ACS Publications. Most Trusted. Most Cited. Most Read
Comparison of Flavonoid Composition of Red Raspberries (Rubus idaeus L.) Grown in the Southern United States
My Activity

Figure 1Loading Img
    Article

    Comparison of Flavonoid Composition of Red Raspberries (Rubus idaeus L.) Grown in the Southern United States
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, North Carolina 27695, United States
    NC State University Plants for Human Health Institute, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
    § Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
    *Phone: (919) 515-1220. Fax: (919) 515-7747. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2012, 60, 23, 5779–5786
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf203474e
    Published November 30, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Raspberry flavonoid compounds have significant antioxidant activities, and regular consumption may help prevent and/or moderate chronic diseases. Targeted metabolite profiling is useful to identify compounds contributing to these antioxidant properties and health benefits and for tailored breeding for functional foods. In this study, metabolomic variation was determined among three fall-fruiting red raspberry cultivars (‘Autumn Britten’, ‘Caroline’, ‘Nantahala’) grown at three North Carolina locations differing in elevation and average day/night temperatures. ‘Nantahala’ was specifically bred for the mountainous regions of the southern United States. Ten flavonoid compounds were detected by liquid chromatography–time-of-flight–mass spectrometry (LC-TOF-MS). Of those, cyanidin-3-glucoside, cyanidin-3-sophoroside, cyanidin-3-rutinoside, cyanidin-3-sambubioside, and quercetin-3-glucoside were quantified against external standards. Variation in flavonoid composition was primarily attributed to genotype and associated with night temperature and hours exposed to temperatures over 29 °C. ‘Nantahala’ had particularly high levels of cyanidin-3-sambubioside, indicative of its purple raspberry lineage. Quercetin-3-glucoside levels increased the most with elevated temperatures.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Compounds that were detected by LC-TOF-MS but not quantified against their exact external standard are quantified against an appropriate external standard, and concentrations for all detected compounds are reported as (mg/g DW ± standard error). This information is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Turfa Mamoona, Nagina Rafique, Muhammad Zubair Khan, Khawaja Shafique Ahmad, Saiqa Bashir, Tawaf Ali Shah, Ahmad Mohammad Salamatullah, Amare Bitew Mekonnen, Mohammed Bourhia. Phytonutritional and Sensorial Assessment of a Novel Functional Beverage Formulated from an Underutilized Fruit of Carissa spinarum L. ACS Omega 2023, 8 (36) , 32643-32655. https://doi.org/10.1021/acsomega.3c03386
    2. Guoxiang Xie, Xin Li, Houkai Li, and Wei Jia . Toward Personalized Nutrition: Comprehensive Phytoprofiling and Metabotyping. Journal of Proteome Research 2013, 12 (4) , 1547-1559. https://doi.org/10.1021/pr301222b
    3. Christian Schnurr, Lance Buckett, Jana Bitenc, Michael Rychlik. Quantification of mulberrin and morusin in mulberry and other food plants via stable isotope dilution analysis using LC-MS/MS. Food Chemistry 2025, 473 , 143061. https://doi.org/10.1016/j.foodchem.2025.143061
    4. Natalia Adamczuk, Piotr Migas, Katarzyna Kimel, Irena Maria Choma, Mirosława Krauze-Baranowska. TLC with densitometric and image analysis in the control of anthocyanin content in fruits of Rubus occidentalis and Rubus idaeus cultivars and hybrids. Journal of Food Composition and Analysis 2025, 137 , 106886. https://doi.org/10.1016/j.jfca.2024.106886
    5. Claudia Baldassi, Clover Lee, Michael Dossett, Simone D. Castellarin. High-throughput color determination of red raspberry puree and correlation of color parameters with total anthocyanins. Plant Methods 2024, 20 (1) https://doi.org/10.1186/s13007-024-01197-0
    6. Raúl D. Monge-Sevilla, Lenys Fernández, Patricio J. Espinoza-Montero, Carlos Méndez-Durazno, Pablo A. Cisneros-Pérez, David Romero-Estévez, Diego Bolaños-Méndez, Jocelyne Alvarez-Paguay, Mónica Jadán. Chemical composition and antioxidant properties of native Ecuadorian fruits: Rubus glabratus Kunth, Vaccinium floribundum Kunth, and Opuntia soederstromiana. Heliyon 2024, 10 (9) , e30593. https://doi.org/10.1016/j.heliyon.2024.e30593
    7. P. Perkins-Veazie, G. Ma, G. Fernandez, B. Haynes, C. Ochsenfeld, A. Fister, L. Redpath, R. Rapp. Anthocyanin profiles among Rubus species. Acta Horticulturae 2024, 100 (1388) , 405-411. https://doi.org/10.17660/ActaHortic.2024.1388.59
    8. Nicolas Buck, Michelle T. Fountain, Simon G. Potts, Michael P.D. Garratt. Insect excluding mesh enhances Spotted-wing Drosophila (Drosophila suzukii) control in tunneled raspberry with limited effects on natural enemy abundance. Agriculture, Ecosystems & Environment 2024, 359 , 108756. https://doi.org/10.1016/j.agee.2023.108756
    9. Natalia Adamczuk, Piotr Migas, Katarzyna Kimel, Irena Choma, Mirosława Krauze-Baranowska. Tlc with Densitometry And Image Analysis in the Control of Anthocyanin Content in Fruits of R.Occidentalis and R.Idaeus Species of Their Cultivated Varieties and Hybrids. 2024https://doi.org/10.2139/ssrn.4892229
    10. Hanna McIntosh, Christelle Guédot, Amaya Atucha. Plastic mulches improve yield and reduce spotted-wing drosophila in primocane raspberry. Scientia Horticulturae 2023, 320 , 112203. https://doi.org/10.1016/j.scienta.2023.112203
    11. G. J. McDougall, J. W. Allwood, G. Dobson, C. Austin, S. Verrall, C. J. Alexander, R. D. Hancock, J. Graham, C. A. Hackett. Quantitative trait loci mapping of polyphenol metabolites from a ‘Latham’ x ‘Glen Moy’ red raspberry (Rubus idaeus L) cross. Metabolomics 2023, 19 (8) https://doi.org/10.1007/s11306-023-02033-7
    12. Jianxiong Wang, Xiaowu Xiao, Nian Zhou, Minmin Zhao, Shuqin Lang, Qi Ren, Dong Wang, Huizheng Fu. Rubochingosides A - J, labdane-type diterpene glycosides from leaves of Rubus chingii. Phytochemistry 2023, 210 , 113670. https://doi.org/10.1016/j.phytochem.2023.113670
    13. Youwei Yuan, Yiling Tian, Shuang Gao, Xuemei Zhang, Xufang Gao, Junping He. Effects of environmental factors and fermentation on red raspberry anthocyanins stability. LWT 2023, 173 , 114252. https://doi.org/10.1016/j.lwt.2022.114252
    14. Irina Titirică, Ioana A. Roman, Claudia Nicola, Monica Sturzeanu, Elena Iurea, Mihai Botu, Radu E. Sestras, Rodica Pop, Mădălina Militaru, Sezai Ercisli, Adriana F. Sestras. The Main Morphological Characteristics and Chemical Components of Fruits and the Possibilities of Their Improvement in Raspberry Breeding. Horticulturae 2023, 9 (1) , 50. https://doi.org/10.3390/horticulturae9010050
    15. Milica Fotirić Akšić, Milica Nešović, Ivanka Ćirić, Živoslav Tešić, Lato Pezo, Tomislav Tosti, Uroš Gašić, Biljana Dojčinović, Biljana Lončar, Mekjell Meland. Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions. Horticulturae 2022, 8 (9) , 765. https://doi.org/10.3390/horticulturae8090765
    16. Guanyu Yan, Peiyan Zheng, Shaoquan Weng, Yida Zhang, Wenliu Xu, Jiaying Luo, Jianjun Fei, Jingxian Wang, Hui Zhang, Haisheng Hu, Baoqing Sun. Comparison of Chemical Compositions and Antioxidant Activities of Fresh and Dried Rosa roxburghii Tratt Fruit. Natural Product Communications 2022, 17 (4) https://doi.org/10.1177/1934578X221095350
    17. Urszula Szymanowska, Monika Karaś, Justyna Bochnak-Niedźwiecka. Antioxidant and Anti-Inflammatory Potential and Consumer Acceptance of Wafers Enriched with Freeze-Dried Raspberry Pomace. Applied Sciences 2021, 11 (15) , 6807. https://doi.org/10.3390/app11156807
    18. Lapo Renai, Cristina Vanessa Agata Scordo, Ugo Chiuminatto, Marynka Ulaszewska, Edgardo Giordani, William Antonio Petrucci, Francesca Tozzi, Stefania Nin, Massimo Del Bubba. Liquid Chromatographic Quadrupole Time-of-Flight Mass Spectrometric Untargeted Profiling of (Poly)phenolic Compounds in Rubus idaeus L. and Rubus occidentalis L. Fruits and Their Comparative Evaluation. Antioxidants 2021, 10 (5) , 704. https://doi.org/10.3390/antiox10050704
    19. Ilian Badjakov, Vasil Georgiev, Maria Georgieva, Ivayla Dincheva, Radka Vrancheva, Ivan Ivanov, Diyan Georgiev, Denitsa Hristova, Violeta Kondakova, Atanas Pavlov. Bioreactor Technology for In Vitro Berry Plant Cultivation. 2021, 383-431. https://doi.org/10.1007/978-3-030-30185-9_18
    20. Esperanza J. Carcache de Blanco, A. Douglas Kinghorn. Botanical dietary products. 2021, 45-58. https://doi.org/10.1016/B978-0-12-820007-0.00003-9
    21. Jing Yang, Jingyan Cui, Jinxiang Chen, Jingyang Yao, Yuxin Hao, Yanling Fan, Yongping Liu. Evaluation of physicochemical properties in three raspberries (Rubus idaeus) at five ripening stages in northern China. Scientia Horticulturae 2020, 263 , 109146. https://doi.org/10.1016/j.scienta.2019.109146
    22. Ilian Badjakov, Vasil Georgiev, Maria Georgieva, Ivayla Dincheva, Radka Vrancheva, Ivan Ivanov, Diyan Georgiev, Denitsa Hristova, Violeta Kondakova, Atanas Pavlov. Bioreactor Technology for In Vitro Berry Plant Cultivation. 2020, 1-49. https://doi.org/10.1007/978-3-030-11253-0_18-1
    23. Rytis Rugienius, Birutė Frercks, Ingrida Mažeikienė, Neringa Rasiukevičiūtė, Danas Baniulis, Vidmantas Stanys. Development of Climate-Resilient Varieties in Rosaceous Berries. 2020, 333-384. https://doi.org/10.1007/978-3-319-97946-5_9
    24. MinJu Lee, JuHee Nam, JeongHo Jeong, IlRae Rho. Effect of plant part, extraction method, and harvest time over antioxidant yield of rubus coreanus. Pharmacognosy Magazine 2020, 16 (5) , 455. https://doi.org/10.4103/pm.pm_549_19
    25. Xianli Wu, Jianghao Sun, Jaspreet Ahuja, David B. Haytowitz, Pei Chen, Britt Burton-Freeman, Pamela R. Pehrsson. Anthocyanins in processed red raspberries on the US market ,. Journal of Berry Research 2019, 9 (4) , 603-613. https://doi.org/10.3233/JBR-190405
    26. Haopeng Zhang, Jiaren Liu, Guodong Li, Jiufeng Wei, Hongsheng Chen, Chunpeng Zhang, Jinlu Zhao, Yunfeng Wang, Shuwei Dang, Xinglong Li, Xuan Fang, Lianxin Liu, Ming Liu. Fresh red raspberry phytochemicals suppress the growth of hepatocellular carcinoma cells by PTEN/AKT pathway. The International Journal of Biochemistry & Cell Biology 2018, 104 , 55-65. https://doi.org/10.1016/j.biocel.2018.09.003
    27. Robert D. Hancock, Antonios Petridis, Gordon J. McDougall. Raspberry Fruit Chemistry in Relation to Fruit Quality and Human Nutrition. 2018, 89-119. https://doi.org/10.1007/978-3-319-99031-6_7
    28. Laís Moro, Neuza Mariko Aymoto Hassimotto, Eduardo Purgatto. Postharvest Auxin and Methyl Jasmonate Effect on Anthocyanin Biosynthesis in Red Raspberry (Rubus idaeus L.). Journal of Plant Growth Regulation 2017, 36 (3) , 773-782. https://doi.org/10.1007/s00344-017-9682-x
    29. Giuliana D. Noratto, Boon P. Chew, Liezl M. Atienza. Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chemistry 2017, 227 , 305-314. https://doi.org/10.1016/j.foodchem.2017.01.097
    30. Young Jin Kim, Heon-Woong Kim, Min-Ki Lee, Seon-Hye Lee, Hwan-Hee Jang, Yu-Jin Hwang, Jeong-Sook Choe, Sung-Hyun Lee, Youn-Soo Cha, Jung-Bong Kim. Comparison of Flavonoid Characteristics between Blueberry (Vaccinium corymbosum) and Black Raspberry (Rubus coreanus) Cultivated in Korea using UPLC-DAD-QTOF/MS. Korean Journal of Environmental Agriculture 2017, 36 (2) , 87-96. https://doi.org/10.5338/KJEA.2017.36.2.14
    31. Marta Kula, Magdalena Majdan, Daniel Głód, Mirosława Krauze-Baranowska. Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland. Journal of Food Composition and Analysis 2016, 52 , 74-82. https://doi.org/10.1016/j.jfca.2016.08.003
    32. Rachel L. Galli, Amanda N. Carey, Katharine A. Luskin, Donna F. Bielinski, Barbara Shukitt-Hale. Red raspberries can improve motor function in aged rats. Journal of Berry Research 2016, 6 (2) , 97-103. https://doi.org/10.3233/JBR-160119
    33. T.W. Miller, D.A.M. Jarret, R.M. Brennan, R.D. Hancock. Does primocane management affect raspberry fruit yield or anthocyanin content?. Acta Horticulturae 2016, 18 (1133) , 363-370. https://doi.org/10.17660/ActaHortic.2016.1133.57
    34. M.J. Kim, K.L. Sutton, G.K. Harris. Raspberries and Related Fruits. 2016, 586-591. https://doi.org/10.1016/B978-0-12-384947-2.00586-9
    35. Moo Jung Kim, Penelope Perkins-Veazie, Guoying Ma, Gina Fernandez. Shelf life and changes in phenolic compounds of organically grown blackberries during refrigerated storage. Postharvest Biology and Technology 2015, 110 , 257-263. https://doi.org/10.1016/j.postharvbio.2015.08.020
    36. Jon Anders Stavang, Sabine Freitag, Alexandre Foito, Susan Verrall, Ola M. Heide, Derek Stewart, Anita Sønsteby. Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chemical analyses. Scientia Horticulturae 2015, 195 , 216-225. https://doi.org/10.1016/j.scienta.2015.08.045
    37. Sandra C. Gouveia-Figueira, Paula C. Castilho. Phenolic screening by HPLC–DAD–ESI/MSn and antioxidant capacity of leaves, flowers and berries of Rubus grandifolius Lowe. Industrial Crops and Products 2015, 73 , 28-40. https://doi.org/10.1016/j.indcrop.2015.03.022
    38. Vivian Caetano Bochi, Milene Teixeira Barcia, Daniele Rodrigues, Helena Teixeira Godoy. Biochemical Characterization of Dovyalis hebecarpa Fruits: A Source of Anthocyanins with High Antioxidant Capacity. Journal of Food Science 2015, 80 (10) https://doi.org/10.1111/1750-3841.12978
    39. Sona Skrovankova, Daniela Sumczynski, Jiri Mlcek, Tunde Jurikova, Jiri Sochor. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. International Journal of Molecular Sciences 2015, 16 (10) , 24673-24706. https://doi.org/10.3390/ijms161024673
    40. Milena Masullo, Paola Montoro, Angela Mari, Cosimo Pizza, Sonia Piacente. Medicinal plants in the treatment of women's disorders: Analytical strategies to assure quality, safety and efficacy. Journal of Pharmaceutical and Biomedical Analysis 2015, 113 , 189-211. https://doi.org/10.1016/j.jpba.2015.03.020
    41. Da Cheng Hao, Xiao-Jie Gu, Pei Gen Xiao. Potentilla and Rubus medicinal plants. 2015, 373-430. https://doi.org/10.1016/B978-0-08-100085-4.00010-4
    42. S.P. Mazur, A. Sønsteby, A.‐B. Wold, A. Foito, S. Freitag, S. Verrall, S. Conner, D. Stewart, O.M. Heide. Post‐flowering photoperiod has marked effects on fruit chemical composition in red raspberry ( Rubus idaeus ). Annals of Applied Biology 2014, 165 (3) , 454-465. https://doi.org/10.1111/aab.12153
    43. Tae Kyung Hyun, Sarah Lee, Dhinesh Kumar, Yeonggil Rim, Ritesh Kumar, Sang Yeol Lee, Choong Hwan Lee, Jae-Yean Kim. RNA-seq analysis of Rubus idaeus cv. Nova: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. Plant Cell Reports 2014, 33 (10) , 1617-1628. https://doi.org/10.1007/s00299-014-1641-4
    44. Sebastian Piotr Mazur, Arnfinn Nes, Anne-Berit Wold, Siv Fagertun Remberg, Kjersti Aaby. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chemistry 2014, 160 , 233-240. https://doi.org/10.1016/j.foodchem.2014.02.174
    45. Lina Raudone, Ramune Bobinaite, Valdimaras Janulis, Pranas Viskelis, Sonata Trumbeckaite. Effects of raspberry fruit extracts and ellagic acid on respiratory burst in murine macrophages. Food Funct. 2014, 5 (6) , 1167-1174. https://doi.org/10.1039/C3FO60593K
    46. Hannah J Burrack, Gina E Fernandez, Taylor Spivey, Dylan A Kraus. Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Management Science 2013, 69 (10) , 1173-1180. https://doi.org/10.1002/ps.3489
    47. Jungmin Lee, Michael Dossett, Chad E. Finn. Anthocyanin fingerprinting of true bokbunja (Rubus coreanus Miq.) fruit. Journal of Functional Foods 2013, 5 (4) , 1985-1990. https://doi.org/10.1016/j.jff.2013.06.006

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2012, 60, 23, 5779–5786
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf203474e
    Published November 30, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1519

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.