ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Physical Properties of Binary Mixtures of Ethyl Formate with Benzene, Isopropyl Benzene, Isobutyl Benzene, and Butylbenzene at (303.15, 308.15, and 313.15) K

View Author Information
Physical Chemistry Research Laboratory, B. N. Bandodkar College of Science, Thane-400 601, India, and Zulal Bilajirao Patil College, Deopur, Dhule-424002, India
* Corresponding author. E-mail: [email protected]
†B. N. Bandodkar College of Science.
‡Zulal Bilajirao Patil College.
Cite this: J. Chem. Eng. Data 2010, 55, 4, 1722–1726
Publication Date (Web):December 4, 2009
https://doi.org/10.1021/je900689m
Copyright © 2009 American Chemical Society

    Article Views

    469

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (215 KB)

    Abstract

    Densities, viscosities, and speeds of sound of binary mixtures of ethyl formate with benzene, isopropyl benzene, isobutyl benzene, and butylbenzene have been measured over the entire range of composition, at (303.15, 308.15, and 313.15) K and at atmospheric pressure. The excess volume, VE, deviation in viscosity, Δη, and deviation in isentropic compressibility, ΔKs, have been calculated from the experimental values of density, viscosity, and ultrasonic velocity. The excess volumes are positive, while the deviations in viscosities are negative for all of the studied binary systems over the whole composition range. The deviation in isentropic compressibility shows both positive and negative deviations for ethyl formate with benzene and isopropyl benzene, and for the remaining systems they are positive. The ability of some of the empirical models to calculate mixing viscosities was also tested.

    Cited By

    This article is cited by 33 publications.

    1. Dianne Jeanne Luning Prak. Binary Mixtures of Benzene and Cyclohexane with n-Alkyl Functional Groups up to 12 Carbons Long: Densities, Viscosities, and Speeds of Sound within the Temperature Range (288.15–333.15) K. Journal of Chemical & Engineering Data 2022, 67 (6) , 1378-1396. https://doi.org/10.1021/acs.jced.2c00048
    2. Dianne J. Luning Prak, Jim S. Cowart, Gretchen R. Simms. Physical Properties of Binary Mixtures of n-Dodecane and Various Ten-Carbon Aromatic Compounds (2-Methyl-1-phenylpropane, 2-Methyl-2-phenylpropane, 2-Phenylbutane, and 1,3-Diethylbenzene): Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points at T = (293.15–333.15) K and 0.1 MPa. Journal of Chemical & Engineering Data 2020, 65 (8) , 3941-3954. https://doi.org/10.1021/acs.jced.0c00280
    3. Dianne J. Luning Prak, Julia M. Fries, Rochelle T. Gober, Petr Vozka, Gozdem Kilaz, Theodore R. Johnson, Sahara L. Graft, Paul C. Trulove, Jim S. Cowart. Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5. Journal of Chemical & Engineering Data 2019, 64 (4) , 1725-1745. https://doi.org/10.1021/acs.jced.8b01233
    4. Dianne J. Luning Prak, Sahara L. Graft, Theodore R. Johnson, Jim S. Cowart, Paul C. Trulove. Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa. Journal of Chemical & Engineering Data 2018, 63 (9) , 3503-3519. https://doi.org/10.1021/acs.jced.8b00387
    5. Dianne J. Luning Prak, Sonya Ye, Margaret McLaughlin, Jim S. Cowart, Paul C. Trulove. Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Selected Ternary Mixtures of n-Butylcyclohexane + a Linear Alkane (n-Hexadcane or n-Dodecane) + an Aromatic Compound (Toluene, n-Butylbenzene, or n-Hexylbenzene). Journal of Chemical & Engineering Data 2017, 62 (10) , 3452-3472. https://doi.org/10.1021/acs.jced.7b00466
    6. Dianne J. Luning Prak, Bridget G. Lee, Jim S. Cowart, and Paul C. Trulove . Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of Butylbenzene + Linear Alkanes (n-Decane, n-Dodecane, n-Tetradecane, n-Hexadecane, or n-Heptadecane) at 0.1 MPa. Journal of Chemical & Engineering Data 2017, 62 (1) , 169-187. https://doi.org/10.1021/acs.jced.6b00542
    7. M. V. Rathnam, Reema T. Sayed, Kavita R. Bhanushali, and M. S. S. Kumar . Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K. Journal of Chemical & Engineering Data 2012, 57 (6) , 1721-1727. https://doi.org/10.1021/je300085z
    8. Manapragada V. Rathnam, Sudhir Mohite, and Manapragada S. Kumar. Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K. Journal of Chemical & Engineering Data 2010, 55 (12) , 5946-5952. https://doi.org/10.1021/je100715x
    9. Dana Drăgoescu. The Study of Thermodynamic Properties for Cyclohexanone + Alkylbenzenes Binary Mixtures at Temperatures Up to 318.15 K and Normal Pressures. International Journal of Thermophysics 2023, 44 (9) https://doi.org/10.1007/s10765-023-03253-8
    10. J. Jovanović, D. Majstorović, I. Milošević, E. Živković, N. Grozdanić, V. Vesovic. Viscosity of methyl and ethyl esters: Experiments and modeling. Journal of Molecular Liquids 2023, 382 , 121930. https://doi.org/10.1016/j.molliq.2023.121930
    11. Sonja AM Smith, Cara E Schwarz, Andries J Burger, Jamie T Cripwell. Accounting for cross-association in nonself-associating species using SAFT-VR Mie: Application to mixtures with esters. Fluid Phase Equilibria 2023, 569 , 113775. https://doi.org/10.1016/j.fluid.2023.113775
    12. Daniel J. Carlson, Neil F. Giles, W. Vincent Wilding, Thomas A. Knotts. Improved liquid viscosity prediction with the novel TLVMie force field for branched hydrocarbons. Fluid Phase Equilibria 2023, 566 , 113681. https://doi.org/10.1016/j.fluid.2022.113681
    13. Dongwei Wei, Mengying Li, Jing Ma, Baohe Wang. Excess molar volumes of cyclohexanone with n-, sec-, or tert-butylbenzene: Application of the PFP theory and graph-theoretical approach. The Journal of Chemical Thermodynamics 2020, 143 , 106050. https://doi.org/10.1016/j.jct.2020.106050
    14. Filipe Arantes Furtado, Abbas Firoozabadi. Fickian and thermal diffusion coefficients of binary mixtures of isobutylbenzene and n -alkanes at different concentrations from the optical beam deflection technique. The Journal of Chemical Physics 2019, 151 (2) https://doi.org/10.1063/1.5082963
    15. Talgat S. Khasanshin, Vladimir S. Samuilov, Alexander P. Shchamialiou, Dana Drăgoescu, Florinela Sîrbu. Thermodynamic properties of cumene, tert-butylbenzene, and n-hexadecane under elevated pressures. The Journal of Chemical Thermodynamics 2019, 134 , 96-105. https://doi.org/10.1016/j.jct.2019.03.005
    16. Talgat S. Khasanshin, Vladimir S. Samuilov, Alexander P. Shchamialiou, Fares M. Mosbakh, Dana Dragoescu, Florinela Sirbu. Liquid density measurements of cumene, tert -butylbenzene, and hexadecane over wide ranges of temperature and pressure. Fluid Phase Equilibria 2018, 463 , 121-127. https://doi.org/10.1016/j.fluid.2018.02.008
    17. Jamie T. Cripwell, Cara E. Schwarz, Andries J. Burger. SAFT-VR-Mie with an incorporated polar term for accurate holistic prediction of the thermodynamic properties of polar components. Fluid Phase Equilibria 2018, 455 , 24-42. https://doi.org/10.1016/j.fluid.2017.09.027
    18. Christian Wohlfarth. Viscosity of benzene. 2017, 209-210. https://doi.org/10.1007/978-3-662-49218-5_187
    19. Christian Wohlfarth. Viscosity of isopropylbenzene. 2017, 348-348. https://doi.org/10.1007/978-3-662-49218-5_320
    20. Christian Wohlfarth. Viscosity of butylbenzene. 2017, 365-365. https://doi.org/10.1007/978-3-662-49218-5_337
    21. Christian Wohlfarth. Viscosity of isobutylbenzene. 2017, 366-366. https://doi.org/10.1007/978-3-662-49218-5_338
    22. Christian Wohlfarth. Viscosity of ethyl formate. 2017, 70-70. https://doi.org/10.1007/978-3-662-49218-5_62
    23. Christian Wohlfarth. Viscosity of the binary liquid mixture of ethyl formate and benzene. 2017, 953-953. https://doi.org/10.1007/978-3-662-49218-5_834
    24. Christian Wohlfarth. Viscosity of the binary liquid mixture of ethyl formate and isopropylbenzene. 2017, 977-977. https://doi.org/10.1007/978-3-662-49218-5_856
    25. Christian Wohlfarth. Viscosity of the binary liquid mixture of ethyl formate and butylbenzene. 2017, 978-978. https://doi.org/10.1007/978-3-662-49218-5_857
    26. Christian Wohlfarth. Viscosity of the binary liquid mixture of ethyl formate and isobutylbenzene. 2017, 979-979. https://doi.org/10.1007/978-3-662-49218-5_858
    27. C. I. A. V. Santos, V. Shevtsova, H. D. Burrows, A. C. F. Ribeiro. Optimization of Taylor Dispersion Technique for Measurement of Mutual Diffusion in Benchmark Mixtures. Microgravity Science and Technology 2016, 28 (4) , 459-465. https://doi.org/10.1007/s12217-016-9498-5
    28. Boris Grigor’ev, Igor Alexandrov, Anatoly Gerasimov. Generalized equation of state for the cyclic hydrocarbons over a temperature range from the triple point to 700 K with pressures up to 100 MPa. Fluid Phase Equilibria 2016, 418 , 15-36. https://doi.org/10.1016/j.fluid.2015.07.046
    29. S. Elangovan, S. Mullainathan. Molecular interactions in binary mixtures of methyl formate with 1-butanol, 1-pentanol, and 1-hexanol by using ultrasonic data at 303 K. Russian Journal of Physical Chemistry A 2016, 90 (5) , 1006-1010. https://doi.org/10.1134/S0036024416050125
    30. S. Elangovan, S. Mullainathan. Intermolecular interactions in mixtures of ethyl formate with methanol, ethanol, and 1-propanol on density, viscosity, and ultrasonic data. Russian Journal of Physical Chemistry A 2014, 88 (12) , 2108-2113. https://doi.org/10.1134/S0036024414120061
    31. S. Elangovan, S. Mullainathan. Ultrasonic studies of intermolecular interaction in binary mixture of n-methyl formate with 1-propanol at various temperatures. Indian Journal of Physics 2013, 87 (7) , 659-664. https://doi.org/10.1007/s12648-013-0288-2
    32. S Elangovan, S Mullainathan. Ultrasonic studies of mixtures of ethyl formate and n-alcohols in carbon tetrachloride. Indian Journal of Physics 2013, 87 (4) , 373-378. https://doi.org/10.1007/s12648-012-0230-z
    33. S. Elangovan, S. Mullainathan. Ultrasonic study of intermolecular interaction in ternary mixture of ethyl formate + 1-propanol + benzene at 303 K. Indian Journal of Physics 2012, 86 (8) , 727-730. https://doi.org/10.1007/s12648-012-0132-0

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect