ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Daily Variations in Oligosaccharides of Human Milk Determined by Microfluidic Chips and Mass Spectrometry

View Author Information
Departments of Chemistry, Viticulture and Enology, Food Science and Technology, and Biochemistry (School of Medicine) and Microbiology Graduate Group, University of California, Davis, California 95616, Agilent Technologies, Inc., Santa Clara, California 95052, and Department of Biochemistry, University of Nevada, Reno, Nevada 89557
* Corresponding author: Department of Chemistry and Biochemistry (School of Medicine), University of California, One Shields Ave., Davis, CA 95616. Phone: (530) 752-6364 . Fax: (530) 754-5609. E-mail: [email protected]
†Department of Chemistry, University of California.
‡Agilent Technologies, Inc.
§Department of Biochemistry, University of Nevada.
‖Department of Viticulture and Enology, University of California.
⊥Microbiology Graduate Group, University of California.
#Department of Food Science and Technology, University of California.
∇Department of Biochemistry (School of Medicine), University of California.
Cite this: J. Agric. Food Chem. 20082008, 56, 2, 618–626
Publication Date (Web):December 19, 2007
https://doi.org/10.1021/jf071972u
Copyright © 2008 American Chemical Society

    Article Views

    1409

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (631 KB)

    Abstract

    Human milk is a complex biological fluid that provides not only primary nourishment for infants but also protection against pathogens and influences their metabolic, immunologic, and even cognitive development. The presence of oligosaccharides in remarkable abundance in human milk has been associated to provide diverse biological functions including directing the development of an infant’s intestinal microflora and immune system. Recent advances in analytical tools offer invaluable insights in understanding the specific functions and health benefits these biomolecules impart to infants. Oligosaccharides in human milk samples obtained from five different individual donors over the course of a 3 month lactation period were isolated and analyzed using HPLC-Chip/TOF-MS technology. The levels and compositions of oligosaccharides in human milk were investigated from five individual donors. Comparison of HPLC-Chip/TOF-MS oligosaccharides profiles revealed heterogeneity among multiple individuals with no significant variations at different stages of lactation within individual donors.

    Cited By

    This article is cited by 89 publications.

    1. Xunwen Huang, Baoli Zhu, Tiemin Jiang, Chunying Yang, Weicang Qiao, Juncai Hou, Yanhui Han, Hang Xiao, Lijun Chen. Improved Simple Sample Pretreatment Method for Quantitation of Major Human Milk Oligosaccharides Using Ultrahigh Pressure Liquid Chromatography with Fluorescence Detection. Journal of Agricultural and Food Chemistry 2019, 67 (44) , 12237-12244. https://doi.org/10.1021/acs.jafc.9b03445
    2. Dorota Garwolińska, Jacek Namieśnik, Agata Kot-Wasik, Weronika Hewelt-Belka. Chemistry of Human Breast Milk—A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. Journal of Agricultural and Food Chemistry 2018, 66 (45) , 11881-11896. https://doi.org/10.1021/acs.jafc.8b04031
