ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Rapid Quantitative Assessment of the Adulteration of Virgin Olive Oils with Hazelnut Oils Using Raman Spectroscopy and Chemometrics

View Author Information
Department of Chemistry, UMIST, P.O. Box 88, Sackville Street, Manchester M60 1QD, U.K., and Istituto Sperimentale per la Elaiotecnica, Contrada Fonte Umano, 65013 Città S. Angelo, Pescara, Italy
Cite this: J. Agric. Food Chem. 2003, 51, 21, 6145–6150
Publication Date (Web):September 12, 2003
https://doi.org/10.1021/jf034493d
Copyright © 2003 American Chemical Society

    Article Views

    1334

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The authentication of extra virgin olive oil and its adulteration with lower-priced oils are serious problems in the olive oil industry. In addition to the obvious effect on producer profits, adulteration can also cause severe health and safety problems. A number of techniques, including chromatographic and spectroscopic methods, have recently been employed to assess the purity of olive oils. In this study Raman spectroscopy together with multivariate and evolutionary computational-based methods have been employed to assess the ability of Raman spectroscopy to discriminate between chemically very closely related oils. Additionally, the levels of hazelnut oils used to adulterate extra virgin olive oil were successfully quantified using partial least squares and genetic programming.

    Keywords: Raman spectroscopy; olive oil; hazelnut oil; adulteration; quantification; principal component analysis; partial least-squares regression; genetic programming

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. E-mail:  [email protected]. Tel:  +44 (0) 161 200 4414. Fax:  +44 (0) 161 200 4519.

     UMIST.

     Istituto Sperimentale per la Elaiotecnica.

    Cited By

    This article is cited by 139 publications.

    1. Hung-Cheng Wang, Yung-Te Hou, Bo-Chuan Hsieh. Direct Photometric Assay for Copper Chlorophyll Adulterants in Edible Oil by the Aid of an Ultraviolet-Photobleaching Pretreatment. Journal of Agricultural and Food Chemistry 2018, 66 (33) , 8859-8863. https://doi.org/10.1021/acs.jafc.8b02170
    2. Daniel P. Killeen, Catherine E. Sansom, Ross E. Lill, Jocelyn R. Eason, Keith C. Gordon, and Nigel B. Perry . Quantitative Raman Spectroscopy for the Analysis of Carrot Bioactives. Journal of Agricultural and Food Chemistry 2013, 61 (11) , 2701-2708. https://doi.org/10.1021/jf3053669
    3. Ivan C. Lee Adam Gamson Jonathan Mitchell . High-Performance Thin Layer Chromatography and Raman Microscopy of Cotton and Other Seed Oils. 2013, 1-16. https://doi.org/10.1021/bk-2013-1138.ch001
    4. Matthew Ross Kunz, Joshua Ottaway, John H. Kalivas, Constantinos A. Georgiou, and George A. Mousdis . Updating a Synchronous Fluorescence Spectroscopic Virgin Olive Oil Adulteration Calibration to a New Geographical Region. Journal of Agricultural and Food Chemistry 2011, 59 (4) , 1051-1057. https://doi.org/10.1021/jf1038053
    5. Gary R. Takeoka Susan E. Ebeler . Progress in Authentication of Food and Wine. 2011, 3-11. https://doi.org/10.1021/bk-2011-1081.ch001
    6. Rosa M. Alonso-Salces, José M. Moreno-Rojas, Margaret V. Holland, Fabiano Reniero, Claude Guillou and Károly Héberger . Virgin Olive Oil Authentication by Multivariate Analyses of 1H NMR Fingerprints and δ13C and δ2H Data. Journal of Agricultural and Food Chemistry 2010, 58 (9) , 5586-5596. https://doi.org/10.1021/jf903989b
    7. Ming-Qiang Zou, Xiao-Fang Zhang, Xiao-Hua Qi, Han-Lu Ma, Ying Dong, Chun-Wei Liu, Xun Guo and Hong Wang . Rapid Authentication of Olive Oil Adulteration by Raman Spectrometry. Journal of Agricultural and Food Chemistry 2009, 57 (14) , 6001-6006. https://doi.org/10.1021/jf900217s
    8. Vincent Baeten,, Juan Antonio Fernández Pierna,, Pierre Dardenne,, Marc Meurens,, Diego L. García-González, and, Ramón Aparicio-Ruiz. Detection of the Presence of Hazelnut Oil in Olive Oil by FT-Raman and FT-MIR Spectroscopy. Journal of Agricultural and Food Chemistry 2005, 53 (16) , 6201-6206. https://doi.org/10.1021/jf050595n
    9. Huda Yang, Xiaoying Huang, Ming Yang, Xiaofei Zhang, Fangrui Tang, Beibei Gao, Mengya Gong, Yong Liang, Yang Liu, Xingyi Qian, Huiting Li. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chemistry 2024, 451 , 139340. https://doi.org/10.1016/j.foodchem.2024.139340
    10. Somaye Vali Zade, Elaheh Forooghi, Behrooz Jannat, Fataneh Hashempour-baltork, Hamid Abdollahi. A combined classification modeling strategy for detection and identification of extra virgin olive oil adulteration using Raman spectroscopy. Chemometrics and Intelligent Laboratory Systems 2023, 240 , 104903. https://doi.org/10.1016/j.chemolab.2023.104903
    11. Anjar Windarsih, Lily Arsanti Lestari, Yuny Erwanto, Anggita Rosiana Putri, Irnawati, Nurrulhidayah Ahmad Fadzillah, Nuning Rahmawati, Abdul Rohman. Application of Raman Spectroscopy and Chemometrics for Quality Controls of Fats and Oils: A Review. Food Reviews International 2023, 39 (7) , 3906-3925. https://doi.org/10.1080/87559129.2021.2014860
    12. Sonia Ramos-Gómez, María D. Busto, Natividad Ortega. Detection of Hazelnut and Almond Adulteration in Olive Oil: An Approach by qPCR. Molecules 2023, 28 (10) , 4248. https://doi.org/10.3390/molecules28104248
    13. Anjali Sudhakar, Subir Kumar Chakraborty, Naveen Kumar Mahanti, Cinu Varghese. Advanced techniques in edible oil authentication: A systematic review and critical analysis. Critical Reviews in Food Science and Nutrition 2023, 63 (7) , 873-901. https://doi.org/10.1080/10408398.2021.1956424
    14. Shuhan Hu, Hongyi Li, Chen Chen, Cheng Chen, Deyi Zhao, Bingyu Dong, Xiaoyi Lv, Kai Zhang, Yi Xie. Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-07222-3
    15. Xihui Bian, Yao Wang, Shuaishuai Wang, Joel B. Johnson, Hao Sun, Yugao Guo, Xiaoyao Tan. A Review of Advanced Methods for the Quantitative Analysis of Single Component Oil in Edible Oil Blends. Foods 2022, 11 (16) , 2436. https://doi.org/10.3390/foods11162436
    16. Benjamin Charron, Vincent Thibault, Jean-Francois Masson. Combining multilayered wrinkled polymer SERS substrates and spectral data processing for low concentration analyte detection. Analytical and Bioanalytical Chemistry 2022, 414 (18) , 5719-5732. https://doi.org/10.1007/s00216-022-04151-y
    17. Rasool Khodabakhshian, Mohammad Reza Bayati, Bagher Emadi. Adulteration detection of Sudan Red and metanil yellow in turmeric powder by NIR spectroscopy and chemometrics: The role of preprocessing methods in analysis. Vibrational Spectroscopy 2022, 120 , 103372. https://doi.org/10.1016/j.vibspec.2022.103372
    18. Debabrata Majumder, Mousumi Debnath, Kamal Nayan Sharma, Surinder Singh Shekhawat, G.B.K.S Prasad, Debasish Maiti, Seeram Ramakrishna. Olive Oil Consumption can Prevent Non-communicable Diseases and COVID-19: A Review. Current Pharmaceutical Biotechnology 2022, 23 (2) , 261-275. https://doi.org/10.2174/1389201022666210412143553
    19. Rasool Khodabakhshian, Mohammad Reza Bayati, Bagher Emadi. An evaluation of IR spectroscopy for authentication of adulterated turmeric powder using pattern recognition. Food Chemistry 2021, 364 , 130406. https://doi.org/10.1016/j.foodchem.2021.130406
    20. Kacper Przykaza, Hanna Nikolaichuk, Anna Kozub, Jolanta Tomaszewska-Gras, Željka Peršurić, Sandra Kraljević Pavelić, Emilia Fornal. Newly marketed seed oils. What we can learn from the current status of authentication of edible oils. Food Control 2021, 130 , 108349. https://doi.org/10.1016/j.foodcont.2021.108349
    21. Mehrvash Varnasseri, Howbeer Muhamadali, Yun Xu, Paul I. C. Richardson, Nick Byrd, David I. Ellis, Pavel Matousek, Royston Goodacre. Portable through Bottle SORS for the Authentication of Extra Virgin Olive Oil. Applied Sciences 2021, 11 (18) , 8347. https://doi.org/10.3390/app11188347
    22. Eleni Kakouri, Panagiota-Kyriaki Revelou, Charalabos Kanakis, Dimitra Daferera, Christos S. Pappas, Petros A. Tarantilis. Authentication of the Botanical and Geographical Origin and Detection of Adulteration of Olive Oil Using Gas Chromatography, Infrared and Raman Spectroscopy Techniques: A Review. Foods 2021, 10 (7) , 1565. https://doi.org/10.3390/foods10071565
    23. Jingjing Wang, Quansheng Chen, Tarun Belwal, Xingyu Lin, Zisheng Luo. Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Comprehensive Reviews in Food Science and Food Safety 2021, 20 (3) , 2476-2507. https://doi.org/10.1111/1541-4337.12741
    24. Osman Taylan, Nur Cebi, Mustafa Tahsin Yilmaz, Osman Sagdic, Durmus Ozdemir, Mohammed Balubaid. Rapid detection of green‐pea adulteration in pistachio nuts using Raman spectroscopy and chemometrics. Journal of the Science of Food and Agriculture 2021, 101 (4) , 1699-1708. https://doi.org/10.1002/jsfa.10845
    25. Isio Sota-Uba, Matthew Bamidele, James Moulton, Karl Booksh, Barry K. Lavine. Authentication of edible oils using Fourier transform infrared spectroscopy and pattern recognition methods. Chemometrics and Intelligent Laboratory Systems 2021, 210 , 104251. https://doi.org/10.1016/j.chemolab.2021.104251
    26. Antia González-Pereira, Paz Otero, Maria Fraga-Corral, Paula Garcia-Oliveira, Maria Carpena, Miguel A. Prieto, Jesus Simal-Gandara. State-of-the-Art of Analytical Techniques to Determine Food Fraud in Olive Oils. Foods 2021, 10 (3) , 484. https://doi.org/10.3390/foods10030484
    27. Huseyin Ayvaz, Hacer Akpolat, Banu Sezer, Ismail Hakki Boyaci, Luis E. Rodriguez-Saona. Vibrational Spectroscopy in Food Traceability. 2021, 322-339. https://doi.org/10.1016/B978-0-08-100596-5.22854-0
    28. M. Esteki, M.J. Cardador, N. Jurado-Campos, A. Martín-Gómez, L. Arce, J. Simal-Gandara. Innovations in analytical methods for food authenticity. 2021, 181-248. https://doi.org/10.1016/B978-0-12-819493-5.00008-X
    29. Osman Taylan, Nur Cebi, Mustafa Tahsin Yilmaz, Osman Sagdic, Ahmed Atef Bakhsh. Detection of lard in butter using Raman spectroscopy combined with chemometrics. Food Chemistry 2020, 332 , 127344. https://doi.org/10.1016/j.foodchem.2020.127344
    30. Francis Kwofie, Barry K. Lavine, Joshua Ottaway, Karl Booksh. Differentiation of Edible Oils by Type Using Raman Spectroscopy and Pattern Recognition Methods. Applied Spectroscopy 2020, 74 (6) , 645-654. https://doi.org/10.1177/0003702819888220
    31. Hui Chen, Chao Tan, Hongjin Li. Untargeted identification of adulterated Sanqi powder by near-infrared spectroscopy and one-class model. Journal of Food Composition and Analysis 2020, 88 , 103450. https://doi.org/10.1016/j.jfca.2020.103450
    32. Woosuk Sohng, Yeonju Park, Daeil Jang, Kyungjoon Cha, Young Mee Jung, Hoeil Chung. Incorporation of two-dimensional correlation analysis into discriminant analysis as a potential tool for improving discrimination accuracy: Near-infrared spectroscopic discrimination of adulterated olive oils. Talanta 2020, 212 , 120748. https://doi.org/10.1016/j.talanta.2020.120748
    33. Fereidoon Shahidi, Priyatharini Ambigaipalan. Quality Assurance of Fats and Oils. 2020, 1-17. https://doi.org/10.1002/047167849X.bio072.pub2
    34. Magdi Mossoba, Cynthia Srigley, Sanjeewa Karunathilaka, Ali R. Fardin‐Kia, Clark Ridge, Emmanuel Hatzakis, Betsy Yakes. Adulteration of Olive Oil. 2020, 1-39. https://doi.org/10.1002/047167849X.bio088
    35. Sri Parkash Kochhar, Sodeif Azadmard‐Damirchi, Parisa Nasirpour‐Tabrizi, Paresh C. Dutta. Sterols, Stanols, and Waxes. 2020, 1-65. https://doi.org/10.1002/047167849X.bio094
    36. Marie Arnoult, Colin Dupuy, Maggy Colas, Julie Cornette, Ludovic Duponchel, Sylvie Rossignol. Determination of the Reactivity Degree of Various Alkaline Solutions: A Chemometric Investigation. Applied Spectroscopy 2019, 73 (12) , 1361-1369. https://doi.org/10.1177/0003702819867956
    37. K V Berezin, K N Dvoretsky, M L Chernavina, A V Novoselova, V V Nechaev, E M Antonova, I T Shagautdinova, A M Likhter. The use of Raman spectroscopy and methods of quantum chemistry for assessing the relative concentration of triglycerides of oleic and linoleic acids in a mixture of olive oil and sunflower seed oil. Journal of Physics: Conference Series 2019, 1400 (6) , 066021. https://doi.org/10.1088/1742-6596/1400/6/066021
    38. Jin Qiu, Hua-Yi Hou, In-Sang Yang, Xiang-Bai Chen. Raman Spectroscopy Analysis of Free Fatty Acid in Olive Oil. Applied Sciences 2019, 9 (21) , 4510. https://doi.org/10.3390/app9214510
    39. Maninder Meenu, Qianxi Cai, Baojun Xu. A critical review on analytical techniques to detect adulteration of extra virgin olive oil. Trends in Food Science & Technology 2019, 91 , 391-408. https://doi.org/10.1016/j.tifs.2019.07.045
    40. Kirill V. Berezin, Konstantin N. Dvoretsky, Maria L. Chernavina, Anna V. Novoselova, Vladimir V. Nechaev, Ekaterina M. Antonova, Anatoly M. Lichter, Vladimir V. Smirnov, Oksana N. Grechukhina, Maksim V. Kartashov, . The use of theoretical and experimental methods of Raman spectroscopy in the determination of unsaturated fatty acids in vegetable oils. 2019, 166. https://doi.org/10.1117/12.2523319
    41. Vimal Raj, M. S. Swapna, H. V. Saritha Devi, S. Sankararaman. Nonradiative analysis of adulteration in coconut oil by thermal lens technique. Applied Physics B 2019, 125 (6) https://doi.org/10.1007/s00340-019-7228-6
    42. Shiyamala Duraipandian, Jan C. Petersen, Mikael Lassen. Authenticity and Concentration Analysis of Extra Virgin Olive Oil Using Spontaneous Raman Spectroscopy and Multivariate Data Analysis. Applied Sciences 2019, 9 (12) , 2433. https://doi.org/10.3390/app9122433
    43. Sofia Farres, Loubna Srata, Fouad Fethi, Asmae Kadaoui. Argan oil authentication using visible/near infrared spectroscopy combined to chemometrics tools. Vibrational Spectroscopy 2019, 102 , 79-84. https://doi.org/10.1016/j.vibspec.2019.04.003
    44. Náira da Silva Campos Almeida, Pedro Victor Almeida Pessanha, Antonio Carlos Sant'Ana, Bruna Eduarda Santos Simões, Mariana Ramos Almeida, Céphora Maria Sabarense, Rafael Arromba de Sousa. Chemical characterization of different gourmet table salts by atomic spectrometry and FT-Raman spectroscopy. Analytical Methods 2019, 11 (6) , 774-782. https://doi.org/10.1039/C8AY02201A
    45. Naveed Ahmad, M. Saleem. Raman spectroscopy based characterization of desi ghee obtained from buffalo and cow milk. International Dairy Journal 2019, 89 , 119-128. https://doi.org/10.1016/j.idairyj.2018.08.013
    46. Giorgio Leonardi, Stefania Montani, Luigi Portinale, Silvana Quaglini, Manuel Striani. Discovering Knowledge Embedded in Bio-medical Databases: Experiences in Food Characterization and in Medical Process Mining. 2019, 117-136. https://doi.org/10.1007/978-3-030-15939-9_7
    47. Tianxi Yang, Bin Zhao, Lili He. Raman instruments for food quality evaluation. 2019, 119-143. https://doi.org/10.1016/B978-0-12-814217-2.00008-1
    48. Rui Hu, Ting He, Zhaowei Zhang, Yunhuang Yang, Maili Liu. Safety analysis of edible oil products via Raman spectroscopy. Talanta 2019, 191 , 324-332. https://doi.org/10.1016/j.talanta.2018.08.074
    49. FATMA NUR ARSLAN. ATR–FTIR SPECTROSCOPY COMBINED WITH CHEMOMETRICS FOR RAPID CLASSIFICATION OF EXTRA VIRGIN OLIVE OILS AND EDIBLE OILS FROM DIFFERENT CULTIVARS AVAILABLE ON THE TURKISH MARKETS. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering 2018, , 1-1. https://doi.org/10.18038/aubtda.425374
    50. K. V. Berezin, K. N. Dvoretskii, M. L. Chernavina, A. V. Novoselova, V. V. Nechaev, E. M. Antonova, I. T. Shagautdinova, A. M. Likhter. The Use of Raman Spectroscopy and Methods of Quantum Chemistry for Assessing the Relative Concentration of Triglycerides of Oleic and Linoleic Acids in a Mixture of Olive Oil and Sunflower Seed Oil. Optics and Spectroscopy 2018, 125 (3) , 311-316. https://doi.org/10.1134/S0030400X18090059
    51. Benedito Roberto Alvarenga, Felipe Augusto Neres Xavier, Frederico Luis Felipe Soares, Renato Lajarim Carneiro. Thermal Stability Assessment of Vegetable Oils by Raman Spectroscopy and Chemometrics. Food Analytical Methods 2018, 11 (7) , 1969-1976. https://doi.org/10.1007/s12161-018-1160-y
    52. Felipe J. Lara-Ortega, Miriam Beneito-Cambra, José Robles-Molina, Juan F. García-Reyes, Bienvenida Gilbert-López, Antonio Molina-Díaz. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods. Talanta 2018, 180 , 168-175. https://doi.org/10.1016/j.talanta.2017.12.027
    53. Aadil Bajoub, Alessandra Bendini, Alberto Fernández-Gutiérrez, Alegría Carrasco-Pancorbo. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review. Critical Reviews in Food Science and Nutrition 2018, 58 (5) , 832-857. https://doi.org/10.1080/10408398.2016.1225666
    54. Kuanglin Chao, Sagar Dhakal, Jianwei Qin, Moon Kim, Yankun Peng. A 1064 nm Dispersive Raman Spectral Imaging System for Food Safety and Quality Evaluation. Applied Sciences 2018, 8 (3) , 431. https://doi.org/10.3390/app8030431
    55. Fei Gao, Lingzhi Xu, Yuejing Zhang, Zengling Yang, Lujia Han, Xian Liu. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics. Food Chemistry 2018, 240 , 989-996. https://doi.org/10.1016/j.foodchem.2017.07.143
    56. Isabel Durán Merás, Jaime Domínguez Manzano, Diego Airado Rodríguez, Arsenio Muñoz de la Peña. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification. Talanta 2018, 178 , 751-762. https://doi.org/10.1016/j.talanta.2017.09.095
    57. Ana M. Jiménez-Carvelo, María Teresa Osorio, Anastasios Koidis, Antonio González-Casado, Luis Cuadros-Rodríguez. Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT 2017, 86 , 174-184. https://doi.org/10.1016/j.lwt.2017.07.050
    58. DanYang Ying, Mya Myintzu Hlaing, Julie Lerisson, Keith Pitts, Lijiang Cheng, Luz Sanguansri, Mary Ann Augustin. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Research International 2017, 100 , 665-673. https://doi.org/10.1016/j.foodres.2017.07.062
    59. Lucyna Dymińska, Maciej Calik, Abduladhim Moamer M. Albegar, Adam Zając, Kamil Kostyń, Jadwiga Lorenc, Jerzy Hanuza. Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. International Journal of Food Properties 2017, 20 (9) , 2003-2015. https://doi.org/10.1080/10942912.2016.1230744
    60. Katerine Diaz-Chito, Konstantia Georgouli, Anastasios Koidis, Jesus Martinez del Rincon. Incremental model learning for spectroscopy-based food analysis. Chemometrics and Intelligent Laboratory Systems 2017, 167 , 123-131. https://doi.org/10.1016/j.chemolab.2017.06.002
    61. Anna Gliszczyńska-Świgło, Jarosław Chmielewski. Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review. Food Analytical Methods 2017, 10 (6) , 1800-1816. https://doi.org/10.1007/s12161-016-0739-4
    62. Carlton Farley, Aschalew Kassu, Nayana Bose, Armitra Jackson-Davis, Judith Boateng, Paul Ruffin, Anup Sharma. Short Distance Standoff Raman Detection of Extra Virgin Olive Oil Adulterated with Canola and Grapeseed Oils. Applied Spectroscopy 2017, 71 (6) , 1340-1347. https://doi.org/10.1177/0003702816681796
    63. M Yulia, D Suhandy. Indonesian palm civet coffee discrimination using UV-visible spectroscopy and several chemometrics methods. Journal of Physics: Conference Series 2017, 835 , 012010. https://doi.org/10.1088/1742-6596/835/1/012010
    64. Aggelos Philippidis, Emmanouil Poulakis, Antigoni Papadaki, Michalis Velegrakis. Comparative Study using Raman and Visible Spectroscopy of Cretan Extra Virgin Olive Oil Adulteration with Sunflower Oil. Analytical Letters 2017, 50 (7) , 1182-1195. https://doi.org/10.1080/00032719.2016.1208212
    65. Konstantia Georgouli, Jesus Martinez Del Rincon, Anastasios Koidis. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food Chemistry 2017, 217 , 735-742. https://doi.org/10.1016/j.foodchem.2016.09.011
    66. Sagar Dhakal, Kuanglin Chao, Jianwei Qin, Moon Kim, Yankun Peng, Diane Chan. Identification and Evaluation of Composition in Food Powder Using Point-Scan Raman Spectral Imaging. Applied Sciences 2017, 7 (1) , 1. https://doi.org/10.3390/app7010001
    67. Ruifen Li, Jiaoli Huang, Li Huang, Jianwen Teng, Ning Xia, Baoyao Wei, Mouming Zhao. Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils. Journal of Thermal Analysis and Calorimetry 2016, 126 (3) , 1735-1746. https://doi.org/10.1007/s10973-016-5606-4
    68. Pei Wang, Jianbo Sun, Tiantian Zhang, Weijie Liu. Vibrational spectroscopic approaches for the quality evaluation and authentication of virgin olive oil. Applied Spectroscopy Reviews 2016, 51 (10) , 763-790. https://doi.org/10.1080/05704928.2016.1176034
    69. Enrico Valli, Alessandra Bendini, Annachiara Berardinelli, Luigi Ragni, Bruno Riccò, Marco Grossi, Tullia Gallina Toschi. Rapid and innovative instrumental approaches for quality and authenticity of olive oils. European Journal of Lipid Science and Technology 2016, 118 (11) , 1601-1619. https://doi.org/10.1002/ejlt.201600065
    70. , , , Carlton Farley, Aschalew Kassu, Jonathan Mills, Brianna Kenney, Paul Ruffin, Anup Sharma. Raman detection of extra virgin olive oil adulterated with cheaper oils. 2016, 99330K. https://doi.org/10.1117/12.2238369
    71. Mariateresa Maldini, Mario Chessa, Giacomo L. Petretto, Paola Montoro, Jonathan P. Rourke, Marzia Foddai, Marcello Nicoletti, Giorgio Pintore. Profiling and Simultaneous Quantitative Determination of Anthocyanins in Wild Myrtus communis L. Berries from Different Geographical Areas in Sardinia and their Comparative Evaluation. Phytochemical Analysis 2016, 27 (5) , 249-256. https://doi.org/10.1002/pca.2623
    72. E. Sánchez-López, M.I. Sánchez-Rodríguez, A. Marinas, J.M. Marinas, F.J. Urbano, J.M. Caridad, M. Moalem. Chemometric study of Andalusian extra virgin olive oils Raman spectra: Qualitative and quantitative information. Talanta 2016, 156-157 , 180-190. https://doi.org/10.1016/j.talanta.2016.05.014
    73. César Jiménez-Sanchidrián, José Rafael Ruiz. Use of Raman spectroscopy for analyzing edible vegetable oils. Applied Spectroscopy Reviews 2016, 51 (5) , 417-430. https://doi.org/10.1080/05704928.2016.1141292
    74. Jianwei Qin, Kuanglin Chao, Moon Kim. Raman Scattering for Food Quality and Safety Assessment. 2016, 387-428. https://doi.org/10.1201/b20220-16
    75. F. Mabood, R. Boqué, R. Folcarelli, O. Busto, F. Jabeen, Ahmed Al-Harrasi, J. Hussain. The effect of thermal treatment on the enhancement of detection of adulteration in extra virgin olive oils by synchronous fluorescence spectroscopy and chemometric analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2016, 161 , 83-87. https://doi.org/10.1016/j.saa.2016.02.032
    76. Weigen Chen, Zhaoliang Gu, Jingxin Zou, Fu Wan, Yingzhu Xiang. Analysis of furfural dissolved in transformer oil based on confocal laser Raman spectroscopy. IEEE Transactions on Dielectrics and Electrical Insulation 2016, 23 (2) , 915-921. https://doi.org/10.1109/TDEI.2015.005434
    77. Ming Yang Lv, Xin Zhang, Hai Rui Ren, Luo Liu, Yong Mei Zhao, Zheng Wang, Zheng Long Wu, Li Min Liu, Hai Jun Xu. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep23405
    78. Ana M. Gómez-Caravaca, Rubén M. Maggio, Lorenzo Cerretani. Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Analytica Chimica Acta 2016, 913 , 1-21. https://doi.org/10.1016/j.aca.2016.01.025
    79. Jacob de Jong, Patricia López, Hans Mol, Vincent Baeten, Juan Antonio Fernández Pierna, Philippe Vermeulen, Ursula Vincent, Ana Boix, Christoph von Holst, Monika Tomaniova, Jana Hajslova, Zengling Yang, Lujia Han, Susan MacDonald, Simon A. Haughey, Christopher T. Elliott. Analytical strategies for the early quality and safety assurance in the global feed chain. TrAC Trends in Analytical Chemistry 2016, 76 , 203-215. https://doi.org/10.1016/j.trac.2015.11.003
    80. Thiago O. Mendes, Roney A. da Rocha, Brenda L. S. Porto, Marcone A. L. de Oliveira, Virgilio de C. dos Anjos, Maria J. V. Bell. Quantification of Extra-virgin Olive Oil Adulteration with Soybean Oil: a Comparative Study of NIR, MIR, and Raman Spectroscopy Associated with Chemometric Approaches. Food Analytical Methods 2015, 8 (9) , 2339-2346. https://doi.org/10.1007/s12161-015-0121-y
    81. , , , Kuanglin Chao, Sagar Dhakal, Jianwei Qin, Moon S. Kim, Yankun Peng, Walter F. Schmidt. Depth of penetration of a 785nm wavelength laser in food powders. 2015, 94880U. https://doi.org/10.1117/12.2177000
    82. Fazal Mabood, Ricard Boqué, Rita Folcarelli, Olga Busto, Ahmed Al-Harrasi, Javid Hussain. Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 143 , 298-303. https://doi.org/10.1016/j.saa.2015.01.119
    83. J. San José, M.A. Sanz-Tejedor, Y. Arroyo. Effect of fatty acid composition in vegetable oils on combustion processes in an emulsion burner. Fuel Processing Technology 2015, 130 , 20-30. https://doi.org/10.1016/j.fuproc.2014.09.036
    84. Ismail Hakki Boyaci, Havva Tümay Temiz, Hüseyin Efe Geniş, Esra Acar Soykut, Nazife Nur Yazgan, Burcu Güven, Reyhan Selin Uysal, Akif Göktuğ Bozkurt, Kerem İlaslan, Ozlem Torun, Fahriye Ceyda Dudak Şeker. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Advances 2015, 5 (70) , 56606-56624. https://doi.org/10.1039/C4RA12463D
    85. Jing Chen, Yao-wen Huang, Yiping Zhao. Detection of polycyclic aromatic hydrocarbons from cooking oil using ultra-thin layer chromatography and surface enhanced Raman spectroscopy. Journal of Materials Chemistry B 2015, 3 (9) , 1898-1906. https://doi.org/10.1039/C4TB01632G
    86. Taotao Mu, Siying Chen, Yinchao Zhang, Fandong Meng, Pan Guo, He Chen, Xiaohua Liu. Fluorescence polarization technique: a new method for vegetable oils classification. Analytical Methods 2015, 7 (12) , 5175-5179. https://doi.org/10.1039/C5AY00595G
    87. Yu Jian Qiang, Lin Wei Chen, Yi Shen, Ling Chen. Design of Recycled Cooking Oil Quality Testing System Based on Conductivity. Applied Mechanics and Materials 2014, 701-702 , 480-487. https://doi.org/10.4028/www.scientific.net/AMM.701-702.480
    88. John H. Kalivas, Constantinos A. Georgiou, Marianna Moira, Ilias Tsafaras, Eleftherios A. Petrakis, George A. Mousdis. Food adulteration analysis without laboratory prepared or determined reference food adulterant values. Food Chemistry 2014, 148 , 289-293. https://doi.org/10.1016/j.foodchem.2013.10.065
    89. M. Isabel López, Esther Trullols, M. Pilar Callao, Itziar Ruisánchez. Multivariate screening in food adulteration: Untargeted versus targeted modelling. Food Chemistry 2014, 147 , 177-181. https://doi.org/10.1016/j.foodchem.2013.09.139
    90. Mizuki Tsuta, Yasuhiko Sasaki, Ikuo Takeuchi, Hideki Nakamoto, Jun Ishikawa, Susumu Kawasaki, Junichi Sugiyama, Kaori Fujita, Masatoshi Yoshimura, Mario Shibata, Mito Kokawa. Use of multivariate analysis for the improvement in prediction accuracy of bacterial aerobic plate count by flow cytometry. LWT - Food Science and Technology 2014, 55 (2) , 472-476. https://doi.org/10.1016/j.lwt.2013.09.030
    91. Baocheng Xu, Liangxiao Zhang, Hua Wang, Denglin Luo, Peiwu Li. Characterization and authentication of four important edible oils using free phytosterol profiles established by GC-GC-TOF/MS. Anal. Methods 2014, 6 (17) , 6860-6870. https://doi.org/10.1039/C4AY01194E
    92. Mizuki TSUTA, Yasuhiko SASAKI, Ikuo TAKEUCHI, Hideki NAKAMOTO, Jun ISHIKAWA, Susumu KAWASAKI, Junichi SUGIYAMA, Kaori FUJITA, Masatoshi YOSHIMURA, Mario SHIBATA, Mito KOKAWA. Prediction of Aerobic Plate Count of Escherichia coli in Green Tea Beverage by Flow Cytometry and Multivariate Analysis. Japan Journal of Food Engineering 2014, 15 (3) , 157-164. https://doi.org/10.11301/jsfe.15.157
    93. Madiha Bougrini, Khalid Tahri, Zouhair Haddi, Tarik Saidi, Nezha El Bari, Benachir Bouchikhi. Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue. Journal of Sensors 2014, 2014 , 1-10. https://doi.org/10.1155/2014/245831
    94. Ramón Aparicio, María T. Morales, Ramón Aparicio-Ruiz, Noelia Tena, Diego L. García-González. Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Research International 2013, 54 (2) , 2025-2038. https://doi.org/10.1016/j.foodres.2013.07.039
    95. Didar Üçüncüoğlu, Kerem İlaslan, İsmail Hakkı Boyacı, Dilek Sivri Özay. Rapid detection of fat adulteration in bakery products using Raman and near-infrared spectroscopies. European Food Research and Technology 2013, 237 (5) , 703-710. https://doi.org/10.1007/s00217-013-2030-x
    96. Xinwei Feng, Qinghua Zhang, Peisheng Cong, Zhongliang Zhu. Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis. Talanta 2013, 115 , 548-555. https://doi.org/10.1016/j.talanta.2013.05.072
    97. Jorge O. Caceres, Samuel Moncayo, Juan D. Rosales, Francisco Javier Manuel de Villena, Fernando C. Alvira, Gabriel M. Bilmes. Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to Olive Oils Analysis. Applied Spectroscopy 2013, 67 (9) , 1064-1072. https://doi.org/10.1366/12-06916
    98. Photis Dais, Emmanuel Hatzakis. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Analytica Chimica Acta 2013, 765 , 1-27. https://doi.org/10.1016/j.aca.2012.12.003
    99. B. Vandeginste. Chemometrics in studies of food origin. 2013, 117-145. https://doi.org/10.1533/9780857097590.2.117
    100. Abdelkhalek Oussama, Fatiha Elabadi, Olivier Devos. Analysis of Argan Oil Adulteration Using Infrared Spectroscopy. Spectroscopy Letters 2012, 45 (6) , 458-463. https://doi.org/10.1080/00387010.2011.639121
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect