Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Molecular Characterization of a Stable Antisense Chalcone Synthase Phenotype in Strawberry (Fragaria × ananassa)
My Activity

Figure 1Loading Img
    Article

    Molecular Characterization of a Stable Antisense Chalcone Synthase Phenotype in Strawberry (Fragaria × ananassa)
    Click to copy article linkArticle link copied!

    View Author Information
    Biomolecular Food Technology, Technical University München, Lise-Meitner-Strasse 34, 85354 Freising, Germany, and Business Unit Genetics and Breeding, Plant Research International, P.O. Box 16, 6700 AA, Wageningen, Netherlands
    Other Access Options

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2006, 54, 6, 2145–2153
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf052574z
    Published March 1, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    An octaploid (Fragaria × ananassa cv. Calypso) genotype of strawberry was transformed with an antisense chalcone synthase (CHS) gene construct using a ripening related CHS cDNA from Fragaria × ananassa cv. Elsanta under the control of the constitutive CaMV 35S promoter via Agrobacterium tumefaciens. Out of 25 transgenic lines, nine lines showed a reduction in CHS mRNA accumulation of more than 50% as compared to the untransformed cv. Calypso control. The antisense CHS construct was found to be integrated into the genome, with a copy number ranging from one to four. The pigmentation of the fruit was only affected when less than 5% of the control CHS expression level was detected. A stable antisense phenotype over a period of 4 years was obtained in the primary transgenic lines at a rate of 1:20. As a consequence of the reduced activity of CHS, the levels of anthocyanins, flavonols, and proanthocyanidins were downregulated and precursors of the flavonoid pathway were shunted to the phenylpropanoid pathway leading to highly increased levels of cinnamoyl glucose (520% of control), caffeoyl glucose (816% of control), and feruloyl glucose (1092% of control) as well as p-coumaryl alcohol (363% of control) and p-coumaryl-1-acetate (1079% of control), which occur only as trace components in untransformed control fruits. These results demonstrate that the introduction of an antisense CHS construct in strawberry results in an unpredictable biochemical phenotype, thereby confirming that CHS function is an important regulatory point of substrate flow between the flavonoid and the phenylpropanoid pathways.

    Keywords: Strawberry; Fragaria × ananassa; chalcone synthase; phenylpropanoid; p-coumaryl-1-acetate

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Technical University München.

     Plant Research International.

    *

     To whom correspondence should be addressed. Tel:  +49(0)8161-548-312. Fax:  +49(0)8161-548-595. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 71 publications.

    1. Mwafaq Ibdah, Stefan Martens, David R. Gang. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. Journal of Agricultural and Food Chemistry 2018, 66 (10) , 2273-2280. https://doi.org/10.1021/acs.jafc.7b04445
    2. Priyanka R. Chaudhary, Haejeen Bang, Guddadarangavvanahally K. Jayaprakasha, and Bhimanagouda S. Patil . Variation in Key Flavonoid Biosynthetic Enzymes and Phytochemicals in ‘Rio Red’ Grapefruit (Citrus paradisi Macf.) during Fruit Development. Journal of Agricultural and Food Chemistry 2016, 64 (47) , 9022-9032. https://doi.org/10.1021/acs.jafc.6b02975
    3. Lucia Landi, Erica Feliziani, and Gianfranco Romanazzi . Expression of Defense Genes in Strawberry Fruits Treated with Different Resistance Inducers. Journal of Agricultural and Food Chemistry 2014, 62 (14) , 3047-3056. https://doi.org/10.1021/jf404423x
    4. Klaus Olbricht, Detlef Ulrich, Kirsten Weiss, and Christine Grafe . Variation in the Amounts of Selected Volatiles in a Model Population of Fragaria × ananassa Duch. As Influenced by Harvest Year. Journal of Agricultural and Food Chemistry 2011, 59 (3) , 944-952. https://doi.org/10.1021/jf1034948
    5. W. SchwabT. HoffmannM. Griesser. Metabolic Engineering in Fragaria x ananassa for the Production of Epiafzelechin and Phenylpropenoids. 2010, 293-300. https://doi.org/10.1021/bk-2010-1035.ch019
    6. J. S. Wulf, S. Rühmann, I. Rego, I. Puhl, D. Treutter and M. Zude . Nondestructive Application of Laser-Induced Fluorescence Spectroscopy for Quantitative Analyses of Phenolic Compounds in Strawberry Fruits (Fragaria x ananassa). Journal of Agricultural and Food Chemistry 2008, 56 (9) , 2875-2882. https://doi.org/10.1021/jf072495i
    7. Kaitlyn Vondracek, Fredy Altpeter, Tie Liu, Seonghee Lee. Advances in genomics and genome editing for improving strawberry (Fragaria ×ananassa). Frontiers in Genetics 2024, 15 https://doi.org/10.3389/fgene.2024.1382445
    8. Zhilong Zhang, Yuguang Xiao, Peilu Huang, Haonan Ji, Xiaoshu Zhang, Yini Zhang, Jingmin Jiang, Shu Diao, Jun Liu. Integrated metabolomics and transcriptomics analysis to characterize the formation mechanism of purple in Michelia spp. petals. Scientia Horticulturae 2024, 330 , 113047. https://doi.org/10.1016/j.scienta.2024.113047
    9. Xiaoting Liu, Haifu Liu, Baoming Tian, Gongyao Shi, Cheng Liu, Jialin Guo, Gangqiang Cao, Fang Wei. Metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key metabolites and candidate genes in purple wheat ( Triticum aestivum L.). Physiologia Plantarum 2023, 175 (3) https://doi.org/10.1111/ppl.13921
    10. Wenjing Lu, Xiaopeng Wei, Xueyuan Han, Renchi Chen, Chaogeng Xiao, Xiaojie Zheng, Linchun Mao. Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit. Foods 2023, 12 (9) , 1802. https://doi.org/10.3390/foods12091802
    11. Yuanxiu Lin, Chunyan Wang, Shuaipeng Cao, Ziqing Sun, Yunting Zhang, Mengyao Li, Wen He, Yan Wang, Qing Chen, Yong Zhang, Xiaorong Wang, Ya Luo, Haoru Tang. Proanthocyanidins Delay Fruit Coloring and Softening by Repressing Related Gene Expression during Strawberry (Fragaria × ananassa Duch.) Ripening. International Journal of Molecular Sciences 2023, 24 (4) , 3139. https://doi.org/10.3390/ijms24043139
    12. Dhriti Kapoor, Savita Bhardwaj, Neeta Raj Sharma. Fragrance Stimulation Mechanisms of Flowers and their Regulation Under Environmental Constraints. Journal of Plant Growth Regulation 2023, 42 (1) , 60-82. https://doi.org/10.1007/s00344-021-10555-4
    13. Ticao Zhang, Qin Qiao, Xiao Du, Xiao Zhang, Yali Hou, Xin Wei, Chao Sun, Rengang Zhang, Quanzheng Yun, M. James C. Crabbe, Yves Van de Peer, Wenxuan Dong. Cultivated hawthorn ( Crataegus pinnatifida var. major) genome sheds light on the evolution of Maleae (apple tribe). Journal of Integrative Plant Biology 2022, 64 (8) , 1487-1501. https://doi.org/10.1111/jipb.13318
    14. Jincheng Shen, Wanlu Shao, Junmin Li, Hongfei Lu. Integrated metabolomic and transcriptomic analysis reveals factors underlying differences in fruit quality between Fragaria nilgerrensis and Fragaria pentaphylla. Journal of the Science of Food and Agriculture 2022, 102 (8) , 3287-3296. https://doi.org/10.1002/jsfa.11674
    15. A. A. Guzeeva, I. A. Kapitova, S. V. Dolgov, Yu. V. Burmenko. Advances and outlook of horticultural bioengineering. Horticulture and viticulture 2021, (6) , 17-29. https://doi.org/10.31676/0235-2591-2021-6-17-29
    16. Jianqing Chen, Jinyu Zhou, Yanhong Hong, Zekun Li, Xiangyu Cheng, Aiying Zheng, Yilin Zhang, Juanjuan Song, Guifeng Xie, Changmei Chen, Meng Yuan, Tengyun Wang, Qingxi Chen. Genome-wide identification of ubiquitin proteasome subunits as superior reference genes for transcript normalization during receptacle development in strawberry cultivars. BMC Genomics 2021, 22 (1) https://doi.org/10.1186/s12864-021-07393-9
    17. Ke Duan, Ying-Jie Zhao, Zi-Yi Li, Xiao-Hua Zou, Jing Yang, Cheng-Lin Guo, Si-Yu Chen, Xiu-Rong Yang, Qing-Hua Gao. A Strategy for the Production and Molecular Validation of Agrobacterium-Mediated Intragenic Octoploid Strawberry. Plants 2021, 10 (11) , 2229. https://doi.org/10.3390/plants10112229
    18. Nicolás E. Figueroa, Camilo Gatica-Meléndez, Carlos R. Figueroa. Ethylene application at the immature stage of Fragaria chiloensis fruit represses the anthocyanin biosynthesis with a concomitant accumulation of lignin. Food Chemistry 2021, 358 , 129913. https://doi.org/10.1016/j.foodchem.2021.129913
    19. Geng Meng, Weiyao Fan, Søren K. Rasmussen. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Physiology and Biochemistry 2021, 167 , 245-256. https://doi.org/10.1016/j.plaphy.2021.08.004
    20. Meritxell Pérez-Hedo, Miquel Alonso-Valiente, Sandra Vacas, Carolina Gallego, Clara Pons, Vicent Arbona, José L. Rambla, Vicente Navarro-Llopis, Antonio Granell, Alberto Urbaneja. Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses. Journal of Pest Science 2021, 94 (4) , 1221-1235. https://doi.org/10.1007/s10340-021-01334-x
    21. Jincheng Shen, Wanlu Shao, Zhaokui Du, Hongfei Lu, Junmin Li. Integrated metabolomic and transcriptomic analyses reveal differences in the biosynthetic pathway of anthocyanins in Fragaria nilgerrensis and Fragaria pentaphylla. Scientia Horticulturae 2020, 271 , 109476. https://doi.org/10.1016/j.scienta.2020.109476
    22. Feng Zhang, Hao Guo, Jiacheng Huang, Chenkun Yang, Yufei Li, Xuyang Wang, Lianghuan Qu, Xianqing Liu, Jie Luo. A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. Science China Life Sciences 2020, 63 (7) , 1037-1052. https://doi.org/10.1007/s11427-019-1604-3
    23. Wilfried Schwab, Ludwig Ring, Chuankui Song. Transcriptional and Metabolite Profiling Analyses Uncover Novel Genes Essential for Polyphenol Accumulation. 2019, 109-126. https://doi.org/10.1002/9781119427896.ch4
    24. Elena Palomo-Ríos, Miguel A. Quesada, Antonio J. Matas, Fernando Pliego-Alfaro, José A. Mercado. The History and Current Status of Genetic Transformation in Berry Crops. 2018, 139-160. https://doi.org/10.1007/978-3-319-76020-9_11
    25. Delphine M. Pott, José G. Vallarino, Sonia Osorio, Iraida Amaya. Fruit Ripening and QTL for Fruit Quality in the Octoploid Strawberry. 2018, 95-113. https://doi.org/10.1007/978-3-319-76020-9_8
    26. Wenjing Lu, Jingxin Chen, Xingchen Ren, Jiajia Yuan, Xueyuan Han, Linchun Mao, Tiejin Ying, Zisheng Luo. One novel strawberry MADS-box transcription factor FaMADS1a acts as a negative regulator in fruit ripening. Scientia Horticulturae 2018, 227 , 124-131. https://doi.org/10.1016/j.scienta.2017.09.042
    27. Lesbia C. Julio-González, Antonio J. Matas, José A. Mercado. Caracterización de indicadores de la calidad del fruto en líneas de fresa transgénicas con genes silenciados que codifican para enzimas pectinolíticas. Revista Colombiana de Biotecnología 2018, 20 (1) , 42-50. https://doi.org/10.15446/rev.colomb.biote.v20n1.73673
    28. José G. Vallarino, Trevor H. Yeats, Eugenia Maximova, Jocelyn K. Rose, Alisdair R. Fernie, Sonia Osorio. Postharvest changes in LIN5-down-regulated plants suggest a role for sugar deficiency in cuticle metabolism during ripening. Phytochemistry 2017, 142 , 11-20. https://doi.org/10.1016/j.phytochem.2017.06.007
    29. Hakan Cetinkaya, Muhittin Kulak, Muhammet Karaman, Halide Sedef Karaman, Ferudun Kocer. Flavonoid Accumulation Behavior in Response to the Abiotic Stress: Can a Uniform Mechanism Be Illustrated for All Plants?. 2017https://doi.org/10.5772/68093
    30. Mosaab Yahyaa, Samah Ali, Rachel Davidovich-Rikanati, Muhammad Ibdah, Alona Shachtier, Yoram Eyal, Efraim Lewinsohn, Mwafaq Ibdah. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.). Phytochemistry 2017, 140 , 125-133. https://doi.org/10.1016/j.phytochem.2017.04.022
    31. Andrew P. Dare, Yar‐Khing Yauk, Sumathi Tomes, Tony K. McGhie, Ria S. Rebstock, Janine M. Cooney, Ross G. Atkinson. Silencing a phloretin‐specific glycosyltransferase perturbs both general phenylpropanoid biosynthesis and plant development. The Plant Journal 2017, 91 (2) , 237-250. https://doi.org/10.1111/tpj.13559
    32. Katja Härtl, Gregor Kalinowski, Thomas Hoffmann, Anja Preuss, Wilfried Schwab. RNAi‐mediated endogene silencing in strawberry fruit: detection of primary and secondary siRNAs by deep sequencing. Plant Biotechnology Journal 2017, 15 (5) , 658-668. https://doi.org/10.1111/pbi.12664
    33. Katja Härtl, Alisandra Denton, Katrin Franz-Oberdorf, Thomas Hoffmann, Melanie Spornraft, Björn Usadel, Wilfried Schwab. Early metabolic and transcriptional variations in fruit of natural white-fruited Fragaria vesca genotypes. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep45113
    34. Lau Su Ee, Purabi Mazumdar, Pooja Singh, Jennifer Ann Harikrishna. Use of dsRNA in Crop Improvement. 2017, 217-252. https://doi.org/10.1007/978-3-319-65079-1_10
    35. Chuankui Song, Shuai Zhao, Xiaotong Hong, Jingyi Liu, Katja Schulenburg, Wilfried Schwab. A UDP ‐glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry ( Fragaria × ananassa ). The Plant Journal 2016, 85 (6) , 730-742. https://doi.org/10.1111/tpj.13140
    36. J. Ricardo Pérez-Díaz, Jorge Pérez-Díaz, José Madrid-Espinoza, Enrique González-Villanueva, Yerko Moreno, Simón Ruiz-Lara. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Molecular Biology 2016, 90 (1-2) , 63-76. https://doi.org/10.1007/s11103-015-0394-y
    37. Hadas Peled-Zehavi, Moran Oliva, Qingjun Xie, Vered Tzin, Michal Oren-Shamir, Asaph Aharoni, Gad Galili. Metabolic Engineering of the Phenylpropanoid and Its Primary, Precursor Pathway to Enhance the Flavor of Fruits and the Aroma of Flowers. Bioengineering 2015, 2 (4) , 204-212. https://doi.org/10.3390/bioengineering2040204
    38. Shuncang Zhang, Hongyan Li, Xiao Liang, Yan Yan, Pengguo Xia, Yanyan Jia, Zongsuo Liang. Enhanced production of phenolic acids in Salvia miltiorrhiza hairy root cultures by combing the RNAi-mediated silencing of chalcone synthase gene with salicylic acid treatment. Biochemical Engineering Journal 2015, 103 , 185-192. https://doi.org/10.1016/j.bej.2015.07.019
    39. Jeremy Pillet, Kevin M. Folta. Pigments in Strawberry. 2015, 205-216. https://doi.org/10.1007/978-1-4939-2356-4_10
    40. Deqiang Tai, Ji Tian, Jie Zhang, Tingting Song, Yuncong Yao, . A Malus Crabapple Chalcone Synthase Gene, McCHS, Regulates Red Petal Color and Flavonoid Biosynthesis. PLoS ONE 2014, 9 (10) , e110570. https://doi.org/10.1371/journal.pone.0110570
    41. Su-Ying Yeh, Fong-Chin Huang, Thomas Hoffmann, Mechthild Mayershofer, Wilfried Schwab. FaPOD27 functions in the metabolism of polyphenols in strawberry fruit (Fragaria sp.). Frontiers in Plant Science 2014, 5 https://doi.org/10.3389/fpls.2014.00518
    42. . DNA Markers in Tree Improvement of Tropical Plantation Species. 2014, 568-592. https://doi.org/10.1201/b16714-25
    43. Xianbao Deng, Hany Bashandy, Miia Ainasoja, Juha Kontturi, Milla Pietiäinen, Roosa A. E. Laitinen, Victor A. Albert, Jari P. T. Valkonen, Paula Elomaa, Teemu H. Teeri. Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida. New Phytologist 2014, 201 (4) , 1469-1483. https://doi.org/10.1111/nph.12610
    44. Irene Aragüez, Victoriano Valpuesta Fernández. Metabolic engineering of aroma components in fruits. Biotechnology Journal 2013, 8 (10) , 1144-1158. https://doi.org/10.1002/biot.201300113
    45. Sara Posé, Candelas Paniagua, Manuel Cifuentes, Rosario Blanco-Portales, Miguel A. Quesada, José A. Mercado. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. Journal of Experimental Botany 2013, 64 (12) , 3803-3815. https://doi.org/10.1093/jxb/ert210
    46. Margherita Daminato, Flavia Guzzo, Giorgio Casadoro. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. Journal of Experimental Botany 2013, 64 (12) , 3775-3786. https://doi.org/10.1093/jxb/ert214
    47. Ludwig Ring, Su-Ying Yeh, Stephanie Hücherig, Thomas Hoffmann, Rosario Blanco-Portales, Mathieu Fouche, Carmen Villatoro, Béatrice Denoyes, Amparo Monfort, José Luis Caballero, Juan Muñoz-Blanco, Jonathan Gershenson, Wilfried Schwab. Metabolic Interaction between Anthocyanin and Lignin Biosynthesis Is Associated with Peroxidase FaPRX27 in Strawberry Fruit  . Plant Physiology 2013, 163 (1) , 43-60. https://doi.org/10.1104/pp.113.222778
    48. Andrew Dare, Roger Hellens. RNA interference silencing of CHS greatly alters the growth pattern of apple ( Malus x domestica ). Plant Signaling & Behavior 2013, 8 (8) , e25033. https://doi.org/10.4161/psb.25033
    49. Christopher D. Viljoen, Marius C. Snyman, Johan J. Spies. Identification and expression analysis of chalcone synthase and dihydroflavonol 4-reductase in Clivia miniata. South African Journal of Botany 2013, 87 , 18-21. https://doi.org/10.1016/j.sajb.2013.03.010
    50. Ariel Salvatierra, Paula Pimentel, María Alejandra Moya-León, Raúl Herrera. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry 2013, 90 , 25-36. https://doi.org/10.1016/j.phytochem.2013.02.016
    51. Andrew P. Dare, Sumathi Tomes, Midori Jones, Tony K. McGhie, David E. Stevenson, Ross A. Johnson, David R. Greenwood, Roger P. Hellens. Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple ( Malus × domestica ). The Plant Journal 2013, 74 (3) , 398-410. https://doi.org/10.1111/tpj.12140
    52. Hongjie Feng, Xinhui Tian, Yongchang Liu, Yanjun Li, Xinyu Zhang, Brian Joseph Jones, Yuqiang Sun, Jie Sun, . Analysis of Flavonoids and the Flavonoid Structural Genes in Brown Fiber of Upland Cotton. PLoS ONE 2013, 8 (3) , e58820. https://doi.org/10.1371/journal.pone.0058820
    53. Fei Jiang, Jia-Yi Wang, Hai-Feng Jia, Wen-Suo Jia, Hong-Qing Wang, Min Xiao. RNAi-Mediated Silencing of the Flavanone 3-Hydroxylase Gene and Its Effect on Flavonoid Biosynthesis in Strawberry Fruit. Journal of Plant Growth Regulation 2013, 32 (1) , 182-190. https://doi.org/10.1007/s00344-012-9289-1
    54. Tahira Fatima, Avtar K. Handa, Autar K. Mattoo. Functional Foods: Genetics, Metabolome, and Engineering Phytonutrient Levels. 2013, 1715-1749. https://doi.org/10.1007/978-3-642-22144-6_50
    55. Jens Rohloff, Pankaj Barah, Atle M. Bones. Improving Crop Productivity and Abiotic Stress Tolerance in Cultivated Fragaria Using Omics and Systems Biology Approach. 2012, 449-484. https://doi.org/10.1002/9783527665334.ch18
    56. Giorgio Gambino, Ivana Gribaudo. Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Research 2012, 21 (6) , 1163-1181. https://doi.org/10.1007/s11248-012-9602-6
    57. Amjad M. Husaini, Ab. Matteen Rafiqi. Role of Osmotin in Strawberry Improvement. Plant Molecular Biology Reporter 2012, 30 (5) , 1055-1064. https://doi.org/10.1007/s11105-011-0394-2
    58. Thomas Hoffmann, Robert Kurtzer, Kilian Skowranek, Peter Kießling, Eyal Fridman, Eran Pichersky, Wilfried Schwab. Metabolic engineering in strawberry fruit uncovers a dormant biosynthetic pathway. Metabolic Engineering 2011, 13 (5) , 527-531. https://doi.org/10.1016/j.ymben.2011.06.002
    59. Autar K. Mattoo, Vijaya Shukla, Tahira Fatima, Avtar K. Handa, Surender K. Yachha. Genetic Engineering to Enhance Crop-Based Phytonutrients (Nutraceuticals) to Alleviate Diet-Related Diseases. 2010, 122-143. https://doi.org/10.1007/978-1-4419-7347-4_10
    60. Magda-Viola Hanke, Henryk Flachowsky. Fruit Crops. 2010, 307-348. https://doi.org/10.1007/978-3-642-02391-0_17
    61. FABRIZIO CARBONE, ANJA PREUSS, RIC C. H. DE VOS, ELEONORA D'AMICO, GAETANO PERROTTA, ARNAUD G. BOVY, STEFAN MARTENS, CARLO ROSATI. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits*. Plant, Cell & Environment 2009, 32 (8) , 1117-1131. https://doi.org/10.1111/j.1365-3040.2009.01994.x
    62. Kati Hanhineva, Harri Kokko, Henri Siljanen, Ilana Rogachev, Asaph Aharoni, Sirpa O. Kärenlampi. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa). Journal of Experimental Botany 2009, 60 (7) , 2093-2106. https://doi.org/10.1093/jxb/erp085
    63. Wilfried Schwab, Jan G. Schaart, Carlo Rosati. Functional Molecular Biology Research in Fragaria. 2009, 457-486. https://doi.org/10.1007/978-0-387-77491-6_22
    64. Aaron Fait, Kati Hanhineva, Romina Beleggia, Nir Dai, Ilana Rogachev, Victoria J. Nikiforova, Alisdair R. Fernie, Asaph Aharoni. Reconfiguration of the Achene and Receptacle Metabolic Networks during Strawberry Fruit Development  . Plant Physiology 2008, 148 (2) , 730-750. https://doi.org/10.1104/pp.108.120691
    65. Yonghua Qin, Jaime A. Teixeira da Silva, Lingxiao Zhang, Shanglong Zhang. Transgenic strawberry: State of the art for improved traits. Biotechnology Advances 2008, 26 (3) , 219-232. https://doi.org/10.1016/j.biotechadv.2007.12.004
    66. Markus Griesser, Thomas Hoffmann, Mari Luz Bellido, Carlo Rosati, Barbara Fink, Robert Kurtzer, Asaph Aharoni, Juan Muñoz-Blanco, Wilfried Schwab. Redirection of Flavonoid Biosynthesis through the Down-Regulation of an Anthocyanidin Glucosyltransferase in Ripening Strawberry Fruit    . Plant Physiology 2008, 146 (4) , 1528-1539. https://doi.org/10.1104/pp.107.114280
    67. Fabrizio Carbone, Fabienne Mourgues, Gaetano Perrotta, Carlo Rosati. Advances in functional research of antioxidants and organoleptic traits in berry crops. BioFactors 2008, 34 (1) , 23-36. https://doi.org/10.1002/biof.5520340104
    68. Christian Landmann, Barbara Fink, Wilfried Schwab. FaGT2: a multifunctional enzyme from strawberry (Fragaria × ananassa) fruits involved in the metabolism of natural and xenobiotic compounds. Planta 2007, 226 (2) , 417-428. https://doi.org/10.1007/s00425-007-0492-4
    69. Thomas Hoffmann, Gregor Kalinowski, Wilfried Schwab. RNAi‐induced silencing of gene expression in strawberry fruit ( Fragaria  ×  ananassa ) by agroinfiltration: a rapid assay for gene function analysis. The Plant Journal 2006, 48 (5) , 818-826. https://doi.org/10.1111/j.1365-313X.2006.02913.x
    70. Xavier Palomer, Imma Llop-Tous, Miquel Vendrell, Frans A. Krens, Jan G. Schaart, Marjan J. Boone, Henry van der Valk, Elma M.J. Salentijn. Antisense down-regulation of strawberry endo-β-(1,4)-glucanase genes does not prevent fruit softening during ripening. Plant Science 2006, 171 (5) , 640-646. https://doi.org/10.1016/j.plantsci.2006.06.019
    71. Kevin M. Folta, Amit Dhingra. Invited review: Transformation of strawberry: The basis for translational genomics in Rosaceae. In Vitro Cellular & Developmental Biology - Plant 2006, 42 (6) , 482-490. https://doi.org/10.1079/IVP2006807

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2006, 54, 6, 2145–2153
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf052574z
    Published March 1, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1231

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.