    3. Maria Lorna A. De Leoz, Karen M. Kalanetra, Nicholas A. Bokulich, John S. Strum, Mark A. Underwood, J. Bruce German, David A. Mills, and Carlito B. Lebrilla . Human Milk Glycomics and Gut Microbial Genomics in Infant Feces Show a Correlation between Human Milk Oligosaccharides and Gut Microbiota: A Proof-of-Concept Study. Journal of Proteome Research 2015, 14 (1) , 491-502. https://doi.org/10.1021/pr500759e
    4. Maria Lorna A. De Leoz, Stephanie C. Gaerlan, John S. Strum, Lauren M. Dimapasoc, Majid Mirmiran, Daniel J. Tancredi, Jennifer T. Smilowitz, Karen M. Kalanetra, David A. Mills, J. Bruce German, Carlito B. Lebrilla, and Mark A. Underwood . Lacto-N-Tetraose, Fucosylation, and Secretor Status Are Highly Variable in Human Milk Oligosaccharides From Women Delivering Preterm. Journal of Proteome Research 2012, 11 (9) , 4662-4672. https://doi.org/10.1021/pr3004979
    5. Ulrik K. Sundekilde, Daniela Barile, Mickael Meyrand, Nina A. Poulsen, Lotte B. Larsen, Carlito B. Lebrilla, J. Bruce German, and Hanne C. Bertram . Natural Variability in Bovine Milk Oligosaccharides from Danish Jersey and Holstein-Friesian Breeds. Journal of Agricultural and Food Chemistry 2012, 60 (24) , 6188-6196. https://doi.org/10.1021/jf300015j
    6. David C. Dallas, William F. Martin, John S. Strum, Angela M. Zivkovic, Jennifer T. Smilowitz, Mark A. Underwood, Michael Affolter, Carlito B. Lebrilla, and J. Bruce German . N-Linked Glycan Profiling of Mature Human Milk by High-Performance Microfluidic Chip Liquid Chromatography Time-of-Flight Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2011, 59 (8) , 4255-4263. https://doi.org/10.1021/jf104681p
    7. Nannan Tao, Shuai Wu, Jaehan Kim, Hyun Joo An, Katie Hinde, Michael L. Power, Pascal Gagneux, J. Bruce German, and Carlito B. Lebrilla . Evolutionary Glycomics: Characterization of Milk Oligosaccharides in Primates. Journal of Proteome Research 2011, 10 (4) , 1548-1557. https://doi.org/10.1021/pr1009367
    8. John W. Froehlich, Eric D. Dodds, Mariana Barboza, Erica L. McJimpsey, Richard R. Seipert, Jimi Francis, Hyun Joo An, Samara Freeman, J. Bruce German and Carlito B. Lebrilla . Glycoprotein Expression in Human Milk during Lactation. Journal of Agricultural and Food Chemistry 2010, 58 (10) , 6440-6448. https://doi.org/10.1021/jf100112x
    9. Angela Marcobal, Mariana Barboza, John W. Froehlich, David E. Block, J. Bruce German, Carlito B. Lebrilla and David A. Mills . Consumption of Human Milk Oligosaccharides by Gut-Related Microbes. Journal of Agricultural and Food Chemistry 2010, 58 (9) , 5334-5340. https://doi.org/10.1021/jf9044205
    10. Nannan Tao, Karen L. Ochonicky, J. Bruce German, Sharon M. Donovan and Carlito B. Lebrilla . Structural Determination and Daily Variations of Porcine Milk Oligosaccharides. Journal of Agricultural and Food Chemistry 2010, 58 (8) , 4653-4659. https://doi.org/10.1021/jf100398u
    11. David A. Mills, J. Bruce German, Carlito B. Lebrilla, Mark A. Underwood. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 2023, 15 (1) https://doi.org/10.1080/19490976.2023.2192458
    12. Dianne F. Manabat, Mrittika Bhattacharya, Gladys C. Completo, Daniela Barile. Profiling milk oligosaccharides in Philippine buffalo breeds across lactation and identification of novel high-molecular weight fucosylated and sialylated oligosaccharides. International Dairy Journal 2023, 146 , 105731. https://doi.org/10.1016/j.idairyj.2023.105731
    13. Xu Fang, Wei Zhu, Huiying Zhao, Wencheng Yin, Xiao Song, Fengxin Liu. Preclinical Safety Evaluation of the Human-Identical Milk Oligosaccharide Lacto-N-Triose II. International Journal of Toxicology 2023, 38 https://doi.org/10.1177/10915818231203515
    14. Sebastian Imperiale, Ksenia Morozova, Giovanna Ferrentino, Matteo Scampicchio. Analysis of milk with liquid chromatography–mass spectrometry: a review. European Food Research and Technology 2023, 249 (4) , 861-902. https://doi.org/10.1007/s00217-022-04197-3
    15. Wanjun Jin, Cheng Li, Meiyi Zou, Yu Lu, Ming Wei, Lijing Nan, Yue Jia, Chengjian Wang, Linjuan Huang, Zhongfu Wang. A preliminary study on isomer-specific quantification of sialylated N-glycans released from whey glycoproteins in human colostrum and mature milk using a glycoqueuing strategy. Food Chemistry 2021, 339 , 127866. https://doi.org/10.1016/j.foodchem.2020.127866
    16. Han Young Eom, Seok-In Jang, Jeong Ho Hwang, Lila Kim, Jong Seong Kang, Jong-Hwa Lee. Development and validation of a bioanalytical method of analyzing 3′- and 6′-sialyllactose using liquid chromatography–tandem mass spectrometry in minipig plasma and its application in a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 2021, 195 , 113827. https://doi.org/10.1016/j.jpba.2020.113827
    17. Seok-In Jang, Han Young Eom, Jeong Ho Hwang, Lila Kim, Jong-Hwa Lee. Simultaneous Quantification of 3′- and 6′-Sialyllactose in Rat Plasma Using Liquid Chromatography-Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study. Molecules 2021, 26 (4) , 1177. https://doi.org/10.3390/molecules26041177
    18. T. K. Orekhov, O. V. Gradov. Digital Spectrozonal and Multispectral Lens-Less Devices with Spectrophotometric Temperature Calibration GUIs for Dairy Farming and Qualimetry of Diary Products. 2021, 300-324. https://doi.org/10.1007/978-3-030-77448-6_29
    19. Magdalena Kujawska, Maria Carmen Collado, Lindsay J. Hall. Microbes, human milk, and prebiotics. 2021, 197-237. https://doi.org/10.1016/B978-0-12-818097-6.00009-2
    20. Han Young Eom, Seok-In Jang, Jong-Hwa Lee. Development and Validation of a Bioanalytical Method for 3′- and 6′-Sialyllactose in Minipig Liver and Kidney Using Liquid Chromatography-Tandem Mass Spectrometry and Its Application to Analysis of Tissue Distribution. Molecules 2020, 25 (23) , 5721. https://doi.org/10.3390/molecules25235721
    21. Yanfei Wang, Xiaohong Zhou, Pimin Gong, Yujie Chen, Zhen Feng, Ping Liu, Pingzhen Zhang, Xiqing Wang, Lanwei Zhang, Li Song. Comparative major oligosaccharides and lactose between Chinese human and animal milk. International Dairy Journal 2020, 108 , 104727. https://doi.org/10.1016/j.idairyj.2020.104727
    22. Clodagh Walsh, Jonathan A. Lane, Douwe van Sinderen, Rita M. Hickey. From lab bench to formulated ingredient: Characterization, production, and commercialization of human milk oligosaccharides. Journal of Functional Foods 2020, 72 , 104052. https://doi.org/10.1016/j.jff.2020.104052
    23. Maciej Chichlowski, Neil Shah, Jennifer L. Wampler, Steven S. Wu, Jon A. Vanderhoof. Bifidobacterium longum Subspecies infantis (B. infantis) in Pediatric Nutrition: Current State of Knowledge. Nutrients 2020, 12 (6) , 1581. https://doi.org/10.3390/nu12061581
    24. Magdalena Orczyk-Pawiłowicz, Jolanta Lis-Kuberka. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients 2020, 12 (4) , 1105. https://doi.org/10.3390/nu12041105
    25. Mrittika Bhattacharya, Jaime Salcedo, Randall C. Robinson, Bethany Michele Henrick, Daniela Barile. Peptidomic and glycomic profiling of commercial dairy products: identification, quantification and potential bioactivities. npj Science of Food 2019, 3 (1) https://doi.org/10.1038/s41538-019-0037-9
    26. Rosario Licitra, Jiaqi Li, Xinmiao Liang, Iolanda Altomonte, Federica Salari, Jingyu Yan, Mina Martini. Profile and content of sialylated oligosaccharides in donkey milk at early lactation. LWT 2019, 115 , 108437. https://doi.org/10.1016/j.lwt.2019.108437
    27. Fischöder, Cajic, Grote, Heinzler, Reichl, Franzreb, Rapp, Elling. Enzymatic Cascades for Tailored 13C6 and 15N Enriched Human Milk Oligosaccharides. Molecules 2019, 24 (19) , 3482. https://doi.org/10.3390/molecules24193482
    28. Chandan Ray, Joshi A. Kerketta, Subhash Rao, Snehal Patel, Shantanu Dutt, Kamal Arora, Femitha Pournami, Phani Bhushan. Human Milk Oligosaccharides: The Journey Ahead. International Journal of Pediatrics 2019, 2019 , 1-8. https://doi.org/10.1155/2019/2390240
    29. Evelyn Jantscher-Krenn, Johanna Aigner, Birgit Reiter, Harald Köfeler, Bence Csapo, Gernot Desoye, Lars Bode, Mireille N. M. van Poppel. Evidence of human milk oligosaccharides in maternal circulation already during pregnancy: a pilot study. American Journal of Physiology-Endocrinology and Metabolism 2019, 316 (3) , E347-E357. https://doi.org/10.1152/ajpendo.00320.2018
    30. Jolanta Lis-Kuberka, Magdalena Orczyk-Pawiłowicz. Sialylated Oligosaccharides and Glycoconjugates of Human Milk. The Impact on Infant and Newborn Protection, Development and Well-Being. Nutrients 2019, 11 (2) , 306. https://doi.org/10.3390/nu11020306
    31. Lin Ma, Paul McJarrow, Hamid Jan B. Jan Mohamed, Xihong Liu, Alan Welman, Bertram Y. Fong. Lactational changes in the human milk oligosaccharide concentration in Chinese and Malaysian mothers' milk. International Dairy Journal 2018, 87 , 1-10. https://doi.org/10.1016/j.idairyj.2018.07.015
    32. Jinhua Wei, Zhuo A. Wang, Bing Wang, Marefa Jahan, Zhongfu Wang, Peter C. Wynn, Yuguang Du. Characterization of porcine milk oligosaccharides over lactation between primiparous and multiparous female pigs. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-23025-x
    33. Aifric O'Sullivan, Bethany Henrick, Bonnie Dixon, Daniela Barile, Angela Zivkovic, Jennifer Smilowitz, Danielle Lemay, William Martin, J. Bruce German, Sara Elizabeth Schaefer. 21st century toolkit for optimizing population health through precision nutrition. Critical Reviews in Food Science and Nutrition 2018, 58 (17) , 3004-3015. https://doi.org/10.1080/10408398.2017.1348335
    34. Marcia H Monaco, Mei Wang, Xiao Pan, Qian Li, James D Richards, Maciej Chichlowski, Brian M Berg, Ryan N Dilger, Sharon M Donovan. Evaluation of Sialyllactose Supplementation of a Prebiotic-Containing Formula on Growth, Intestinal Development, and Bacterial Colonization in the Neonatal Piglet. Current Developments in Nutrition 2018, 2 (11) , nzy067. https://doi.org/10.1093/cdn/nzy067
    35. Puja S. Rajani, Antti E. Seppo, Kirsi M. Järvinen. Immunologically Active Components in Human Milk and Development of Atopic Disease, With Emphasis on Food Allergy, in the Pediatric Population. Frontiers in Pediatrics 2018, 6 https://doi.org/10.3389/fped.2018.00218
    36. Shana M Winkel, Melanie D Trenhaile-Grannemann, Dana M Van Sambeek, Phillip S Miller, Jaime Salcedo, Daniela Barile, Thomas E Burkey. Effects of energy restriction during gilt development on milk nutrient profile, milk oligosaccharides, and progeny biomarkers1. Journal of Animal Science 2018, 96 (8) , 3077-3088. https://doi.org/10.1093/jas/sky212
    37. Márkó Grabarics, Orsolya Csernák, Réka Balogh, Szabolcs Béni. Analytical characterization of human milk oligosaccharides – potential applications in pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis 2017, 146 , 168-178. https://doi.org/10.1016/j.jpba.2017.08.039
    38. Stephan Thurl, Manfred Munzert, Günther Boehm, Catherine Matthews, Bernd Stahl. Systematic review of the concentrations of oligosaccharides in human milk. Nutrition Reviews 2017, 75 (11) , 920-933. https://doi.org/10.1093/nutrit/nux044
    39. Yung-Shin Sun, X. D. Zhu. Real-time, label-free characterization of oligosaccharide-binding proteins using carbohydrate microarrays and an ellipsometry-based biosensor. Instrumentation Science & Technology 2017, 45 (5) , 506-524. https://doi.org/10.1080/10739149.2016.1278017
    40. William M. Sischo, Diana M. Short, Mareen Geissler, Apichaya Bunyatratchata, Daniela Barile. Comparative composition, diversity, and abundance of oligosaccharides in early lactation milk from commercial dairy and beef cows. Journal of Dairy Science 2017, 100 (5) , 3883-3892. https://doi.org/10.3168/jds.2016-12388
    41. Clarissa Schwab, Hans-Joachim Ruscheweyh, Vera Bunesova, Van Thanh Pham, Niko Beerenwinkel, Christophe Lacroix. Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation. Frontiers in Microbiology 2017, 8 https://doi.org/10.3389/fmicb.2017.00095
    42. Lauren D. Wu, L. Renee Ruhaak, Carlito B. Lebrilla. Analysis of Milk Oligosaccharides by Mass Spectrometry. 2017, 121-129. https://doi.org/10.1007/978-1-4939-6493-2_10
    43. Jingyu Yan, Junjie Ding, Xinmiao Liang. Chromatographic methods for the analysis of oligosaccharides in human milk. Analytical Methods 2017, 9 (7) , 1071-1077. https://doi.org/10.1039/C6AY02982E
    44. J. Salcedo, S.A. Frese, D.A. Mills, D. Barile. Characterization of porcine milk oligosaccharides during early lactation and their relation to the fecal microbiome. Journal of Dairy Science 2016, 99 (10) , 7733-7743. https://doi.org/10.3168/jds.2016-10966
    45. Austin T. Mudd, Jaime Salcedo, Lindsey S. Alexander, Stacey K. Johnson, Caitlyn M. Getty, Maciej Chichlowski, Brian M. Berg, Daniela Barile, Ryan N. Dilger. Porcine Milk Oligosaccharides and Sialic Acid Concentrations Vary Throughout Lactation. Frontiers in Nutrition 2016, 3 https://doi.org/10.3389/fnut.2016.00039
    46. Mark R. Charbonneau, Laura V. Blanton, Daniel B. DiGiulio, David A. Relman, Carlito B. Lebrilla, David A. Mills, Jeffrey I. Gordon. A microbial perspective of human developmental biology. Nature 2016, 535 (7610) , 48-55. https://doi.org/10.1038/nature18845
    47. Likun Cheng, Qingsong Xu, Kaiyun Yang, Jun He, Daiwen Chen, Yuguang Du, Heng Yin. Annotation of porcine milk oligosaccharides throughout lactation by hydrophilic interaction chromatography coupled with quadruple time of flight tandem mass spectrometry. ELECTROPHORESIS 2016, 37 (11) , 1525-1531. https://doi.org/10.1002/elps.201500471
    48. A. Martín-Ortiz, J. Salcedo, D. Barile, A. Bunyatratchata, F.J. Moreno, I. Martin-García, A. Clemente, M.L. Sanz, A.I. Ruiz-Matute. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry. Journal of Chromatography A 2016, 1428 , 143-153. https://doi.org/10.1016/j.chroma.2015.09.060
    49. Zachery T Lewis, Sarah M Totten, Jennifer T Smilowitz, Mina Popovic, Evan Parker, Danielle G Lemay, Maxwell L Van Tassell, Michael J Miller, Yong-Su Jin, J Bruce German, Carlito B Lebrilla, David A Mills. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015, 3 (1) https://doi.org/10.1186/s40168-015-0071-z
    50. Bárbara Socas‐Rodríguez, Antonio V. Herrera‐Herrera, Miguel Ángel González‐Curbelo, Javier González‐Sálamo, Javier Hernández‐Borges. Fast and Miniaturized Chromatography. 2015, 1315-1356. https://doi.org/10.1002/9783527678129.assep048
    51. Radoslav Goldman, Miloslav Sanda. Targeted methods for quantitative analysis of protein glycosylation. PROTEOMICS – Clinical Applications 2015, 9 (1-2) , 17-32. https://doi.org/10.1002/prca.201400152
    52. J. Bruce German, Jennifer T. Smilowitz, Carlito B. Lebrilla, David A. Mills, Samara L. Freeman. Metabolomics and Milk: The Development of the Microbiota in Breastfed Infants. 2015, 147-167. https://doi.org/10.1007/978-1-4471-6539-2_8
    53. Aifric O'Sullivan, Marie Farver, Jennifer T. Smilowitz. Article Commentary: The Influence of Early Infant-Feeding Practices on the Intestinal Microbiome and Body Composition in Infants. Nutrition and Metabolic Insights 2015, 8s1 , NMI.S29530. https://doi.org/10.4137/NMI.S29530
    54. S. Claps, M.A. Di Napoli, L. Sepe, A.R. Caputo, D. Rufrano, A. Di Trana, G. Annicchiarico, V. Fedele. Sialyloligosaccharides content in colostrum and milk of two goat breeds. Small Ruminant Research 2014, 121 (1) , 116-119. https://doi.org/10.1016/j.smallrumres.2013.12.024
    55. Jennifer T. Smilowitz, Carlito B. Lebrilla, David A. Mills, J. Bruce German, Samara L. Freeman. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate. Annual Review of Nutrition 2014, 34 (1) , 143-169. https://doi.org/10.1146/annurev-nutr-071813-105721
    56. M. Lange, H. Lee, D. Dallas, A. Le Parc, J.M.L.N. de Moura Bell, D. Barile. Determining Functional Properties and Sources of Recently Identified Bioactive Food Components: Oligosaccharides, Glycolipids, Glycoproteins, and Peptides. 2014, 441-461. https://doi.org/10.1016/B978-0-444-52512-3.00067-X
    57. A. Santos-Fandila, A. Zafra-Gómez, E. Vazquez, A. Navalón, R. Rueda, M. Ramírez. Ultra high performance liquid chromatography–tandem mass spectrometry method for the determination of soluble milk glycans in rat serum. Talanta 2014, 118 , 137-146. https://doi.org/10.1016/j.talanta.2013.10.013
    58. Gang Ahn, Dong Min Park, Jun Won Park, Joo-Youn Cho, Su-jin Rhee, Hyo-Young Kim, Dae-Seung Lee, In-Jin Jang, Hark Kyun Kim. Development and validation of a microfluidic chip-based nano-liquid chromatography–triple quadrupole tandem mass spectrometry method for a sensitive and reliable quantification of 7-ethyl-10-hydroxycamptothecin (SN38) in mouse plasma. Analytical and Bioanalytical Chemistry 2013, 405 (30) , 9817-9824. https://doi.org/10.1007/s00216-013-7411-2
    59. Chunxiu Hu, Guowang Xu. Mass-spectrometry-based metabolomics analysis for foodomics. TrAC Trends in Analytical Chemistry 2013, 52 , 36-46. https://doi.org/10.1016/j.trac.2013.09.005
    60. Esther Castanys-Muñoz, Maria J Martin, Pedro Antonio Prieto. 2′-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutrition Reviews 2013, 71 (12) , 773-789. https://doi.org/10.1111/nure.12079
    61. Danielle L Aldredge, Maria R Geronimo, Serenus Hua, Charles C Nwosu, Carlito B Lebrilla, Daniela Barile. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures. Glycobiology 2013, 23 (6) , 664-676. https://doi.org/10.1093/glycob/cwt007
    62. Maria Lorna A. De Leoz, Shuai Wu, John S. Strum, Milady R. Niñonuevo, Stephanie C. Gaerlan, Majid Mirmiran, J. Bruce German, David A. Mills, Carlito B. Lebrilla, Mark A. Underwood. A quantitative and comprehensive method to analyze human milk oligosaccharide structures in the urine and feces of infants. Analytical and Bioanalytical Chemistry 2013, 405 (12) , 4089-4105. https://doi.org/10.1007/s00216-013-6817-1
    63. Daniel Garrido, David C. Dallas, David A. Mills. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology 2013, 159 (Pt_4) , 649-664. https://doi.org/10.1099/mic.0.064113-0
    64. Dan Gao, Hongxia Liu, Yuyang Jiang, Jin-Ming Lin. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab on a Chip 2013, 13 (17) , 3309. https://doi.org/10.1039/c3lc50449b
    65. Peter Pruim, Peter J. Schoenmakers, Wim Th. Kok. Microfluidic Pressure Driven Liquid Chromatography of Biologically Relevant Samples. Chromatographia 2012, 75 (21-22) , 1225-1234. https://doi.org/10.1007/s10337-012-2328-z
    66. Kyung-Hun Jeong, Vi Nguyen, Jae-Han Kim. Human milk oligosaccharides: the novel modulator of intestinal microbiota. BMB Reports 2012, 45 (8) , 433-441. https://doi.org/10.5483/BMBRep.2012.45.8.168
    67. Yuwei Chang, Chunxia Zhao, Zeming Wu, Jia Zhou, Sumin Zhao, Xin Lu, Guowang Xu. Chip‐based nanoflow high performance liquid chromatography coupled to mass spectrometry for profiling of soybean flavonoids. ELECTROPHORESIS 2012, 33 (15) , 2399-2406. https://doi.org/10.1002/elps.201100581
    68. A. Marcobal, J.L. Sonnenburg. Human milk oligosaccharide consumption by intestinal microbiota. Clinical Microbiology and Infection 2012, 18 , 12-15. https://doi.org/10.1111/j.1469-0691.2012.03863.x
    69. Dennis Blank, Viktoria Dotz, Rudolf Geyer, Clemens Kunz. Human Milk Oligosaccharides and Lewis Blood Group: Individual High-Throughput Sample Profiling to Enhance Conclusions From Functional Studies. Advances in Nutrition 2012, 3 (3) , 440S-449S. https://doi.org/10.3945/an.111.001446
    70. Min Li, Laura L. Bauer, Xin Chen, Mei Wang, Theresa B. Kuhlenschmidt, Mark S. Kuhlenschmidt, George C. Fahey, Sharon M. Donovan. Microbial Composition and In Vitro Fermentation Patterns of Human Milk Oligosaccharides and Prebiotics Differ between Formula-Fed and Sow-Reared Piglets. The Journal of Nutrition 2012, 142 (4) , 681-689. https://doi.org/10.3945/jn.111.154427
    71. Shu‐Ling Lin, Hsin‐Yu Bai, Tzuen‐Yeuan Lin, Ming‐Ren Fuh. Microfluidic chip‐based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications. ELECTROPHORESIS 2012, 33 (4) , 635-643. https://doi.org/10.1002/elps.201100380
    72. Maciej Chichlowski, J. Bruce German, Carlito B. Lebrilla, David A. Mills. The Influence of Milk Oligosaccharides on Microbiota of Infants: Opportunities for Formulas. Annual Review of Food Science and Technology 2011, 2 (1) , 331-351. https://doi.org/10.1146/annurev-food-022510-133743
    73. Hsin-Yu Bai, Shu-Ling Lin, Yu-Ting Chung, Tsung-Yun Liu, Shan-An Chan, Ming-Ren Fuh. Quantitative determination of 8-isoprostaglandin F2α in human urine using microfluidic chip-based nano-liquid chromatography with on-chip sample enrichment and tandem mass spectrometry. Journal of Chromatography A 2011, 1218 (15) , 2085-2090. https://doi.org/10.1016/j.chroma.2010.10.091
    74. Angela M. Zivkovic, J. Bruce German, Carlito B. Lebrilla, David A. Mills. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proceedings of the National Academy of Sciences 2011, 108 (supplement_1) , 4653-4658. https://doi.org/10.1073/pnas.1000083107
    75. Martin Pabst, Friedrich Altmann. Glycan analysis by modern instrumental methods. PROTEOMICS 2011, 11 (4) , 631-643. https://doi.org/10.1002/pmic.201000517
    76. Joseph Zaia. Mass Spectrometry and Glycomics. OMICS: A Journal of Integrative Biology 2010, 14 (4) , 401-418. https://doi.org/10.1089/omi.2009.0146
    77. Daniel Kolarich, Nicolle H. Packer. Mass Spectrometry for the Analysis of Milk Oligosaccharides. 2010, 59-77. https://doi.org/10.1039/9781849730921-00059
    78. Martin Kussmann. Nutrition and Immunity. 2010, 268-309. https://doi.org/10.1039/9781849730921-00268
    79. Simone Albrecht, Henk A. Schols, Ellen G. H. M. van den Heuvel, Alphons G. J. Voragen, Harry Gruppen. CE‐LIF‐MS n profiling of oligosaccharides in human milk and feces of breast‐fed babies. ELECTROPHORESIS 2010, 31 (7) , 1264-1273. https://doi.org/10.1002/elps.200900646
    80. Hsin-Yu Bai, Shu-Ling Lin, Shen-An Chan, Ming-Ren Fuh. Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine. The Analyst 2010, 135 (10) , 2737. https://doi.org/10.1039/c0an00355g
    81. Florence Chapuis-Hugon, Valérie Pichon. Utilisation d’outils sélectifs pour l’analyse de traces dans des échantillons complexes. Annales de Toxicologie Analytique 2010, 22 (2) , 97-101. https://doi.org/10.1051/ata/2010016
    82. Begoña Casado, Michael Affolter, Martin Kussmann. OMICS-rooted studies of milk proteins, oligosaccharides and lipids. Journal of Proteomics 2009, 73 (2) , 196-208. https://doi.org/10.1016/j.jprot.2009.09.018
    83. Milady R Niñonuevo, Carlito B Lebrilla. Mass spectrometric methods for analysis of oligosaccharides in human milk. Nutrition Reviews 2009, 67 , S216-S226. https://doi.org/10.1111/j.1753-4887.2009.00243.x
    84. Stephan Kirsch, Laura Bindila. Nano-LC and HPLC-chip–ESI–MS: an emerging technique for glycobioanalysis. Bioanalysis 2009, 1 (7) , 1307-1327. https://doi.org/10.4155/bio.09.110
    85. N. Tao, E.J. DePeters, J.B. German, R. Grimm, C.B. Lebrilla. Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. Journal of Dairy Science 2009, 92 (7) , 2991-3001. https://doi.org/10.3168/jds.2008-1642
    86. Sharon M. Donovan. Human milk oligosaccharides – the plot thickens. British Journal of Nutrition 2009, 101 (09) , 1267. https://doi.org/10.1017/S0007114508091241
    87. R. Hickey. Harnessing milk oligosaccharides for nutraceutical applications. 2009, 308-343. https://doi.org/10.1533/9781845697198.2.308
    88. D. A. Sela, J. Chapman, A. Adeuya, J. H. Kim, F. Chen, T. R. Whitehead, A. Lapidus, D. S. Rokhsar, C. B. Lebrilla, J. B. German, N. P. Price, P. M. Richardson, D. A. Mills. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proceedings of the National Academy of Sciences 2008, 105 (48) , 18964-18969. https://doi.org/10.1073/pnas.0809584105
    89. . Current literature in mass spectrometry. Journal of Mass Spectrometry 2008, 1009-1020. https://doi.org/10.1002/jms.1304

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect