ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Influence of Vine Vigor on Grape (Vitis vinifera L. Cv. Pinot Noir) and Wine Proanthocyanidins

View Author Information
Department of Food Science and Technology and Department of Horticulture, Oregon State University, Corvallis, Oregon 97331; and Red Hills Precision Soil Mapping, Corvallis, Oregon 97330
Cite this: J. Agric. Food Chem. 2005, 53, 14, 5798–5808
Publication Date (Web):June 17, 2005
https://doi.org/10.1021/jf0504770
Copyright © 2005 American Chemical Society

    Article Views

    2024

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    The relationships between variations in grapevine (Vitis vinifera L. cv. Pinot noir) growth and resulting fruit and wine phenolic composition were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. The experimental design involved monitoring soil, vine growth, yield components, and fruit composition (soluble solids, flavan-3-ol monomers, proanthocyanidins, and pigmented polymers) on a georeferenced grid pattern to assess patterns in growth and development. Vine vigor parameters (trunk cross-sectional area, average shoot length, and leaf chlorophyll) were used to delineate zones within both blocks to produce research wines to investigate the vine−fruit−wine continuum. There was no significant influence of vine vigor on the amount of proanthocyanidin per seed and only minimal differences in seed proanthocyanidin composition. However, significant increases were found in skin proanthocyanidin (mg/berry), proportion of (−)-epigallocatechin, average molecular mass of proanthocyanidins, and pigmented polymer content in fruit from zones with a reduction in vine vigor. In the wines produced from low-vigor zones, there was a large increase in the proportion of skin tannin extracted into the wine, whereas little change occurred in seed proanthocyanidin extraction. The level of pigmented polymers and proanthocyanidin molecular mass were higher in wines made from low-vigor fruit compared to wines made from high-vigor fruit, whereas the flavan-3-ol monomer concentration was lower.

    Keywords: Wine; phenolic; flavan-3-ols; proanthocyanidins; precision agriculture; precision viticulture; extraction; trunk cross-sectional area; shoot length; leaf chlorophyll

     Department of Food Science and Technology, Oregon State University.

     Red Hills Precision Soil Mapping.

    §

     Department of Horticulture, Oregon State University.

    *

     Corresponding author [telephone (541) 737-9150; fax (541) 737-1877; e-mail [email protected]].

    Cited By

    This article is cited by 135 publications.

    1. Pauline Rousserie, Amélie Rabot, Laurence Geny-Denis. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds?. Journal of Agricultural and Food Chemistry 2019, 67 (5) , 1325-1343. https://doi.org/10.1021/acs.jafc.8b05768
    2. Giovanni Agati, Kamel Soudani, Lorenza Tuccio, Elisa Fierini, Naïma Ben Ghozlen, El Mostafa Fadaili, Annalisa Romani, Zoran G. Cerovic. Management Zone Delineation for Winegrape Selective Harvesting Based on Fluorescence-Sensor Mapping of Grape Skin Anthocyanins. Journal of Agricultural and Food Chemistry 2018, 66 (23) , 5778-5789. https://doi.org/10.1021/acs.jafc.8b01326
    3. N. Reshef, N. Agam, A. Fait. Grape Berry Acclimation to Excessive Solar Irradiance Leads to Repartitioning between Major Flavonoid Groups. Journal of Agricultural and Food Chemistry 2018, 66 (14) , 3624-3636. https://doi.org/10.1021/acs.jafc.7b04881
    4. Luca Brillante, Johann Martínez-Luscher, Runze Yu, Cassandra M. Plank, Luis Sanchez, Terrence L. Bates, Charles Brenneman, Anita Oberholster, and S. Kaan Kurtural . Assessing Spatial Variability of Grape Skin Flavonoids at the Vineyard Scale Based on Plant Water Status Mapping. Journal of Agricultural and Food Chemistry 2017, 65 (26) , 5255-5265. https://doi.org/10.1021/acs.jafc.7b01749
    5. Ralph S. Yacco, Aude A. Watrelot, and James A. Kennedy . Red Wine Tannin Structure–Activity Relationships during Fermentation and Maceration. Journal of Agricultural and Food Chemistry 2016, 64 (4) , 860-869. https://doi.org/10.1021/acs.jafc.5b05058
    6. Ignacio García-Estévez, Paula Andrés-García, Cristina Alcalde-Eon, Simone Giacosa, Luca Rolle, Julián C. Rivas-Gonzalo, Natalia Quijada-Morín, and M. Teresa Escribano-Bailón . Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo. Journal of Agricultural and Food Chemistry 2015, 63 (35) , 7663-7669. https://doi.org/10.1021/acs.jafc.5b00275
    7. M. Herderich S. Barter C. A. Black R. Bramley D. Capone P. Dry T. Siebert P. Zhang . Terroir Effects on Grape and Wine Aroma Compounds. 2015, 131-146. https://doi.org/10.1021/bk-2015-1203.ch009
    8. Keren A. Bindon, Stella Kassara, Wieslawa U. Cynkar, Ella M. C. Robinson, Neil Scrimgeour, and Paul A. Smith . Comparison of Extraction Protocols To Determine Differences in Wine-Extractable Tannin and Anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon Grapes. Journal of Agricultural and Food Chemistry 2014, 62 (20) , 4558-4570. https://doi.org/10.1021/jf5002777
    9. M. Gil, M. Esteruelas, E. González, N. Kontoudakis, J. Jiménez, F. Fort, J. M. Canals, I. Hermosín-Gutiérrez, and F. Zamora . Effect of Two Different Treatments for Reducing Grape Yield in Vitis vinifera cv Syrah on Wine Composition and Quality: Berry Thinning versus Cluster Thinning. Journal of Agricultural and Food Chemistry 2013, 61 (20) , 4968-4978. https://doi.org/10.1021/jf400722z
    10. Yorgos Kotseridis, Afroditi Georgiadou, Panagiotis Tikos, Stamatina Kallithraka, and Stefanos Koundouras . Effects of Severity of Post-flowering Leaf Removal on Berry Growth and Composition of Three Red Vitis vinifera L. Cultivars Grown under Semiarid Conditions. Journal of Agricultural and Food Chemistry 2012, 60 (23) , 6000-6010. https://doi.org/10.1021/jf300605j
    11. Antonietta Baiano and Carmela Terracone . Varietal Differences among the Phenolic Profiles and Antioxidant Activities of Seven Table Grape Cultivars Grown in the South of Italy Based on Chemometrics. Journal of Agricultural and Food Chemistry 2011, 59 (18) , 9815-9826. https://doi.org/10.1021/jf203003c
    12. Stella Kassara and James A. Kennedy . Relationship between Red Wine Grade and Phenolics. 2. Tannin Composition and Size. Journal of Agricultural and Food Chemistry 2011, 59 (15) , 8409-8412. https://doi.org/10.1021/jf201054p
    13. Naiara Busse-Valverde, Encarna Gómez-Plaza, Jose M. López-Roca, Rocio Gil-Muñoz, Jose I. Fernández-Fernández, and Ana B. Bautista-Ortín . Effect of Different Enological Practices on Skin and Seed Proanthocyanidins in Three Varietal Wines. Journal of Agricultural and Food Chemistry 2010, 58 (21) , 11333-11339. https://doi.org/10.1021/jf102265c
    14. Elías Obreque-Slier, Álvaro Peña-Neira, Remigio López-Solís, Fernando Zamora-Marín, Jorge M. Ricardo-da Silva and Olga Laureano . Comparative Study of the Phenolic Composition of Seeds and Skins from Carménère and Cabernet Sauvignon Grape Varieties (Vitis vinifera L.) during Ripening. Journal of Agricultural and Food Chemistry 2010, 58 (6) , 3591-3599. https://doi.org/10.1021/jf904314u
    15. Alberto Hernández-Jiménez, Encarna Gómez-Plaza, Adrián Martínez-Cutillas and James A. Kennedy . Grape Skin and Seed Proanthocyanidins from Monastrell × Syrah Grapes. Journal of Agricultural and Food Chemistry 2009, 57 (22) , 10798-10803. https://doi.org/10.1021/jf903465p
    16. Stefanos Koundouras, Effimia Hatzidimitriou, Margarita Karamolegkou, Eirini Dimopoulou, Stamatina Kallithraka, John T. Tsialtas, Eleftheria Zioziou, Nikolaos Nikolaou and Yorgos Kotseridis . Irrigation and Rootstock Effects on the Phenolic Concentration and Aroma Potential of Vitis vinifera L. cv. Cabernet Sauvignon Grapes. Journal of Agricultural and Food Chemistry 2009, 57 (17) , 7805-7813. https://doi.org/10.1021/jf901063a
    17. Fiorella K. Cerpa-Calderón and James A. Kennedy. Berry Integrity and Extraction of Skin and Seed Proanthocyanidins during Red Wine Fermentation. Journal of Agricultural and Food Chemistry 2008, 56 (19) , 9006-9014. https://doi.org/10.1021/jf801384v
    18. David W. Jeffery, Meagan D. Mercurio, Markus J. Herderich, Yoji Hayasaka and Paul A. Smith. Rapid Isolation of Red Wine Polymeric Polyphenols by Solid-Phase Extraction. Journal of Agricultural and Food Chemistry 2008, 56 (8) , 2571-2580. https://doi.org/10.1021/jf073478w
    19. Eleonora Cataldo, Aleš Eichmeier, Giovan Battista Mattii. Effects of Global Warming on Grapevine Berries Phenolic Compounds—A Review. Agronomy 2023, 13 (9) , 2192. https://doi.org/10.3390/agronomy13092192
    20. Kévin Billet, Sébastien Salvador-Blanes, Thomas Dugé De Bernonville, Guillaume Delanoue, Florent Hinschberger, Audrey Oudin, Vincent Courdavault, Olivier Pichon, Sébastien Besseau, Samuel Leturcq, Nathalie Giglioli-Guivarc’h, Arnaud Lanoue. Terroir Influence on Polyphenol Metabolism from Grape Canes: A Spatial Metabolomic Study at Parcel Scale. Molecules 2023, 28 (11) , 4555. https://doi.org/10.3390/molecules28114555
    21. Fazıl HACIMÜFTÜOĞLU, Muhammed KÜPE. The Effects of Cattle and Sheep Manure Applications on Soil Physical Properties and Rooting and Shoot Development of Grapevines Cuttings. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2022, 15 (3) , 900-915. https://doi.org/10.18185/erzifbed.1194500
    22. Mario Malagoli, Stefania Sut, Gourav Kumar, Stefano Dall’Acqua. Variations of elements, pigments, amino acids and secondary metabolites in Vitis vinifera (L.) cv Garganega after 501 biodynamic treatment. Chemical and Biological Technologies in Agriculture 2022, 9 (1) https://doi.org/10.1186/s40538-022-00299-y
    23. Pradeep M. Wimalasiri, Jicheng Zhan, Bin Tian. Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace. Fermentation 2022, 8 (12) , 718. https://doi.org/10.3390/fermentation8120718
    24. B. Sams, R.G.V. Bramley, M. Aboutalebi, L. Sanchez, N. K. Dokoozlian, C. M. Ford, V. Pagay. Facilitating mapping and understanding of within‐vineyard variation in fruit composition using data pooled from multiple vineyards. Australian Journal of Grape and Wine Research 2022, 28 (4) , 522-533. https://doi.org/10.1111/ajgw.12556
    25. Qian Tu, Shuzheng Liu, Yuyu Li, Lin Zhang, Zhaoxiang Wang, Chunlong Yuan. The effects of regions and the wine aging periods on the condensed tannin profiles and the astringency perceptions of Cabernet Sauvignon wines. Food Chemistry: X 2022, 10 , 100409. https://doi.org/10.1016/j.fochx.2022.100409
    26. Lokesh Kumar, Bin Tian, Roland Harrison. Interactions of Vitis vinifera L. cv. Pinot Noir grape anthocyanins with seed proanthocyanidins and their effect on wine color and phenolic composition. LWT 2022, 162 , 113428. https://doi.org/10.1016/j.lwt.2022.113428
    27. Jorge Piernas, María J. Giménez, Luis Noguera-Artiaga, María E. García-Pastor, Santiago García-Martínez, Pedro J. Zapata. Influence of Bunch Compactness and Berry Thinning Methods on Wine Grape Quality and Sensory Attributes of Wine in Vitis vinifera L. cv. ‘Monastrell’. Agronomy 2022, 12 (3) , 680. https://doi.org/10.3390/agronomy12030680
    28. James A. Kennedy. Wine color. 2022, 97-132. https://doi.org/10.1016/B978-0-08-102067-8.00016-6
    29. R.G.V. Bramley. Precision Viticulture: Managing vineyard variability for improved quality outcomes. 2022, 541-586. https://doi.org/10.1016/B978-0-08-102067-8.00002-6
    30. Gustavo Pereyra, Milka Ferrer, Anne Pellegrino, Remi Gaudin. Montmorillonite content is an influential soil parameter of grapevine development and yield in South Uruguay. Agrociencia Uruguay 2022, 26 (2) https://doi.org/10.31285/AGRO.26.1124
    31. Sandra N. Fredes, Luis Á. Ruiz, Jorge A. Recio. Modeling Phenols, Anthocyanins and Color Intensity of Wine Using Pre-Harvest Sentinel-2 Images. Remote Sensing 2021, 13 (23) , 4951. https://doi.org/10.3390/rs13234951
    32. Daryl Rowan, Helen Boldingh, Sarah Cordiner, Janine Cooney, Duncan Hedderley, Katrin Hewitt, Dwayne Jensen, Trisha Pereira, Tania Trower, Tony McGhie. Kiwifruit Metabolomics—An Investigation of within Orchard Metabolite Variability of Two Cultivars of Actinidia chinensis. Metabolites 2021, 11 (9) , 603. https://doi.org/10.3390/metabo11090603
    33. Sandra N. Fredes, Luis Á. Ruiz, Jorge A. Recio. Modeling °Brix and pH in Wine Grapes from Satellite Images in Colchagua Valley, Chile. Agriculture 2021, 11 (8) , 697. https://doi.org/10.3390/agriculture11080697
    34. D. Sarri, S. Priori, R. Lisci, S. Lombardo, L. D’Avino, G. L’Abate, M. Vieri, G.B. Mattii, L. Salvi, M. Antoni. A comparison of canopy and soil proximal sensing to implement selective harvesting in viticulture. Acta Horticulturae 2021, (1314) , 157-164. https://doi.org/10.17660/ActaHortic.2021.1314.21
    35. Felix Dittrich, Thomas Iserloh, Cord-Henrich Treseler, Roman Hüppi, Sophie Ogan, Manuel Seeger, Sören Thiele-Bruhn. Crop Diversification in Viticulture with Aromatic Plants: Effects of Intercropping on Grapevine Productivity in a Steep-Slope Vineyard in the Mosel Area, Germany. Agriculture 2021, 11 (2) , 95. https://doi.org/10.3390/agriculture11020095
    36. Angela M. Sparrow, Warwick Gill, Robert G. Dambergs, Dugald C. Close. Focus on the role of seed tannins and pectolytic enzymes in the color development of Pinot noir wine. Current Research in Food Science 2021, 4 , 405-413. https://doi.org/10.1016/j.crfs.2021.05.007
    37. Fernanda Cosme, Alice Vilela, Luís Moreira, Carla Moura, José A. P. Enríquez, Luís Filipe-Ribeiro, Fernando M. Nunes. Terroir Effect on the Phenolic Composition and Chromatic Characteristics of Mencía/Jaen Monovarietal Wines: Bierzo D.O. (Spain) and Dão D.O. (Portugal). Molecules 2020, 25 (24) , 6008. https://doi.org/10.3390/molecules25246008
    38. James J. Willwerth, Andrew G. Reynolds, . Spatial variability in Ontario Riesling vineyards. II. Berry composition. Canadian Journal of Plant Science 2020, 100 (5) , 504-527. https://doi.org/10.1139/cjps-2019-0291
    39. Angela M. Sparrow, Robert G. Dambergs, Dugald C. Close. Grape skins as supplements for color development in Pinot noir wine. Food Research International 2020, 133 , 108707. https://doi.org/10.1016/j.foodres.2019.108707
    40. Bohan Yang, Shuang He, Yuan Liu, Buchun Liu, Yanlun Ju, Dengzhao Kang, Xiangyu Sun, Yulin Fang. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries. Food Chemistry 2020, 314 , 126170. https://doi.org/10.1016/j.foodchem.2020.126170
    41. Ronald S. Jackson. Grapevine structure and function. 2020, 77-150. https://doi.org/10.1016/B978-0-12-816118-0.00003-9
    42. Ronald S. Jackson. Vineyard practice. 2020, 151-330. https://doi.org/10.1016/B978-0-12-816118-0.00004-0
    43. Markus Keller. Developmental physiology. 2020, 199-277. https://doi.org/10.1016/B978-0-12-816365-8.00006-3
    44. . Bibliography. 2020, 395-517. https://doi.org/10.1016/B978-0-12-816365-8.09993-0
    45. María-Rosa González, Girma Hailemichael, Álvaro Catalina, Pedro Martín. Combined effects of water status and iron deficiency chlorosis on grape composition in non-irrigated vineyards. Scientia Agricola 2019, 76 (6) , 473-480. https://doi.org/10.1590/1678-992x-2018-0084
    46. Erna H. Blancquaert, Anita Oberholster, Jorge M. Ricardo-da-Silva, Alain J. Deloire. Grape Flavonoid Evolution and Composition Under Altered Light and Temperature Conditions in Cabernet Sauvignon (Vitis vinifera L.). Frontiers in Plant Science 2019, 10 https://doi.org/10.3389/fpls.2019.01062
    47. Paul F.W. Mawdsley, Jean C. Dodson Peterson, L. Federico Casassa. Multi-year study of the effects of cluster thinning on vine performance, fruit and wine composition of Pinot noir (clone 115) in California’s Edna Valley AVA (USA). Scientia Horticulturae 2019, 256 , 108631. https://doi.org/10.1016/j.scienta.2019.108631
    48. Bahare Salehi, Sanja Vlaisavljevic, Charles Oluwaseun Adetunji, Juliana Bunmi Adetunji, Dorota Kregiel, Hubert Antolak, Ewelina Pawlikowska, Yadav Uprety, Ksenija S. Mileski, Hari Prasad Devkota, Javad Sharifi-Rad, Gitishree Das, Jayanta Kumar Patra, Arun Kumar Jugran, Antonio Segura-Carretero, María del Mar Contreras. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science & Technology 2019, 91 , 362-379. https://doi.org/10.1016/j.tifs.2019.07.042
    49. Jacqui M. McRae, Bo Teng, Keren Bindon. Factors Influencing Red Wine Color From the Grape to the Glass. 2019, 97-106. https://doi.org/10.1016/B978-0-08-100596-5.21655-7
    50. António M. Jordão, Jorge M. Ricardo-da-Silva. Evolution of Proanthocyanidins During Grape Maturation, Winemaking, and Aging Process of Red Wines. 2019, 177-193. https://doi.org/10.1016/B978-0-12-814399-5.00012-8
    51. Ana Belén González-Fernández, José Ramón Rodríguez-Pérez, Enoc Sanz-Ablanedo, José Benito Valenciano, Victoriano Marcelo. Delineating vineyard zones by fuzzy K-means algorithm based on grape sampling variables. Scientia Horticulturae 2019, 243 , 559-566. https://doi.org/10.1016/j.scienta.2018.09.012
    52. M. Blank, S. Tittmann, N. Ben Ghozlen, M. Stoll. Grapevine rootstocks result in differences in leaf composition ( Vitis vinifera L. cv. Pinot Noir) detected through non-invasive fluorescence sensor technology. Australian Journal of Grape and Wine Research 2018, 24 (3) , 327-334. https://doi.org/10.1111/ajgw.12343
    53. S. Karakis, E. Gulbranson, B. Cameron. Insight into the source of grapevine water acquisition during key phenological stages using stable isotope analysis. Australian Journal of Grape and Wine Research 2018, 24 (2) , 252-259. https://doi.org/10.1111/ajgw.12318
    54. Shinichi Enoki, Yu Hamaguchi, Shunji Suzuki, Hiroyuki Fujisawa, Tomoki Hattori, Kayo Arita, Chiho Yamaguchi, Masachika Mikami, Shu Nagasaka, Keisuke Tanaka, . Physiological characterization of leaf and internode after bud break in Japanese indigenous Koshu grape by comparative RNA sequencing analysis. PLOS ONE 2018, 13 (3) , e0194807. https://doi.org/10.1371/journal.pone.0194807
    55. Roland Harrison. Practical interventions that influence the sensory attributes of red wines related to the phenolic composition of grapes: a review. International Journal of Food Science & Technology 2018, 53 (1) , 3-18. https://doi.org/10.1111/ijfs.13480
    56. Y. Romboli, S.F. Di Gennaro, S. Mangani, G. Buscioni, A. Matese, L. Genesio, M. Vincenzini. Vine vigour modulates bunch microclimate and affects the composition of grape and wine flavonoids: an unmanned aerial vehicle approach in a Sangiovese vineyard in Tuscany. Australian Journal of Grape and Wine Research 2017, 23 (3) , 368-377. https://doi.org/10.1111/ajgw.12293
    57. Ignacio García-Estévez, Natalia Quijada-Morín, Julián C Rivas-Gonzalo, José Martínez-Fernández, Nilda Sánchez, Carlos M Herrero-Jiménez, M Teresa Escribano-Bailón. Relationship between hyperspectral indices, agronomic parameters and phenolic composition of Vitis vinifera cv Tempranillo grapes. Journal of the Science of Food and Agriculture 2017, 97 (12) , 4066-4074. https://doi.org/10.1002/jsfa.8366
    58. Ana Belén González-Fernández, José Ramón Rodríguez-Pérez, Enoc Sanz Ablanedo, Celestino Ordoñez. Vineyard zone delineation by cluster classification based on annual grape and vine characteristics. Precision Agriculture 2017, 18 (4) , 525-573. https://doi.org/10.1007/s11119-016-9475-4
    59. Frederico Alcântara Novelli Dias, Renata Vieira da Mota, Claudia Rita de Souza, Rodrigo Meirelles de Azevedo Pimentel, Laís Cristina de Souza, André Luiz de Souza, Murillo de Albuquerque Regina. Rootstock on vine performance and wine quality of ‘Syrah’ under double pruning management. Scientia Agricola 2017, 74 (2) , 134-141. https://doi.org/10.1590/1678-992x-2015-0384
    60. L.I. Malinovski, A.F. Brighenti, R. Cipriani, J.F. Cesconeto, G. Vanderlinde, S. Simon, A.L. Silva, R. Allebrandt, B.P. de Bem. Effect of crop load per leaf area ratio on the quality of ‘Merlot’ and ‘Syrah’ grown in high altitude in Santa Catarina, Brazil. Acta Horticulturae 2017, (1157) , 393-398. https://doi.org/10.17660/ActaHortic.2017.1157.55
    61. Aude A. Watrelot, Delia L. Schulz, James A. Kennedy. Wine polysaccharides influence tannin-protein interactions. Food Hydrocolloids 2017, 63 , 571-579. https://doi.org/10.1016/j.foodhyd.2016.10.010
    62. K.A. Bindon, S. Kassara, P.A. Smith. Towards a model of grape tannin extraction under wine-like conditions: the role of suspended mesocarp material and anthocyanin concentration. Australian Journal of Grape and Wine Research 2017, 23 (1) , 22-32. https://doi.org/10.1111/ajgw.12258
    63. Natalia Quijada-Morín, Ignacio García-Estévez, Julio Nogales-Bueno, Francisco J. Rodríguez-Pulido, Francisco J. Heredia, Julián C. Rivas-Gonzalo, M. Teresa Escribano-Bailón, José Miguel Hernández-Hierro. Trying to set up the flavanolic phases during grape seed ripening: A spectral and chemical approach. Talanta 2016, 160 , 556-561. https://doi.org/10.1016/j.talanta.2016.07.064
    64. Jessa A.K. Black, Frederick Di Profio, Valentine Le Dauphin, Luis Hugo Moreno, Andrew G. Reynolds, . Impact of crop level and harvest date on anthocyanins and phenolics of red wines from Ontario. Canadian Journal of Plant Science 2016, 52 , 1-15. https://doi.org/10.1139/cjps-2016-0033
    65. Xu Liu, Jinlu Li, Yuping Tian, Mingan Liao, Zhenwen Zhang, . Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.). PLOS ONE 2016, 11 (3) , e0151276. https://doi.org/10.1371/journal.pone.0151276
    66. Pascual Romero, Jose Ignacio Fernández-Fernández, Rocío Gil-Muñoz, Pablo Botía. Vigour-yield-quality relationships in long-term deficit irrigated winegrapes grown under semiarid conditions. Theoretical and Experimental Plant Physiology 2016, 28 (1) , 23-51. https://doi.org/10.1007/s40626-016-0061-y
    67. Andrea Anesi, Matteo Stocchero, Silvia Dal Santo, Mauro Commisso, Sara Zenoni, Stefania Ceoldo, Giovanni Battista Tornielli, Tracey E. Siebert, Markus Herderich, Mario Pezzotti, Flavia Guzzo. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC Plant Biology 2015, 15 (1) https://doi.org/10.1186/s12870-015-0584-4
    68. , J. Käthner, M. Zude-Sasse, . Interaction of 3D soil electrical conductivity and generative growth in Prunus domestica. European Journal of Horticultural Science 2015, 80 (5) , 231-239. https://doi.org/10.17660/eJHS.2015/80.5.5
    69. Xiao-Qing Xu, Guo Cheng, Liang-Liang Duan, Ren Jiang, Qiu-Hong Pan, Chang-Qing Duan, Jun Wang. Effect of training systems on fatty acids and their derived volatiles in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Chemistry 2015, 181 , 198-206. https://doi.org/10.1016/j.foodchem.2015.02.082
    70. Irene Bonilla, Fernando Martinez de Toda, Jose Antonio Martínez-Casasnovas. Vine vigor, yield and grape quality assessment by airborne remote sensing over three years: Analysis of unexpected relationships in cv. Tempranillo. Spanish Journal of Agricultural Research 2015, 13 (2) , e0903. https://doi.org/10.5424/sjar/2015132-7809
    71. Haiyang Jiang, Jing Jin, Huan Liu, Qing Dong, Hanwei Yan, Defang Gan, Wei Zhang, Suwen Zhu. Genome-wide analysis of HD-Zip genes in grape (Vitis vinifera). Tree Genetics & Genomes 2015, 11 (1) https://doi.org/10.1007/s11295-014-0827-9
    72. Ayalsew Zerihun, Lexie McClymont, Dean Lanyon, Ian Goodwin, Mark Gibberd. Deconvoluting effects of vine and soil properties on grape berry composition. Journal of the Science of Food and Agriculture 2015, 95 (1) , 193-203. https://doi.org/10.1002/jsfa.6705
    73. . References. 2015, 381-488. https://doi.org/10.1016/B978-0-12-419987-3.00019-4
    74. J. M. Terrón, J. Blanco, F. J. Moral, L. A. Mancha, D. Uriarte, J. R. Marques da Silva. Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on-the-go sensors. SOIL 2015, 1 (1) , 459-473. https://doi.org/10.5194/soil-1-459-2015
    75. Keren A. Bindon, Michael G. McCarthy, Paul A. Smith. Development of wine colour and non-bleachable pigments during the fermentation and ageing of (Vitis vinifera L. cv.) Cabernet Sauvignon wines differing in anthocyanin and tannin concentration. LWT - Food Science and Technology 2014, 59 (2) , 923-932. https://doi.org/10.1016/j.lwt.2014.05.051
    76. Maite Edo-Roca, Antoni Sanchez-Ortiz, Montserrat Nadal, Miriam Lampreave, Josep Valls. Vine vigor and cluster uniformity on Vitis vinifera L. seed procyanidin composition in a warm Mediterranean climate. Spanish Journal of Agricultural Research 2014, 12 (3) , 772. https://doi.org/10.5424/sjar/2014123-5188
    77. Jianqiang Song, Richard E. Smart, Robert G. Dambergs, Angela M. Sparrow, Reuben B. Wells, Hua Wang, Michael C. Qian. Pinot Noir wine composition from different vine vigour zones classified by remote imaging technology. Food Chemistry 2014, 153 , 52-59. https://doi.org/10.1016/j.foodchem.2013.12.037
    78. N.J. Scarlett, R.G.V. Bramley, T.E. Siebert. Within-vineyard variation in the ‘pepper’ compound rotundone is spatially structured and related to variation in the land underlying the vineyard. Australian Journal of Grape and Wine Research 2014, 20 (2) , 214-222. https://doi.org/10.1111/ajgw.12075
    79. Chloé Roullier-Gall, Marianna Lucio, Laurence Noret, Philippe Schmitt-Kopplin, Régis D. Gougeon, . How Subtle Is the “Terroir” Effect? Chemistry-Related Signatures of Two “Climats de Bourgogne”. PLoS ONE 2014, 9 (5) , e97615. https://doi.org/10.1371/journal.pone.0097615
    80. Ronald S. Jackson. Grapevine Structure and Function. 2014, 69-141. https://doi.org/10.1016/B978-0-12-381468-5.00003-8
    81. Ronald S. Jackson. Vineyard Practice. 2014, 143-306. https://doi.org/10.1016/B978-0-12-381468-5.00004-X
    82. Pietro Scafidi, Antonino Pisciotta, Davide Patti, Pasquale Tamborra, Rosario Di Lorenzo, Maria Gabriella Barbagallo. Effect of artificial shading on the tannin accumulation and aromatic composition of the Grillo cultivar (Vitis vinifera L.). BMC Plant Biology 2013, 13 (1) https://doi.org/10.1186/1471-2229-13-175
    83. António Teixeira, José Eiras-Dias, Simone Castellarin, Hernâni Gerós. Berry Phenolics of Grapevine under Challenging Environments. International Journal of Molecular Sciences 2013, 14 (9) , 18711-18739. https://doi.org/10.3390/ijms140918711
    84. Pascual Romero, Rocío Gil-Muñoz, Francisco M. del Amor, Esperanza Valdés, Jose Ignacio Fernández, Adrián Martinez-Cutillas. Regulated Deficit Irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agricultural Water Management 2013, 121 , 85-101. https://doi.org/10.1016/j.agwat.2013.01.007
    85. S. P. Imre, J. L. Mauk, S. Bell, A. Dougherty. Mapping grapevine vigour, topographic changes and lateral variation in soils. Journal of Wine Research 2013, 24 (1) , 1-18. https://doi.org/10.1080/09571264.2012.712811
    86. N. Busse-Valverde, A. B. Bautista-Ortín, E. Gómez-Plaza, J. I. Fernández-Fernández, R. Gil-Muñoz. Influence of skin maceration time on the proanthocyanidin content of red wines. European Food Research and Technology 2012, 235 (6) , 1117-1123. https://doi.org/10.1007/s00217-012-1842-4
    87. A.B. González-Fernández, V. Marcelo, J.B. Valenciano, J.R. Rodríguez-Pérez. Relationship between physical and chemical parameters for four commercial grape varieties from the Bierzo region (Spain). Scientia Horticulturae 2012, 147 , 111-117. https://doi.org/10.1016/j.scienta.2012.09.009
    88. G. A. Gambetta, C. M. Manuck, S. T. Drucker, T. Shaghasi, K. Fort, M. A. Matthews, M. A. Walker, A. J. McElrone. The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play?. Journal of Experimental Botany 2012, 63 (18) , 6445-6455. https://doi.org/10.1093/jxb/ers312
    89. J. Baluja, M. P. Diago, P. Goovaerts, J. Tardaguila. Assessment of the spatial variability of anthocyanins in grapes using a fluorescence sensor: relationships with vine vigour and yield. Precision Agriculture 2012, 13 (4) , 457-472. https://doi.org/10.1007/s11119-012-9261-x
    90. Manuel Teles Oliveira, Victor de Freitas, Tiago Alves Sousa. Water use efficiency and must quality of irrigated grapevines of north-eastern Portugal. Archives of Agronomy and Soil Science 2012, 58 (8) , 871-886. https://doi.org/10.1080/03650340.2011.551875
    91. Raúl Ferrer-Gallego, José Miguel Hernández-Hierro, Julián C. Rivas-Gonzalo, M. Teresa Escribano-Bailón. Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Analytica Chimica Acta 2012, 732 , 73-77. https://doi.org/10.1016/j.aca.2011.12.072
    92. A.B. BAUTISTA-ORTÍN, P. RODRÍGUEZ-RODRÍGUEZ, R. GIL-MUÑOZ, E. JIMÉNEZ-PASCUAL, N. BUSSE-VALVERDE, A. MARTÍNEZ-CUTILLAS, J.M. LÓPEZ-ROCA, E. GÓMEZ-PLAZA. Influence of berry ripeness on concentration, qualitative composition and extractability of grape seed tannins. Australian Journal of Grape and Wine Research 2012, 18 (2) , 123-130. https://doi.org/10.1111/j.1755-0238.2012.00178.x
    93. J. BALUJA, M.P. DIAGO, P. GOOVAERTS, J. TARDAGUILA. Spatio-temporal dynamics of grape anthocyanin accumulation in a Tempranillo vineyard monitored by proximal sensing. Australian Journal of Grape and Wine Research 2012, 18 (2) , 173-182. https://doi.org/10.1111/j.1755-0238.2012.00186.x
    94. J. A. Martinez-Casasnovas, J. Agelet-Fernandez, J. Arno, M. C. Ramos. Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality. Spanish Journal of Agricultural Research 2012, 10 (2) , 326. https://doi.org/10.5424/sjar/2012102-370-11
    95. Seth D. Cohen, Julie M. Tarara, Greg A. Gambetta, Mark A. Matthews, James A. Kennedy. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. Journal of Experimental Botany 2012, 63 (7) , 2655-2665. https://doi.org/10.1093/jxb/err449
    96. Antonio Odair Santos, Robert L. Wample, Sivakumar Sachidhanantham, Oren Kaye. Grape quality mapping for vineyard differential harvesting. Brazilian Archives of Biology and Technology 2012, 55 (2) , 193-204. https://doi.org/10.1590/S1516-89132012000200003
    97. Cécile Coulon-Leroy, René Morlat, Gérard Barbeau, Christian Gary, Marie Thiollet-Scholtus. The Vine Functioning Pathway, A New Conceptual Representation. 2012, 241-264. https://doi.org/10.1007/978-94-007-5449-2_10
    98. Susana Río Segade, Ignacio Orriols, Simone Giacosa, Luca Rolle. Instrumental Texture Analysis Parameters as Winegrapes Varietal Markers and Ripeness Predictors. International Journal of Food Properties 2011, 14 (6) , 1318-1329. https://doi.org/10.1080/10942911003650320
    99. J. Tardaguila, J. Baluja, L. Arpon, P. Balda, M. Oliveira. Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture 2011, 12 (5) , 762-773. https://doi.org/10.1007/s11119-011-9219-4
    100. Sugae Wada, James A. Kennedy, Barbara M. Reed. Seed-coat anatomy and proanthocyanidins contribute to the dormancy of Rubus seed. Scientia Horticulturae 2011, 130 (4) , 762-768. https://doi.org/10.1016/j.scienta.2011.08.034
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect