equilibria 2013, 341 , 23-29. https://doi.org/10.1016/j.fluid.2012.12.016
    83. Yu-Liang Li, Meng-Shi Zhang, Hang Su, Qian Liu, Wei-Sheng Guan. Liquid–liquid equilibria of aqueous two-phase systems of the ionic liquid brominated N-ethyl pyridine and sodium dihydrogen phosphate, sodium sulfate, ammonium citrate, and potassium tartrate at different temperatures: Experimental determination and correlation. Fluid Phase Equilibria 2013, 341 , 70-77. https://doi.org/10.1016/j.fluid.2012.12.019
    84. Yuliang Li, Xiaojia Lu, Jing Hao, Changquan Chen. Liquid-Liquid Equilibrium Data for the Ionic Liquid N-Ethyl-Pyridinium Bromide with Several Sodium Salts and Potassium Salts. Journal of Chemistry 2013, 2013 , 1-11. https://doi.org/10.1155/2013/857272
    85. Dazhen Xiong, Huiyong Wang, Zhiyong Li, Jianji Wang. Recovery of Ionic Liquids with Aqueous Two‐Phase Systems Induced by Carbon Dioxide. ChemSusChem 2012, 5 (11) , 2255-2261. https://doi.org/10.1002/cssc.201200307
    86. Francisco J. Deive, Ana Rodríguez. (Liquid+liquid) equilibrium of aqueous biphasic systems composed of 1-benzyl or 1-hexyl-3-methylimidazolium chloride ionic liquids and inorganic salts. The Journal of Chemical Thermodynamics 2012, 54 , 272-277. https://doi.org/10.1016/j.jct.2012.05.004
    87. Anja Müller, Andrzej Górak. Extraction of 1,3-propanediol from aqueous solutions using different ionic liquid-based aqueous two-phase systems. Separation and Purification Technology 2012, 97 , 130-136. https://doi.org/10.1016/j.seppur.2012.02.039
    88. Bertha Montalvo-Hernández, Marco Rito-Palomares, Jorge Benavides. Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems. Journal of Chromatography A 2012, 1236 , 7-15. https://doi.org/10.1016/j.chroma.2012.03.012
    89. Rahmat Sadeghi, Nosaibah Ebrahimi, Adibeh Mahdavi. Thermodynamic studies of the ionic liquid 1-hexyl-3-methylimidazolium chloride [C6mim][Cl] in polyethylene glycol aqueous solutions. The Journal of Chemical Thermodynamics 2012, 47 , 48-55. https://doi.org/10.1016/j.jct.2011.09.015
    90. Mark P. Jensen, Marian Borkowski, Ivan Laszak, James V. Beitz, Paul G. Rickert, Mark L. Dietz. Anion Effects in the Extraction of Lanthanide 2-Thenoyltrifluoroacetone Complexes into an Ionic Liquid. Separation Science and Technology 2012, 47 (2) , 233-243. https://doi.org/10.1080/01496395.2011.620586
    91. Mara G. Freire, Ana Filipa M. Cláudio, João M. M. Araújo, João A. P. Coutinho, Isabel M. Marrucho, José N. Canongia Lopes, Luís Paulo N. Rebelo. Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews 2012, 41 (14) , 4966. https://doi.org/10.1039/c2cs35151j
    92. Catarina M. S. S. Neves, Mara G. Freire, João A. P. Coutinho. Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Advances 2012, 2 (29) , 10882. https://doi.org/10.1039/c2ra21535g
    93. Francisco J. Deive, Ana Rodríguez, Isabel M. Marrucho, Luís P.N. Rebelo. Aqueous biphasic systems involving alkylsulfate-based ionic liquids. The Journal of Chemical Thermodynamics 2011, 43 (11) , 1565-1572. https://doi.org/10.1016/j.jct.2011.04.024
    94. Cuilan Yu, Juan Han, Yun Wang, Yongsheng Yan, Shiping Hu, Yanfang Li, Chunhong Ma. Ionic liquid/Ammonium Sulfate Aqueous Two-phase System Coupled with HPLC Extraction of Sulfadimidine in Real Environmental Water Samples. Chromatographia 2011, 74 (5-6) , 407-413. https://doi.org/10.1007/s10337-011-2079-2
    95. Cuilan Yu, Juan Han, Yun Wang, Yongsheng Yan, Shiping Hu, Yanfang Li, Xiaohong Zhao. Liquid–liquid equilibrium composed of imidazolium tetrafluoroborate ionic liquids + sodium carbonate aqueous two-phase systems and correlation at (288.15, 298.15, and 308.15) K. Thermochimica Acta 2011, 523 (1-2) , 221-226. https://doi.org/10.1016/j.tca.2011.05.028
    96. Zai‐Lai Xie, Andreas Taubert. Thermomorphic Behavior of the Ionic Liquids [C 4 mim][FeCl 4 ] and [C 12 mim][FeCl 4 ]. ChemPhysChem 2011, 12 (2) , 364-368. https://doi.org/10.1002/cphc.201000808
    97. Juan Han, Yun Wang, Cuilan Yu, Chunxiang Li, Yongsheng Yan, Yan Liu, Liang Wang. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography. Analytica Chimica Acta 2011, 685 (2) , 138-145. https://doi.org/10.1016/j.aca.2010.11.033
    98. Juan Han, Yun Wang, Wenbin Kang, Chunxiang Li, Yongsheng Yan, Jianming Pan, Xueqiao Xie. Phase equilibrium and macrolide antibiotics partitioning in real water samples using a two-phase system composed of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and an aqueous solution of an inorganic salt. Microchimica Acta 2010, 169 (1-2) , 15-22. https://doi.org/10.1007/s00604-010-0298-0
    99. Chun-Xiang Li, Juan Han, Yun Wang, Yong-Sheng Yan, Xiao-Hui Xu, Jian-Ming Pan. Extraction and mechanism investigation of trace roxithromycin in real water samples by use of ionic liquid–salt aqueous two-phase system. Analytica Chimica Acta 2009, 653 (2) , 178-183. https://doi.org/10.1016/j.aca.2009.09.011

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect