ACS Publications. Most Trusted. Most Cited. Most Read
2′-Epi-orobanchol and Solanacol, Two Unique Strigolactones, Germination Stimulants for Root Parasitic Weeds, Produced by Tobacco
My Activity

Figure 1Loading Img
    article

    2′-Epi-orobanchol and Solanacol, Two Unique Strigolactones, Germination Stimulants for Root Parasitic Weeds, Produced by Tobacco
    Click to copy article linkArticle link copied!

    View Author Information
    United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan, and Weed Science Center and Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan
    * Author to whom correspondence should be addressed (telephone +81-28-649-5152 ; fax +81-28-649-5155; e-mail [email protected]).
    †Tokyo University of Agriculture and Technology.
    §Weed Science Center, Utsunomiya University.
    #Faculty of Education, Utsunomiya University.
    Other Access OptionsSupporting Information (2)

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2007, 55, 20, 8067–8072
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf0715121
    Published September 6, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Germination stimulants for root holoparasitic weeds broomrapes ( Orobanche and Phelipanche spp.) produced by tobacco ( Nicotiana tabacum L.) were purified and characterized. The root exudates of tobacco contained at least five different stimulants, and LC-MS/MS analyses revealed that four of them were strigolactones; a tetradehydrostrigol isomer, a didehydrostrigol isomer, and two strigol isomers. The two isomers of strigol were identified as (+)-orobanchol and its 2′-epimer by comparison of NMR and GC- and LC-MS data with those of synthetic standards. The structure of the tetradehydrostrigol isomer, the major stimulant of the bright yellow tobacco cultivars, was determined as 4-α-hydroxy-5,8-dimethyl-GR24 [( E)-4-α-hydroxy-5,8-dimethyl-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy)methylene)-3a,4-dihydro-3 H-indeno[1,2- b]furan-2(8b H)-one] and named solanacol. 2′-Epi-orobanchol and solanacol are the first natural strigolactones having a 2′-epi stereochemistry and a benzene ring, respectively.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    1H NMR and CD spectra of solanacol. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 123 publications.

    1. Gabriele Soriano, Davide Arnodo, Marco Masi, Mónica Fernández-Aparicio, Blanca B. Landa, Concepción Olivares-García, Alessio Cimmino, Cristina Prandi. (4Z)-Lachnophyllum Lactone, a Metabolite with Phytotoxic and Antifungal Activity against Pests Affecting Mediterranean Agriculture: A New Versatile and Easy Scalable Parallel Synthesis. Journal of Agricultural and Food Chemistry 2024, 72 (9) , 4737-4746. https://doi.org/10.1021/acs.jafc.3c07130
    2. Zhaoyong Kang, Yujie Yan, Ruirui Lu, Xiaoqi Dong, Jun Xu, Dong Zheng, Suhua Li, Qingzhi Gao, Shengnan Liu. Synthesis and Biological Profiling of Novel Strigolactone Derivatives for Arabidopsis Growth and Development. Journal of Agricultural and Food Chemistry 2023, 71 (34) , 12859-12874. https://doi.org/10.1021/acs.jafc.3c02135
    3. Suzanne Daignan Fornier, Alexandre de Saint Germain, Pascal Retailleau, Jean-Paul Pillot, Quentin Taulera, Lucile Andna, Laurence Miesch, Soizic Rochange, Jean-Bernard Pouvreau, François-Didier Boyer. Noncanonical Strigolactone Analogues Highlight Selectivity for Stimulating Germination in Two Phelipanche ramosa Populations. Journal of Natural Products 2022, 85 (8) , 1976-1992. https://doi.org/10.1021/acs.jnatprod.2c00282
    4. Bapurao Sudam Lad, Sreenivas Katukojvala. Piano-Stool Rhodium Enalcarbenoids: Application to Catalyst-Controlled Metal-Templated Annulations of Diazoenals and 1,3-Dicarbonyls. ACS Catalysis 2018, 8 (12) , 11807-11814. https://doi.org/10.1021/acscatal.8b03865
    5. Frank M. Raupp and Otmar Spring . New Sesquiterpene Lactones from Sunflower Root Exudate as Germination Stimulants for Orobanche cumana. Journal of Agricultural and Food Chemistry 2013, 61 (44) , 10481-10487. https://doi.org/10.1021/jf402392e
    6. Kotomi Ueno, Saki Nomura, Satoru Muranaka, Masaharu Mizutani, Hirosato Takikawa, and Yukihiro Sugimoto . Ent-2′-epi-Orobanchol and Its Acetate, As Germination Stimulants for Striga gesnerioides Seeds Isolated from Cowpea and Red Clover. Journal of Agricultural and Food Chemistry 2011, 59 (19) , 10485-10490. https://doi.org/10.1021/jf2024193
    7. Kotomi Ueno, Mami Fujiwara, Saki Nomura, Masaharu Mizutani, Mitsuru Sasaki, Hirosato Takikawa, and Yukihiro Sugimoto . Structural Requirements of Strigolactones for Germination Induction of Striga gesnerioides Seeds. Journal of Agricultural and Food Chemistry 2011, 59 (17) , 9226-9231. https://doi.org/10.1021/jf202418a
    8. Antonio Evidente, Alessio Cimmino, Monica Fernández-Aparicio, Anna Andolfi, Diego Rubiales and Andrea Motta . Polyphenols, Including the New Peapolyphenols A−C, from Pea Root Exudates Stimulate Orobanche foetida Seed Germination. Journal of Agricultural and Food Chemistry 2010, 58 (5) , 2902-2907. https://doi.org/10.1021/jf904247k
    9. Enes Fidan, Reyyan Yergin Özkan, Işık Tepe. The effects of different amounts of branched broomrape (Phelipanche ramosa (L.) Pomel) seeds on some cultivated plants. Harran Tarım ve Gıda Bilimleri Dergisi 2024, 28 (4) , 564-569. https://doi.org/10.29050/harranziraat.1561651
    10. , V.O. Storozhenko. Boilogical role of strigolactones. Fiziologia rastenij i genetika 2024, 56 (5) , 371-398. https://doi.org/10.15407/frg2024.05.371
    11. Jian You Wang, Guan-Ting Erica Chen, Justine Braguy, Salim Al-Babili. Distinguishing the functions of canonical strigolactones as rhizospheric signals. Trends in Plant Science 2024, 29 (8) , 925-936. https://doi.org/10.1016/j.tplants.2024.02.013
    12. Suzanne Daignan‐Fornier, Antoinette Keita, François‐Didier Boyer. Chemistry of Strigolactones, Key Players in Plant Communication. ChemBioChem 2024, 25 (12) https://doi.org/10.1002/cbic.202400133
    13. Yan‐Qiu Zhao, Xue‐Qin Song, Wei Guo, Cheng Jiang, Jin Zhang, Meng‐Zhu Lu. PagKNAT2/6b promotes shoot branching by attenuating auxin‐strigolactone signalling in poplar. Plant, Cell & Environment 2024, 72 https://doi.org/10.1111/pce.14991
    14. Yamshi Arif, Sameen Zaidi, Andrzej Bajguz, Shamsul Hayat. Strigolactones as plant hormone: An overview. 2024, 1-13. https://doi.org/10.1016/B978-0-443-13521-7.00001-4
    15. Andrzej Bajguz. Nature and biosynthesis of strigolactones in plants. 2024, 15-41. https://doi.org/10.1016/B978-0-443-13521-7.00002-6
    16. Daria Gabriela Popa, Florentina Georgescu, Florea Dumitrascu, Sergiu Shova, Diana Constantinescu-Aruxandei, Constantin Draghici, Lucian Vladulescu, Florin Oancea. Novel Strigolactone Mimics That Modulate Photosynthesis and Biomass Accumulation in Chlorella sorokiniana. Molecules 2023, 28 (20) , 7059. https://doi.org/10.3390/molecules28207059
    17. Saori Takei, Yuta Uchiyama, Marco Bürger, Taiki Suzuki, Shoma Okabe, Joanne Chory, Yoshiya Seto. A Divergent Clade KAI2 Protein in the Root Parasitic Plant Orobanche minor Is a Highly Sensitive Strigolactone Receptor and Is Involved in the Perception of Sesquiterpene Lactones. Plant And Cell Physiology 2023, 64 (9) , 996-1007. https://doi.org/10.1093/pcp/pcad026
    18. Kiyoshi Mashiguchi, Ryo Morita, Kai Tanaka, Kyoichi Kodama, Hiromu Kameoka, Junko Kyozuka, Yoshiya Seto, Shinjiro Yamaguchi. Activation of Strigolactone Biosynthesis by the DWARF14-LIKE/KARRIKIN-INSENSITIVE2 Pathway in Mycorrhizal Angiosperms, but Not in  Arabidopsis , a Non-mycorrhizal Plant. Plant And Cell Physiology 2023, 64 (9) , 1066-1078. https://doi.org/10.1093/pcp/pcad079
    19. Yudong Chen, Long Yang, Lumin Zhang, Jianrong Li, Yalin Zheng, Wenwu Yang, Lele Deng, Qian Gao, Qili Mi, Xuemei Li, Wanli Zeng, Xinhua Ding, Haiying Xiang. Autotoxins in continuous tobacco cropping soils and their management. Frontiers in Plant Science 2023, 14 https://doi.org/10.3389/fpls.2023.1106033
    20. Antonio Cala Peralta, Francisco J. R. Mejías, Jesús Ayuso, Carlos Rial, José M. G. Molinillo, José A. Álvarez, Stefan Schwaiger, Francisco A. Macías. Host–guest complexation of phthalimide-derived strigolactone mimics with cyclodextrins. Application in agriculture against parasitic weeds. Organic & Biomolecular Chemistry 2023, 21 (15) , 3214-3225. https://doi.org/10.1039/D3OB00229B
    21. Angelica M. Guercio, Malathy Palayam, Nitzan Shabek. Strigolactones: diversity, perception, and hydrolysis. Phytochemistry Reviews 2023, 22 (2) , 339-359. https://doi.org/10.1007/s11101-023-09853-4
    22. Varsha Rani, R. S. Sengar, Sanjay Kumar Garg, Pragati Mishra, Pradeep Kumar Shukla. Physiological and Molecular Role of Strigolactones as Plant Growth Regulators: A Review. Molecular Biotechnology 2023, 23 https://doi.org/10.1007/s12033-023-00694-2
    23. Juraj Kleman, Radoslava Matusova. Strigolactones: Current research progress in the response of plants to abiotic stress. Biologia 2023, 78 (2) , 307-318. https://doi.org/10.1007/s11756-022-01230-4
    24. Hanan A. Hashem, Radwan Khalil. Insight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals. 2023, 179-211. https://doi.org/10.1007/978-981-19-9794-5_11
    25. Takatoshi Wakabayashi, Daisuke Moriyama, Ayumi Miyamoto, Hironori Okamura, Nanami Shiotani, Nobuhiro Shimizu, Masaharu Mizutani, Hirosato Takikawa, Yukihiro Sugimoto. Identification of novel canonical strigolactones produced by tomato. Frontiers in Plant Science 2022, 13 https://doi.org/10.3389/fpls.2022.1064378
    26. Takatoshi Wakabayashi, Kotomi Ueno, Yukihiro Sugimoto. Structure Elucidation and Biosynthesis of Orobanchol. Frontiers in Plant Science 2022, 13 https://doi.org/10.3389/fpls.2022.835160
    27. Shmuel Galili, Joseph Hershenhorn, Evgeny Smirnov, Koichi Yoneyama, Xiaonan Xie, Orit Amir-Segev, Aharon Bellalou, Evgenia Dor. Characterization of a Chickpea Mutant Resistant to Phelipanche aegyptiaca Pers. and Orobanche crenata Forsk. Plants 2021, 10 (12) , 2552. https://doi.org/10.3390/plants10122552
    28. Francisco J. Soto-Cruz, Jesús G. Zorrilla, Carlos Rial, Rosa M. Varela, José M. G. Molinillo, José M. Igartuburu, Francisco A. Macías. Allelopathic Activity of Strigolactones on the Germination of Parasitic Plants and Arbuscular Mycorrhizal Fungi Growth. Agronomy 2021, 11 (11) , 2174. https://doi.org/10.3390/agronomy11112174
    29. Stéphanie Gibot-Leclerc, Manon Connault, Rémi Perronne, Fabrice Dessaint. Differences in seed germination response of two populations of Phelipanche ramosa (L.) Pomel to a set of GR24 concentrations and durations of stimulation. Seed Science Research 2021, 31 (3) , 243-248. https://doi.org/10.1017/S0960258521000143
    30. Hirosato Takikawa. Studies on Strigolactone Based on Synthetic Organic Chemistry. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (9) , 819-828. https://doi.org/10.5059/yukigoseikyokaishi.79.819
    31. Lorenzo Borghi, Claudio Screpanti, Alexandre Lumbroso, Mathilde Lachia, Christian Gübeli, Alain De Mesmaeker. Efficiency and bioavailability of new synthetic strigolactone mimics with potential for sustainable agronomical applications. Plant and Soil 2021, 465 (1-2) , 109-123. https://doi.org/10.1007/s11104-021-04943-8
    32. Harro Bouwmeester, Changsheng Li, Benjamin Thiombiano, Mehran Rahimi, Lemeng Dong. Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. Plant Physiology 2021, 185 (4) , 1292-1308. https://doi.org/10.1093/plphys/kiaa066
    33. Carlos Rial, Rosa M. Varela, José M.G. Molinillo, Sara Peralta, Francisco A. Macías. Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape. Agronomy 2021, 11 (3) , 501. https://doi.org/10.3390/agronomy11030501
    34. Liyuan Wang, Yilin Zou, Han Yeong Kaw, Gang Wang, Huaze Sun, Long Cai, Chengyu Li, Long-Yue Meng, Donghao Li. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. Plant Methods 2020, 16 (1) https://doi.org/10.1186/s13007-020-00595-4
    35. Rostislav Halouzka, Sanja Ćavar Zeljković, Bořivoj Klejdus, Petr Tarkowski. Analytical methods in strigolactone research. Plant Methods 2020, 16 (1) https://doi.org/10.1186/s13007-020-00616-2
    36. Kristýna Floková, Mahdere Shimels, Beatriz Andreo Jimenez, Nicoletta Bardaro, Miroslav Strnad, Ondřej Novák, Harro J. Bouwmeester. An improved strategy to analyse strigolactones in complex sample matrices using UHPLC–MS/MS. Plant Methods 2020, 16 (1) https://doi.org/10.1186/s13007-020-00669-3
    37. Takuya Miyakawa, Yuqun Xu, Masaru Tanokura. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cellular and Molecular Life Sciences 2020, 77 (6) , 1103-1113. https://doi.org/10.1007/s00018-019-03318-8
    38. Carlos Rial, Rosa M. Varela, José M. G. Molinillo, Alexandra G. Durán, Francisco A. Macías. Quantification of Strigolactones. 2020, 199-208. https://doi.org/10.1007/978-1-4939-9952-1_15
    39. Laura Ravazzolo, Sara Trevisan, Alessandro Manoli, St�phanie Boutet-Mercey, Fran�ois Perreau, Silvia Quaggiotti. The Control of Zealactone Biosynthesis and Exudation is Involved in the Response to Nitrogen in Maize Root. Plant and Cell Physiology 2019, 60 (9) , 2100-2112. https://doi.org/10.1093/pcp/pcz108
    40. Kaori Yoneyama. How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?. Cold Spring Harbor Perspectives in Biology 2019, 11 (8) , a034686. https://doi.org/10.1101/cshperspect.a034686
    41. Carlos Rial, Rosa M. Varela, José M.G. Molinillo, Juan A. López‐Ráez, Francisco A. Macías. A new UHPLC‐MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochemical Analysis 2019, 30 (1) , 110-116. https://doi.org/10.1002/pca.2796
    42. Kun-Peng Jia, Changsheng Li, Harro J. Bouwmeester, Salim Al-Babili. Strigolactone Biosynthesis and Signal Transduction. 2019, 1-45. https://doi.org/10.1007/978-3-030-12153-2_1
    43. Cristina Prandi, Christopher S. P. McErlean. The Chemistry of Strigolactones. 2019, 163-198. https://doi.org/10.1007/978-3-030-12153-2_6
    44. Kotomi Ueno, Hitomi Nakashima, Masaharu Mizutani, Hirosato Takikawa, Yukihiro Sugimoto. Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants. Journal of Pesticide Science 2018, 43 (3) , 198-206. https://doi.org/10.1584/jpestics.D18-021
    45. Guillaume Brun, Lukas Braem, Séverine Thoiron, Kris Gevaert, Sofie Goormachtig, Philippe Delavault. Seed germination in parasitic plants: what insights can we expect from strigolactone research?. Journal of Experimental Botany 2018, 69 (9) , 2265-2280. https://doi.org/10.1093/jxb/erx472
    46. Binne Zwanenburg, Daniel Blanco-Ania. Strigolactones: new plant hormones in the spotlight. Journal of Experimental Botany 2018, 69 (9) , 2205-2218. https://doi.org/10.1093/jxb/erx487
    47. Nasreldin Mohemed, Tatsiana Charnikhova, Emilie F Fradin, Juriaan Rienstra, Abdelgabar G T Babiker, Harro J Bouwmeester. Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. Journal of Experimental Botany 2018, 69 (9) , 2415-2430. https://doi.org/10.1093/jxb/ery041
    48. Koichi Yoneyama, Xiaonan Xie, Kaori Yoneyama, Takaya Kisugi, Takahito Nomura, Yoshifumi Nakatani, Kohki Akiyama, Christopher S P McErlean. Which are the major players, canonical or non-canonical strigolactones?. Journal of Experimental Botany 2018, 69 (9) , 2231-2239. https://doi.org/10.1093/jxb/ery090
    49. Yanting Wang, Harro J Bouwmeester. Structural diversity in the strigolactones. Journal of Experimental Botany 2018, 69 (9) , 2219-2230. https://doi.org/10.1093/jxb/ery091
    50. Ikuo Takahashi, Tadao Asami. Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. Journal of Experimental Botany 2018, 69 (9) , 2241-2254. https://doi.org/10.1093/jxb/ery126
    51. L. J. Bromhead, A. R. Norman, K. C. Snowden, B. J. Janssen, C. S. P. McErlean. Enantioselective total synthesis and biological evaluation of (−)-solanacol. Organic & Biomolecular Chemistry 2018, 16 (30) , 5500-5507. https://doi.org/10.1039/C8OB01287C
    52. Jiajun DENG, Yanling ZHANG, Jiwei HU, Jiaguo JIAO, Feng HU, Huixin LI, Shixiang ZHANG. Autotoxicity of Phthalate Esters in Tobacco Root Exudates: Effects on Seed Germination and Seedling Growth. Pedosphere 2017, 27 (6) , 1073-1082. https://doi.org/10.1016/S1002-0160(17)60374-6
    53. Liam J. Bromhead, Christopher S. P. McErlean. Accessing Single Enantiomer Strigolactones: Progress and Opportunities. European Journal of Organic Chemistry 2017, 2017 (38) , 5712-5723. https://doi.org/10.1002/ejoc.201700865
    54. Leema Dutta, Pulak J. Bhuyan. Synthesis of highly functionalized indeno[1,2-b]furans. Tetrahedron Letters 2017, 58 (36) , 3545-3548. https://doi.org/10.1016/j.tetlet.2017.07.097
    55. Antonio Cala, José M. G. Molinillo, Mónica Fernández-Aparicio, Jesús Ayuso, José A. Álvarez, Diego Rubiales, Francisco A. Macías. Complexation of sesquiterpene lactones with cyclodextrins: synthesis and effects on their activities on parasitic weeds. Organic & Biomolecular Chemistry 2017, 15 (31) , 6500-6510. https://doi.org/10.1039/C7OB01394A
    56. Xiaonan Xie. Structural diversity of strigolactones and their distribution in the plant kingdom. Japanese Journal of Pesticide Science 2017, 42 (1) , 10-16. https://doi.org/10.1584/jpestics.W17-02
    57. J. Chen, Q. H. Xue, C. S. P. McErlean, J. H. Zhi, Y. Q. Ma, X. T. Jia, M. Zhang, X. X. Ye. Biocontrol potential of the antagonistic microorganism Streptomyces enissocaesilis against Orobanche cumana. BioControl 2016, 61 (6) , 781-791. https://doi.org/10.1007/s10526-016-9738-z
    58. Binne Zwanenburg, Tomáš Pospíšil, Sanja Ćavar Zeljković. Strigolactones: new plant hormones in action. Planta 2016, 243 (6) , 1311-1326. https://doi.org/10.1007/s00425-015-2455-5
    59. Dionyssia Lyra, Dionissios Kalivas, Garifalia Economou. A large-scale analysis of soil and bioclimatic factors affecting the infestation level of tobacco (Nicotiana tabacum L.) by Phelipanche species. Crop Protection 2016, 83 , 27-36. https://doi.org/10.1016/j.cropro.2016.01.008
    60. Amita Pandey, Manisha Sharma, Girdhar K. Pandey. Emerging Roles of Strigolactones in Plant Responses to Stress and Development. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.00434
    61. Grazia Disciglio, Francesco Lops, Antonia Carlucci, Giuseppe Gatta, Annalisa Tarantino, Laura Frabboni, Filomena Carriero, Emanuele Tarantino. Effects of different methods to control the parasitic weed Phelipanche ramosa (L.) Pomel in processing tomato crops. Italian Journal of Agronomy 2016, 11 (1) , 39-46. https://doi.org/10.4081/ija.2016.681
    62. Renxiao Liang, Kai Chen, Qiaohui Zhang, Jiantao Zhang, Huanfeng Jiang, Shifa Zhu. Rapid Access to 2‐Methylene Tetrahydrofurans and γ‐Lactones: A Tandem Four‐Step Process. Angewandte Chemie 2016, 128 (7) , 2633-2637. https://doi.org/10.1002/ange.201511133
    63. Renxiao Liang, Kai Chen, Qiaohui Zhang, Jiantao Zhang, Huanfeng Jiang, Shifa Zhu. Rapid Access to 2‐Methylene Tetrahydrofurans and γ‐Lactones: A Tandem Four‐Step Process. Angewandte Chemie International Edition 2016, 55 (7) , 2587-2591. https://doi.org/10.1002/anie.201511133
    64. Binne Zwanenburg, Sanja Ćavar Zeljković, Tomáš Pospíšil. Synthesis of strigolactones, a strategic account. Pest Management Science 2016, 72 (1) , 15-29. https://doi.org/10.1002/ps.4105
    65. B.A. Kountche, S. Al-Babili, B.I.G. Haussmann. Striga. 2016, 173-203. https://doi.org/10.1016/B978-0-12-804549-7.00006-8
    66. Xiaonan Xie. Structural diversity of strigolactones and their distribution in the plant kingdom. Journal of Pesticide Science 2016, 41 (4) , 175-180. https://doi.org/10.1584/jpestics.J16-02
    67. Min Chai, Xiaopei Zhu, Hongxia Cui, Chuangdao Jiang, Jinzheng Zhang, Lei Shi, . Lily Cultivars Have Allelopathic Potential in Controlling Orobanche aegyptiaca Persoon. PLOS ONE 2015, 10 (11) , e0142811. https://doi.org/10.1371/journal.pone.0142811
    68. Kotomi Ueno, Yukihiro Sugimoto, Binne Zwanenburg. The genuine structure of alectrol: end of a long controversy. Phytochemistry Reviews 2015, 14 (5) , 835-847. https://doi.org/10.1007/s11101-014-9380-2
    69. Hiroshi Kumagai, Mami Fujiwara, Masaki Kuse, Hirosato Takikawa. A concise synthesis of optically active solanacol, the germination stimulant for seeds of root parasitic weeds. Bioscience, Biotechnology, and Biochemistry 2015, 79 (8) , 1240-1245. https://doi.org/10.1080/09168451.2015.1025036
    70. Sanja Ćavar, Binne Zwanenburg, Petr Tarkowski. Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochemistry Reviews 2015, 14 (4) , 691-711. https://doi.org/10.1007/s11101-014-9370-4
    71. Tamami Tokunaga, Hideo Hayashi, Kohki Akiyama. Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer, from Medicago truncatula. Phytochemistry 2015, 111 , 91-97. https://doi.org/10.1016/j.phytochem.2014.12.024
    72. Perumal Vinoth, Thavaraj Vivekanand, Padmakar A. Suryavanshi, J. Carlos Menéndez, Hiroaki Sasai, Vellaisamy Sridharan. Palladium( ii )-catalyzed intramolecular carboxypalladation–olefin insertion cascade: direct access to indeno[1,2-b]furan-2-ones. Organic & Biomolecular Chemistry 2015, 13 (18) , 5175-5181. https://doi.org/10.1039/C5OB00458F
    73. Tapan Kumar Mohanta, Hanhong Bae. Functional genomics and signaling events in mycorrhizal symbiosis. Journal of Plant Interactions 2015, 10 (1) , 21-40. https://doi.org/10.1080/17429145.2015.1005180
    74. Yoram Kapulnik, Hinanit Koltai. Strigolactone Involvement in Root Development, Response to Abiotic Stress, and Interactions with the Biotic Soil Environment. Plant Physiology 2014, 166 (2) , 560-569. https://doi.org/10.1104/pp.114.244939
    75. Catarina Cardoso, Tatsiana Charnikhova, Muhammad Jamil, Pierre-Marc Delaux, Francel Verstappen, Maryam Amini, Dominique Lauressergues, Carolien Ruyter-Spira, Harro Bouwmeester, . Differential Activity of Striga hermonthica Seed Germination Stimulants and Gigaspora rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication. PLoS ONE 2014, 9 (8) , e104201. https://doi.org/10.1371/journal.pone.0104201
    76. Yanxia Zhang, Imran Haider, Carolien Ruyter‐Spira, Harro J. Bouwmeester. Strigolactone Biosynthesis and Biology. 2013, 355-371. https://doi.org/10.1002/9781118297674.ch33
    77. Koichi Yoneyama, Takaya Kisugi, Xiaonan Xie, Kaori Yoneyama. Chemistry of Strigolactones: Why and How do Plants Produce so Many Strigolactones?. 2013, 373-379. https://doi.org/10.1002/9781118297674.ch34
    78. Victor X. Chen, François‐Didier Boyer, Catherine Rameau, Jean‐Paul Pillot, Jean‐Pierre Vors, Jean‐Marie Beau. New Synthesis of A‐Ring Aromatic Strigolactone Analogues and Their Evaluation as Plant Hormones in Pea ( Pisum sativum ). Chemistry – A European Journal 2013, 19 (15) , 4849-4857. https://doi.org/10.1002/chem.201203585
    79. Wei Zhang, Yongqing Ma, Zhong Wang, Xiaoxin Ye, Junfeng Shui, . Some Soybean Cultivars Have Ability to Induce Germination of Sunflower Broomrape. PLoS ONE 2013, 8 (3) , e59715. https://doi.org/10.1371/journal.pone.0059715
    80. Takaya Kisugi, Xiaonan Xie, Hyun Il Kim, Kaori Yoneyama, Aika Sado, Kohki Akiyama, Hideo Hayashi, Kenichi Uchida, Takao Yokota, Takahito Nomura, Koichi Yoneyama. Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry 2013, 87 , 60-64. https://doi.org/10.1016/j.phytochem.2012.11.013
    81. Koichi Yoneyama, Carolien Ruyter-Spira, Harro Bouwmeester. Induction of Germination. 2013, 167-194. https://doi.org/10.1007/978-3-642-38146-1_10
    82. K. Yoneyama, M. Natsume. Allelochemicals for Plant–Plant and Plant–Microbe Interactions. 2013https://doi.org/10.1016/B978-0-12-409547-2.02802-X
    83. Xiaonan Xie, Kaori Yoneyama, Takaya Kisugi, Kenichi Uchida, Seisuke Ito, Kohki Akiyama, Hideo Hayashi, Takao Yokota, Takahito Nomura, Koichi Yoneyama. Confirming Stereochemical Structures of Strigolactones Produced by Rice and Tobacco. Molecular Plant 2013, 6 (1) , 153-163. https://doi.org/10.1093/mp/sss139
    84. Binne Zwanenburg, Tomáš Pospíšil. Structure and Activity of Strigolactones: New Plant Hormones with a Rich Future. Molecular Plant 2013, 6 (1) , 38-62. https://doi.org/10.1093/mp/sss141
    85. Koichi Yoneyama, Xiaonan Xie, Kaori Yoneyama. Strigolactones and Biological Activity. 2013, 3583-3604. https://doi.org/10.1007/978-3-642-22144-6_155
    86. François-Didier Boyer, Alexandre de Saint Germain, Jean-Paul Pillot, Jean-Bernard Pouvreau, Victor Xiao Chen, Suzanne Ramos, Arnaud Stévenin, Philippe Simier, Philippe Delavault, Jean-Marie Beau, Catherine Rameau. Structure-Activity Relationship Studies of Strigolactone-Related Molecules for Branching Inhibition in Garden Pea: Molecule Design for Shoot Branching  . Plant Physiology 2012, 159 (4) , 1524-1544. https://doi.org/10.1104/pp.112.195826
    87. Bathilde Auger, Jean-Bernard Pouvreau, Karinne Pouponneau, Kaori Yoneyama, Grégory Montiel, Bruno Le Bizec, Koichi Yoneyama, Philippe Delavault, Régine Delourme, Philippe Simier. Germination Stimulants of Phelipanche ramosa in the Rhizosphere of Brassica napus Are Derived from the Glucosinolate Pathway. Molecular Plant-Microbe Interactions® 2012, 25 (7) , 993-1004. https://doi.org/10.1094/MPMI-01-12-0006-R
    88. YongQing Ma, Wei Zhang, ShuQi Dong, XiangXiang Ren, Yu An, Ming Lang. Induction of seed germination in Orobanche spp. by extracts of traditional Chinese medicinal herbs. Science China Life Sciences 2012, 55 (3) , 250-260. https://doi.org/10.1007/s11427-012-4302-2
    89. Hinanit Koltai, Radoslava Matusova, Yoram Kapulnik. Strigolactones in Root Exudates as a Signal in Symbiotic and Parasitic Interactions. 2012, 49-73. https://doi.org/10.1007/978-3-642-23047-9_3
    90. Kaori Yoneyama, Xiaonan Xie, Takaya Kisugi, Takahito Nomura, Hitoshi Sekimoto, Takao Yokota, Koichi Yoneyama. Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regulation 2011, 65 (3) , 495-504. https://doi.org/10.1007/s10725-011-9620-z
    91. Antonio Evidente, Alessio Cimmino, Mónica Fernández‐Aparicio, Diego Rubiales, Anna Andolfi, Dominique Melck. Soyasapogenol B and trans ‐22‐dehydrocam‐ pesterol from common vetch ( Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Management Science 2011, 67 (8) , 1015-1022. https://doi.org/10.1002/ps.2153
    92. M JAMIL, T CHARNIKHOVA, C CARDOSO, T JAMIL, K UENO, F VERSTAPPEN, T ASAMI, H J BOUWMEESTER. Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Research 2011, 51 (4) , 373-385. https://doi.org/10.1111/j.1365-3180.2011.00847.x
    93. Catarina Cardoso, Carolien Ruyter-Spira, Harro J. Bouwmeester. Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp.. Plant Science 2011, 180 (3) , 414-420. https://doi.org/10.1016/j.plantsci.2010.11.007
    94. Saiko Kitahara, Takuya Tashiro, Yukihiro Sugimoto, Mitsuru Sasaki, Hirosato Takikawa. First synthesis of (±)-sorgomol, the germination stimulant for root parasitic weeds isolated from Sorghum bicolor. Tetrahedron Letters 2011, 52 (6) , 724-726. https://doi.org/10.1016/j.tetlet.2010.12.010
    95. Heetika Malik, Wouter Kohlen, Muhammad Jamil, Floris P. J. T. Rutjes, Binne Zwanenburg. Aromatic A-ring analogues of orobanchol, new germination stimulants for seeds of parasitic weeds. Organic & Biomolecular Chemistry 2011, 9 (7) , 2286. https://doi.org/10.1039/c0ob00735h
    96. Kinga Chojnacka, Stefano Santoro, Radi Awartani, Nigel G. J. Richards, Fahmi Himo, Aaron Aponick. Synthetic studies on the solanacol ABC ring system by cation-initiated cascade cyclization: implications for strigolactone biosynthesis. Organic & Biomolecular Chemistry 2011, 9 (15) , 5350. https://doi.org/10.1039/c1ob05751k
    97. Nobutaka Kitahata, Shinsaku Ito, Atsutaka Kato, Kotomi Ueno, Takeshi Nakano, Kaori Yoneyama, Koichi Yoneyama, Tadao Asami. Abamine as a basis for new designs of regulators of strigolactone production. Journal of Pesticide Science 2011, 36 (1) , 53-57. https://doi.org/10.1584/jpestics.G10-72
    98. Victor X. Chen, François‐Didier Boyer, Catherine Rameau, Pascal Retailleau, Jean‐Pierre Vors, Jean‐Marie Beau. Stereochemistry, Total Synthesis, and Biological Evaluation of the New Plant Hormone Solanacol. Chemistry – A European Journal 2010, 16 (47) , 13941-13945. https://doi.org/10.1002/chem.201002817
    99. Muhammad Jamil, Tatsiana Charnikhova, Francel Verstappen, Harro Bouwmeester. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Archives of Biochemistry and Biophysics 2010, 504 (1) , 123-131. https://doi.org/10.1016/j.abb.2010.08.005
    100. Heetika Malik, Floris P.J.T. Rutjes, Binne Zwanenburg. A new efficient synthesis of GR24 and dimethyl A-ring analogues, germinating agents for seeds of the parasitic weeds Striga and Orobanche spp.. Tetrahedron 2010, 66 (35) , 7198-7203. https://doi.org/10.1016/j.tet.2010.06.072
    Load all citations

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2007, 55, 20, 8067–8072
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf0715121
    Published September 6, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    1825

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.