ACS Publications. Most Trusted. Most Cited. Most Read
Underutilized Chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) Accessions Are Rich Sources of Anthocyanins, Flavonoids, Hydroxycinnamic Acids, and Proanthocyanidins
My Activity

Figure 1Loading Img
    Article

    Underutilized Chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) Accessions Are Rich Sources of Anthocyanins, Flavonoids, Hydroxycinnamic Acids, and Proanthocyanidins
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Extension, Unit 4017, Storrs, Connecticut 06269-4017, United States
    Department of Plant Science and Landscape Architecture, University of Connecticut, 1390 Storrs Road, Unit 4163, Storrs, Connecticut 06269-4163, United States
    *(B.W.B.) Phone: (860) 486-2180. Fax: (860) 486-3674. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2013, 61, 36, 8581–8588
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf402449q
    Published August 13, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Polyphenols from underutilized black, purple, and red aronia (Aronia melanocarpa, Aronia prunifolia, and Aronia arbutifolia) and ‘Viking’ (Aronia mitschurinii) berries were characterized. Anthocyanin and nonanthocyanin flavonoids were quantitated by UHPLC-DAD-MS and proanthocyanidins by normal-phase HPLC. On a dry weight basis, anthocyanins were mainly cyanidin-3-galactoside, highest in black aronia (3.4–14.8 mg/g) and lowest in red aronia (0.5–0.8 mg/g) as cyandin-3-galactoside equivalents. Berries from ‘Viking’ and the red accession UC021 had substantially more proanthocyanidins than the other accessions, with 3.3 and 3.8 mg catechin equiv/g, respectively. Chlorogenic acids and quercetin glycosides were most abundant in purple UC047 berries, at 17.3 and 1.3 mg/g, respectively. In contrast to anthocyanin content, total phenol values were highest in berries from red and purple accessions and attributed to phenolic acid and proanthocyanin content. Thus, red, purple, and black aronia berries are rich sources of polyphenols with various levels of polyphenol classes.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Table S1: Sources and Propagation of Aronia Accessions Utilized in the Present Study. Table S2: Anthocyanin Content of Aronia Berries Determined by UHPLC-MS as mg/g Fresh Weight. Table S3: Proanthocyanidin Content of Aronia Berries Determined by Normal phase HPLC (mg/g fresh weight). Table S4: Polyphenol Composition of Aronia Berries as Sum of Polyphenol Classes on a Fresh Weight Basis. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 110 publications.

    1. Bokary Sylla, Ludan Osman, Preeti Sharma, Breann V. Green, Mohamed Abdelmotalab, Andrew G. Ristvey, Victoria V. Volkis. The Influence of Temperature on the Antioxidants of Aronia mitschurinii Fruit Juice and Drinks. ACS Omega 2024, 9 (46) , 46074-46090. https://doi.org/10.1021/acsomega.4c06369
    2. Hatice Kubra Sasmaz, Ozlem Kilic-Buyukkurt, Serkan Selli, Mohamed Bouaziz, Hasim Kelebek. Antioxidant Capacity, Sugar Content, and Tandem HPLC–DAD–ESI/MS Profiling of Phenolic Compounds from Aronia melanocarpa Fruits and Leaves (Nero and Viking Cultivars). ACS Omega 2024, 9 (13) , 14963-14976. https://doi.org/10.1021/acsomega.3c09040
    3. Breann V. Green, Travis W. Ford, Heather Goldsborrough, Mohamed Abdelmotalab, Andrew G. Ristvey, Deborah G. Sauder, Victoria V. Volkis. Extraction of Antioxidants from Aronia mitschurinii Juice Using Macroporous Resins. ACS Omega 2022, 7 (34) , 29877-29885. https://doi.org/10.1021/acsomega.2c02785
    4. Lena Müller, Fabian Weever, Florian Hübner, Hans-Ulrich Humpf, Melanie Esselen. Characterization of Oligomeric Proanthocyanidin-Enriched Fractions from Aronia melanocarpa (Michx.) Elliott via High-Resolution Mass Spectrometry and Investigations on Their Inhibitory Potential on Human Topoisomerases. Journal of Agricultural and Food Chemistry 2021, 69 (37) , 11053-11064. https://doi.org/10.1021/acs.jafc.1c04761
    5. Yanwen Kong, Tingcai Yan, Yuqi Tong, Haotian Deng, Chang Tan, Meizhi Wan, Mingyue Wang, Xianjun Meng, Yuehua Wang. Gut Microbiota Modulation by Polyphenols from Aronia melanocarpa of LPS-Induced Liver Diseases in Rats. Journal of Agricultural and Food Chemistry 2021, 69 (11) , 3312-3325. https://doi.org/10.1021/acs.jafc.0c06815
    6. C. Benjamin Naman, Jie Li, Arvin Moser, Jeffery M. Hendrycks, P. Annécie Benatrehina, Heebyung Chai, Chunhua Yuan, William J. Keller, and A. Douglas Kinghorn . Computer-Assisted Structure Elucidation of Black Chokeberry (Aronia melanocarpa) Fruit Juice Isolates with a New Fused Pentacyclic Flavonoid Skeleton. Organic Letters 2015, 17 (12) , 2988-2991. https://doi.org/10.1021/acs.orglett.5b01284
    7. Shama V. Joseph, Indika Edirisinghe, and Britt M. Burton-Freeman . Berries: Anti-inflammatory Effects in Humans. Journal of Agricultural and Food Chemistry 2014, 62 (18) , 3886-3903. https://doi.org/10.1021/jf4044056
    8. Pornpat (Aom) Jantip, Chandra K. Singh, Yaa Asantewaa Kafui Klu, Nihal Ahmad, Bradley W. Bolling. Peanut skin polyphenols inhibit proliferation of leukemia cells in vitro, and its A‐type procyanidins selectively pass through a Caco‐2 intestinal barrier. Journal of Food Science 2025, 90 (2) https://doi.org/10.1111/1750-3841.70018
    9. Preeti Sharma, Keith Bratley, Travis Ford, Andrew G Ristvey, Victoria V Volkis. Aronia mitschurinii – New generation of super fruits with multiple health benefits. Journal of Berry Research 2025, 15 (1) , 12-25. https://doi.org/10.1177/18785093241308676
    10. Rui Huang, Changmou Xu. Sensory Property and Phenolic Profile of Aronia Juice. 2025, 525-560. https://doi.org/10.1007/978-3-031-38663-3_73
    11. Xiaocao Liu, Nina Shangguan, Fulong Zhang, Rui Duan. Aronia-derived anthocyanins and metabolites ameliorate TNFα-induced disruption of myogenic differentiation in satellite cells. Biochemical and Biophysical Research Communications 2024, 733 , 150687. https://doi.org/10.1016/j.bbrc.2024.150687
    12. Dana Dvorska, Alena Mazurakova, Lenka Lackova, Dominika Sebova, Karol Kajo, Marek Samec, Dusan Brany, Emil Svajdlenka, Jakub Treml, Sandra Mersakova, Jan Strnadel, Marian Adamkov, Zora Lasabova, Kamil Biringer, Jan Mojzis, Dietrich Büsselberg, Karel Smejkal, Martin Kello, Peter Kubatka. Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation. Frontiers in Oncology 2024, 14 https://doi.org/10.3389/fonc.2024.1463656
    13. Paweł Kubica, Agnieszka Szopa, Adam Setkiewicz, Halina Ekiert. Efficient Production of Some Bioactive Depsides and Simple Phenolic Acids by Microshoots of Aronia × Prunifolia (Purple Aronia) Agitated Cultures as the Result of Feeding Strategy with Four Different Biogenetic Precursors. Molecules 2024, 29 (19) , 4622. https://doi.org/10.3390/molecules29194622
    14. Luau Burhan Mustafa, Ahmed Ismael Naqee Al-bayatı, Dunya Albayati, İbrahim Özkoç. Biological control of pathogenic fungi using Pseudomonas brassicacearum isolated from Aronia × prunifolia (Marshall) Rehder roots. International Journal of Secondary Metabolite 2024, 11 (3) , 421-434. https://doi.org/10.21448/ijsm.1385251
    15. Min Young Go, Jinsick Kim, Chae Young Jeon, Dong Wook Shin. Functional Activities and Mechanisms of Aronia melanocarpa in Our Health. Current Issues in Molecular Biology 2024, 46 (8) , 8071-8087. https://doi.org/10.3390/cimb46080477
    16. Hui Tan, Baoyue Cui, Kexin Zheng, Ningxuan Gao, Xuening An, Yu Zhang, Zhen Cheng, Yujie Nie, Jinyan Zhu, Li Wang, Kuniyoshi Shimizu, Xiyun Sun, Bin Li. Novel inhibitory effect of black chokeberry (Aronia melanocarpa) from selected eight berries extracts on advanced glycation end-products formation and corresponding mechanism study. Food Chemistry: X 2024, 21 , 101032. https://doi.org/10.1016/j.fochx.2023.101032
    17. Limei Chen, Wuxi Chen, Demao Li, Xiumin Liu. Anthocyanin and proanthocyanidin from Aronia melanocarpa (Michx.) Ell.: Purification, fractionation, and enzyme inhibition. Food Science & Nutrition 2023, 11 (7) , 3911-3922. https://doi.org/10.1002/fsn3.3377
    18. Tian Pu, Zhen-Ning Zhao, Xiao Yu. The complete chloroplast genome of Crataegus scabrifolia (Franch.) Rehd (Rosaceae), a medicinal and edible plant in Southwest China. Mitochondrial DNA Part B 2023, 8 (1) , 81-85. https://doi.org/10.1080/23802359.2022.2160668
    19. Rui Huang, Changmou Xu. Sensory Property and Phenolic Profile of Aronia Juice. 2023, 1-37. https://doi.org/10.1007/978-3-031-04195-2_73-1
    20. Julie Sangild, Anne Faldborg, Cecilie Schousboe, Maja Døvling Kaspersen Fedder, Lars Porskjær Christensen, Astrid Komal Lausdahl, Eva Christensen Arnspang, Søren Gregersen, Henrik Byrial Jakobsen, Ulla Breth Knudsen, Jens Fedder. Effects of Chokeberries (Aronia spp.) on Cytoprotective and Cardiometabolic Markers and Semen Quality in 109 Mildly Hypercholesterolemic Danish Men: A Prospective, Double-Blinded, Randomized, Crossover Trial. Journal of Clinical Medicine 2023, 12 (1) , 373. https://doi.org/10.3390/jcm12010373
    21. Yebeen Kang, Eunmi Koh. Thermal Degradation Kinetics of Anthocyanins in Black Chokeberry, Black Mulberry, and Blueberry. Journal of the East Asian Society of Dietary Life 2022, 32 (6) , 360-369. https://doi.org/10.17495/easdl.2022.12.32.6.360
    22. Jonathan D. Mahoney, Sining Wang, Liam A. Iorio, Jill L. Wegrzyn, Matthew Dorris, Derek Martin, Bradley W. Bolling, Mark H. Brand, Huanzhong Wang. De novo assembly of a fruit transcriptome set identifies AmMYB10 as a key regulator of anthocyanin biosynthesis in Aronia melanocarpa. BMC Plant Biology 2022, 22 (1) https://doi.org/10.1186/s12870-022-03518-8
    23. Erica S. King, Andrea Noll, Susan Glenn, Bradley W. Bolling. Refrigerated and frozen storage impact aronia berry quality. Food Production, Processing and Nutrition 2022, 4 (1) https://doi.org/10.1186/s43014-021-00080-y
    24. Ömer Taş, Betül Mitrovica, Deniz Ekinci. Characterization of Catalase Enzyme from Leaf Tissue of Aronia (Aronia melanocarpa) Plant. 2022https://doi.org/10.21203/rs.3.rs-2309242/v1
    25. Gizem Catalkaya, Burcu Guldiken, Esra Capanoglu. Encapsulation of anthocyanin-rich extract from black chokeberry ( Aronia melanocarpa ) pomace by spray drying using different coating materials. Food & Function 2022, 13 (22) , 11579-11591. https://doi.org/10.1039/D2FO02569H
    26. Rui Huang, Wei Fang, Xiaoqing Xie, Yutong Liu, Changmou Xu. Identification of key astringent compounds in aronia berry juice. Food Chemistry 2022, 393 , 133431. https://doi.org/10.1016/j.foodchem.2022.133431
    27. Dorota Sosnowska, Dominika Kajszczak, Anna Podsędek. The Effect of Different Growth Stages of Black Chokeberry Fruits on Phytonutrients, Anti-Lipase Activity, and Antioxidant Capacity. Molecules 2022, 27 (22) , 8031. https://doi.org/10.3390/molecules27228031
    28. Jeong-Muk Lim, Yeo-Jin Yoo, Seong-Hyeon Lee, Tae-Hu Jang, Kamala-Kannan Seralathan, Eui-Yong Lee, Hyun-Jin Tae, Eun-Jung Yim, Do-Youn Jeong, Byung-Taek Oh. Anti-inflammatory, anti-lipogenesis, and anti-obesity benefits of fermented Aronia vinegar evaluated in 3T3-L1 cells and high-fat diet induced C57BL/6 mice. Food Biotechnology 2022, 36 (4) , 328-350. https://doi.org/10.1080/08905436.2022.2124263
    29. Dorota Naróg, Andrzej Sobkowiak. Electrochemical Investigation of some Flavonoids in Aprotic Media. Electroanalysis 2022, 34 (8) , 1363-1371. https://doi.org/10.1002/elan.202100492
    30. Theodora Kaloudi, Dimitrios Tsimogiannis, Vassiliki Oreopoulou. Aronia Melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules 2022, 27 (14) , 4375. https://doi.org/10.3390/molecules27144375
    31. Oskan Tasinov, Ivayla Dincheva, Ilian Badjakov, Christina Grupcheva, Bistra Galunska. Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market. Plants 2022, 11 (13) , 1655. https://doi.org/10.3390/plants11131655
    32. Christine B. Christiansen, Fredrik B. Mellbye, Kjeld Hermansen, Per B. Jeppesen, Søren Gregersen. Effects of Aronia melanocarpa on Cardiometabolic Diseases: A Systematic Review of Quasi-Design Studies and Randomized Controlled Trials. Review of Diabetic Studies 2022, 18 (2) , 76-92. https://doi.org/10.1900/RDS.2022.18.76
    33. Hui-Yao Gao, Yan Liu, Fei-Fan Tan, Li-Wen Zhu, Kai-Zhi Jia, Ya-Jie Tang. The Advances and Challenges in Enzymatic C -glycosylation of Flavonoids in Plants. Current Pharmaceutical Design 2022, 28 (18) , 1466-1479. https://doi.org/10.2174/1381612828666220422085128
    34. Elena Y. Platonova, Nadezhda V. Zemskaya, Mikhail V. Shaposhnikov, Denis A. Golubev, Daria V. Kukuman, Natalya R. Pakshina, Natalia S. Ulyasheva, Vasily V. Punegov, Sergey A. Patov, Alexey Moskalev. Geroprotective effects of × Sorbaronia mitschurinii fruit extract on Drosophila melanogaster. Journal of Berry Research 2022, 12 (1) , 73-92. https://doi.org/10.3233/JBR-211502
    35. Tian Yi, Wei Fang, Xiaoqing Xie, Bo Yuan, Mei Lu, Changmou Xu. High pressure processing (HPP) improved safety and quality of emerging aronia berry juice: a pilot scale shelf-life study. Journal of Food Science and Technology 2022, 59 (2) , 755-767. https://doi.org/10.1007/s13197-021-05070-z
    36. Ewa Raczkowska, Paulina Nowicka, Aneta Wojdyło, Marzena Styczyńska, Zbigniew Lazar. Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol. Antioxidants 2022, 11 (2) , 190. https://doi.org/10.3390/antiox11020190
    37. Sylwia Sady, Alfred Błaszczyk, Wojciech Kozak, Paulina Boryło, Marek Szindler. Quality assessment of innovative chitosan-based biopolymers for edible food packaging applications. Food Packaging and Shelf Life 2021, 30 , 100756. https://doi.org/10.1016/j.fpsl.2021.100756
    38. Erica S. King, Junhyo Cho, Hengjing Li, Xueqi Jiang, Annika K. Madler, Mikala K. Weishair, Susan Glenn, Mark H. Brand, Changmou Xu, Bradley W. Bolling. Time of harvest affects United States-grown Aronia mitschurinii berry polyphenols, °Brix, and acidity. Journal of Agriculture and Food Research 2021, 6 , 100248. https://doi.org/10.1016/j.jafr.2021.100248
    39. Chae-Eun Yun, Hyun-Kyung So, Tuan Anh Vuong, Myung Woo Na, Subin Anh, Hyo-Keun Lee, Ki Hyun Kim, Jong-Sun Kang, Gyu-Un Bae, Sang-Jin Lee. Aronia Upregulates Myogenic Differentiation and Augments Muscle Mass and Function Through Muscle Metabolism. Frontiers in Nutrition 2021, 8 https://doi.org/10.3389/fnut.2021.753643
    40. Isidora Milosavljevic, Vladimir Jakovljevic, Dejan Petrovic, Nevena Draginic, Jovana Jeremic, Miroslav Mitrovic, Vladimir Zivkovic, Ivan Srejovic, Vladislava Stojic, Sergey Bolevich, Nebojsa Andjelkovic. Standardized Aronia melanocarpa extract regulates redox status in patients receiving hemodialysis with anemia. Molecular and Cellular Biochemistry 2021, 476 (11) , 4167-4175. https://doi.org/10.1007/s11010-021-04225-y
    41. Fatemeh Vahdat‐Lasemi, Seyed Hamid Aghaee‐Bakhtiari, Aida Tasbandi, Mahmoud Reza Jaafari, Amirhossein Sahebkar. Targeting interleukin‐β by plant‐derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytotherapy Research 2021, 35 (10) , 5596-5622. https://doi.org/10.1002/ptr.7194
    42. Li-Min Zhang, Shuai-Shuai Lv, Shi-Rui Fu, Jia-Qi Wang, Lu-Yao Liang, Rui-Qiang Li, Fan Zhang, Yu-Xia Ma. Procyanidins inhibit fine particulate matter-induced vascular smooth muscle cells apoptosis via the activation of the Nrf2 signaling pathway. Ecotoxicology and Environmental Safety 2021, 223 , 112586. https://doi.org/10.1016/j.ecoenv.2021.112586
    43. Xiaocao Liu, Derek A. Martin, Jonathan C. Valdez, Sailendharan Sudakaran, Federico Rey, Bradley W. Bolling. Aronia berry polyphenols have matrix-dependent effects on the gut microbiota. Food Chemistry 2021, 359 , 129831. https://doi.org/10.1016/j.foodchem.2021.129831
    44. Xinyao Jiao, Yixiao Shen, Haotian Deng, Qi Zhang, Jin Zhao. Cyanidin-3-O-galactoside from Aronia melanocarpa attenuates high-fat diet-induced obesity and inflammation via AMPK, STAT3, and NF-κB p65 signaling pathways in Sprague-Dawley rats. Journal of Functional Foods 2021, 85 , 104616. https://doi.org/10.1016/j.jff.2021.104616
    45. Mackenzie M. Hansen, Richard W. Hartel, Yrjö H. Roos. Encapsulant-bioactives interactions impact on physico-chemical properties of concentrated dispersions. Journal of Food Engineering 2021, 302 , 110586. https://doi.org/10.1016/j.jfoodeng.2021.110586
    46. Elena Y. Platonova, Mikhail V. Shaposhnikov, Hye-Yeon Lee, Ji-Hyeon Lee, Kyung-Jin Min, Alexey Moskalev. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends in Food Science & Technology 2021, 114 , 570-584. https://doi.org/10.1016/j.tifs.2021.06.020
    47. Giuseppe Mannino, Giorgia Chinigò, Graziella Serio, Tullio Genova, Carla Gentile, Luca Munaron, Cinzia Margherita Bertea. Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants 2021, 10 (8) , 1229. https://doi.org/10.3390/antiox10081229
    48. Natalia Płatosz, Natalia Bączek, Joanna Topolska, Dorota Szawara-Nowak, Janina Skipor, Stanisław Milewski, Wiesław Wiczkowski. Chokeberry anthocyanins and their metabolites ability to cross the blood-cerebrospinal fluid barrier. Food Chemistry 2021, 346 , 128730. https://doi.org/10.1016/j.foodchem.2020.128730
    49. Jun Young Cheong, Ji-Won Jung, Chanhoon Kim, Il-Doo Kim. Scalable top-down synthesis of functional carbon nanosheets by aronia fruit powder for Li+ and K+ storage. Electrochimica Acta 2021, 377 , 138068. https://doi.org/10.1016/j.electacta.2021.138068
    50. Valentina Buda, Minodora Andor, Antal Diana, Florina Ardelean, Ioana Zinuca Pavel, Cristina Dehelean, Codruta Soica, Roxana Folescu, Felicia Andrei, Corina Danciu. Cardioprotective Effects of Cultivated Black Chokeberries ( Aronia spp.): Traditional Uses, Phytochemistry and Therapeutic Effects. 2021https://doi.org/10.5772/intechopen.92238
    51. Elena Y. Platonova, Nadezhda V. Zemskaya, Mikhail V. Shaposhnikov, Denis A. Golubev, Daria V. Kukuman, Natalya R. Pakshina, Natalia S. Ulyasheva, Vasily V. Punegov, Sergey A. Patov, Alexey A. Moskalev. Geroprotective effects of Aronia melanocarpa fruit extract on Drosophila melanogaster. 2021https://doi.org/10.1101/2021.03.03.433673
    52. Halina Maria Ekiert, Agnieszka Szopa, Paweł Kubica. High Production of Depsides and Other Phenolic Acids in Different Types of Shoot Cultures of Three Aronias: Aronia melanocarpa, Aronia arbutifolia, Aronia × prunifolia. 2021, 337-364. https://doi.org/10.1007/978-3-030-30185-9_11
    53. Halina Ekiert, Paweł Kubica, Agnieszka Szopa. Successful Cultivation and Utilization of Aronia melanocarpa (Michx.) Elliott (Black Chokeberry), a Species of North-American Origin, in Poland and the Biosynthetic Potential of Cells from In Vitro Cultures. 2021, 69-111. https://doi.org/10.1007/978-3-030-74779-4_4
    54. Dorota Naróg. Electrochemical study of quercetin in the presence of galactopyranose: Potential application to the electrosynthesis of glycoconjugates of quinone/quinone methide of quercetin. Journal of Electroanalytical Chemistry 2020, 878 , 114675. https://doi.org/10.1016/j.jelechem.2020.114675
    55. Shaeel Ahmed Al-Thabaiti, Zaheer Khan. Biogenic synthesis of silver nanoparticles, sensing and photo catalytic activities for bromothymol blue. Journal of Photochemistry and Photobiology 2020, 3-4 , 100010. https://doi.org/10.1016/j.jpap.2020.100010
    56. Erica S. King, Bradley W. Bolling. Composition, polyphenol bioavailability, and health benefits of aronia berry: a review. Journal of Food Bioactives 2020, 17 , 13-30. https://doi.org/10.31665/JFB.2020.11235
    57. Zorița Diaconeasa, Ioana Știrbu, Jianbo Xiao, Nicolae Leopold, Zayde Ayvaz, Corina Danciu, Huseyin Ayvaz, Andreea Stǎnilǎ, Mǎdǎlina Nistor, Carmen Socaciu. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020, 8 (9) , 336. https://doi.org/10.3390/biomedicines8090336
    58. Yuan Ji, Bingzhi Li, Meng Qiao, Jingmin Li, Han Xu, Lihui Zhang, Xing Zhang. Advances on the in vivo and in vitro glycosylations of flavonoids. Applied Microbiology and Biotechnology 2020, 104 (15) , 6587-6600. https://doi.org/10.1007/s00253-020-10667-z
    59. Agnieszka Szopa, Paweł Kubica, Łukasz Komsta, Aleksandra Walkowicz-Bożek, Halina Ekiert. The effect of feeding culture media with biogenetic precursors on high production of depsides in agitated shoot cultures of black and red aronias. Plant Cell, Tissue and Organ Culture (PCTOC) 2020, 142 (2) , 379-399. https://doi.org/10.1007/s11240-020-01869-4
    60. Jonathan C. Valdez, Junhyo Cho, Bradley W. Bolling. Aronia berry inhibits disruption of Caco-2 intestinal barrier function. Archives of Biochemistry and Biophysics 2020, 688 , 108409. https://doi.org/10.1016/j.abb.2020.108409
    61. Uroš Gašić, Ivanka Ćirić, Tomislav Pejčić, Dejan Radenković, Vladimir Djordjević, Siniša Radulović, Živoslav Tešić. Polyphenols as Possible Agents for Pancreatic Diseases. Antioxidants 2020, 9 (6) , 547. https://doi.org/10.3390/antiox9060547
    62. Jing Yang, Jun Gao, Wenchen Yu, Ruobing Hao, Jungang Fan, Jie Wei. The effects and mechanism of Aronia melanocarpa Elliot anthocyanins on hepatic fibrosis. Journal of Functional Foods 2020, 68 , 103897. https://doi.org/10.1016/j.jff.2020.103897
    63. Sylwia Borowska, Michał Tomczyk, Jakub W. Strawa, Małgorzata M. Brzóska. Estimation of the Chelating Ability of an Extract from Aronia melanocarpa L. Berries and Its Main Polyphenolic Ingredients Towards Ions of Zinc and Copper. Molecules 2020, 25 (7) , 1507. https://doi.org/10.3390/molecules25071507
    64. Pradeep Kumar Sudheeran, Rinat Ovadia, Ortal Galsarker, Itay Maoz, Noa Sela, Dalia Maurer, Oleg Feygenberg, Michal Oren Shamir, Noam Alkan. Glycosylated flavonoids: fruit's concealed antifungal arsenal. New Phytologist 2020, 225 (4) , 1788-1798. https://doi.org/10.1111/nph.16251
    65. Yulia Vinogradova, Olena Vergun, Olga Grygorieva, Eva Ivanišová, Ján Brindza. Comparative analysis of antioxidant activity and phenolic compounds in the fruits of Aronia spp.. Potravinarstvo Slovak Journal of Food Sciences 2020, 14 , 393-401. https://doi.org/10.5219/1360
    66. Madan L. Verma, Sneh Sharma, Raj Saini, Varsha Rani, Rekha Kushwaha. Bioflavonoids. 2020, 69-105. https://doi.org/10.1016/B978-0-444-64323-0.00003-5
    67. Andrzej Sidor, Anna Gramza-Michałowska. Black Chokeberry Aronia Melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24 (20) , 3710. https://doi.org/10.3390/molecules24203710
    68. Tomomi Iwashima, Yuki Kudome, Yoshimi Kishimoto, Emi Saita, Miori Tanaka, Chie Taguchi, Satoshi Hirakawa, Nobu Mitani, Kazuo Kondo, Kaoruko Iida. Aronia berry extract inhibits TNF-α-induced vascular endothelial inflammation through the regulation of STAT3. Food & Nutrition Research 2019, 63 (0) https://doi.org/10.29219/fnr.v63.3361
    69. Qing-Xin Ren, Meng-Chuan Xu, Qiang Niu, Yun-Hua Hu, Hai-Xia Wang, Shu-Gang Li. Effects of Proanthocyanidins on Arsenic Methylation Metabolism and Efflux in Human Hepatocytes L-02. BioMed Research International 2019, 2019 , 1-11. https://doi.org/10.1155/2019/3924581
    70. N. Markkinen, O. Laaksonen, R. Nahku, R. Kuldjärv, B. Yang. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chemistry 2019, 286 , 204-215. https://doi.org/10.1016/j.foodchem.2019.01.189
    71. Miriam Rodríguez‐Werner, Peter Winterhalter, Tuba Esatbeyoglu. Phenolic Composition, Radical Scavenging Activity and an Approach for Authentication of Aronia melanocarpa Berries, Juice, and Pomace. Journal of Food Science 2019, 84 (7) , 1791-1798. https://doi.org/10.1111/1750-3841.14660
    72. A. B. Mandal, A. Biswas, N. A. Mir, Praveen K. Tyagi, D. Kapil, A. K. Biswas. Effects of dietary supplementation of Kappaphycus alvarezii on productive performance and egg quality traits of laying hens. Journal of Applied Phycology 2019, 31 (3) , 2065-2072. https://doi.org/10.1007/s10811-018-1707-8
    73. Ruisong Pei, Jiyuan Liu, Derek A. Martin, Jonathan C. Valdez, Justin Jeffety, Gregory A. Barrett-Wilt, Zhenhua Liu, Bradley W. Bolling. Aronia Berry Supplementation Mitigates Inflammation in T Cell Transfer-Induced Colitis by Decreasing Oxidative Stress. Nutrients 2019, 11 (6) , 1316. https://doi.org/10.3390/nu11061316
    74. Ruisong Pei, Derek A. Martin, Jonathan C. Valdez, Jiyuan Liu, Robert L. Kerby, Federico E. Rey, Joan A. Smyth, Zhenhua Liu, Bradley W. Bolling. Dietary Prevention of Colitis by Aronia Berry is Mediated Through Increased Th17 and Treg. Molecular Nutrition & Food Research 2019, 63 (5) https://doi.org/10.1002/mnfr.201800985
    75. Ronald Revord, Sarah Lovell, Thomas Molnar, Kevin J. Wolz, Chloé Mattia. Germplasm Development of Underutilized Temperate U.S. Tree Crops. Sustainability 2019, 11 (6) , 1546. https://doi.org/10.3390/su11061546
    76. Muhammad H. Wathon, Nicholas Beaumont, Meryem Benohoud, Richard S. Blackburn, Christopher M. Rayner. Extraction of anthocyanins from Aronia melanocarpa skin waste as a sustainable source of natural colorants. Coloration Technology 2019, 135 (1) , 5-16. https://doi.org/10.1111/cote.12385
    77. Halina Ekiert, Agnieszka Szopa, Paweł Kubica. High Production of Depsides and Other Phenolic Acids in Different Types of Shoot Cultures of Three Aronias: Aronia Melanocarpa, Aronia Arbutifolia, Aronia × Prunifolia. 2019, 1-29. https://doi.org/10.1007/978-3-030-11253-0_11-1
    78. Aleksandra Cvetanović, Gökhan Zengin, Zoran Zeković, Jaroslava Švarc-Gajić, Slavica Ražić, Ana Damjanović, Pavle Mašković, Milan Mitić. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa's extracts obtained by subcritical water extraction. Food and Chemical Toxicology 2018, 121 , 458-466. https://doi.org/10.1016/j.fct.2018.09.045
    79. Dorota Sosnowska, Anna Podsędek, Małgorzata Redzynia, Alicja Z. Kucharska. Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase – Searching for most active inhibitors. Journal of Functional Foods 2018, 49 , 196-204. https://doi.org/10.1016/j.jff.2018.08.029
    80. Zorița Diaconeasa. Time-Dependent Degradation of Polyphenols from Thermally-Processed Berries and Their In Vitro Antiproliferative Effects against Melanoma. Molecules 2018, 23 (10) , 2534. https://doi.org/10.3390/molecules23102534
    81. Agnieszka Szopa, Paweł Kubica, Halina Ekiert. Agitated shoot cultures of Aronia arbutifolia and Aronia ×  prunifolia: biotechnological studies on the accumulation of phenolic compounds and biotransformation capability. Plant Cell, Tissue and Organ Culture (PCTOC) 2018, 134 (3) , 467-479. https://doi.org/10.1007/s11240-018-1436-3
    82. Derek A. Martin, Joan A. Smyth, Zhenhua Liu, Bradley W. Bolling. Aronia berry (Aronia mitschurinii ‘Viking’) inhibits colitis in mice and inhibits T cell tumour necrosis factor-α secretion. Journal of Functional Foods 2018, 44 , 48-57. https://doi.org/10.1016/j.jff.2018.02.025
    83. P. Annécie Benatrehina, Li Pan, C. Benjamin Naman, Jie Li, A. Douglas Kinghorn. Usage, biological activity, and safety of selected botanical dietary supplements consumed in the United States. Journal of Traditional and Complementary Medicine 2018, 8 (2) , 267-277. https://doi.org/10.1016/j.jtcme.2018.01.006
    84. Agnieszka Szopa, Paweł Kubica, Anna Snoch, Halina Ekiert. High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × prunifolia. Acta Physiologiae Plantarum 2018, 40 (3) https://doi.org/10.1007/s11738-018-2623-x
    85. Agnieszka Szopa, Anna Starzec, Halina Ekiert. The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia. Journal of Photochemistry and Photobiology B: Biology 2018, 179 , 91-97. https://doi.org/10.1016/j.jphotobiol.2018.01.005
    86. Marvin Abountiolas, Cecilia do Nascimento Nunes. Polyphenols, ascorbic acid and antioxidant capacity of commercial nutritional drinks, fruit juices, smoothies and teas. International Journal of Food Science & Technology 2018, 53 (1) , 188-198. https://doi.org/10.1111/ijfs.13573
    87. Mark H. Brand, Bryan A. Connolly, Lanfang H. Levine, Jeffrey T. Richards, Stacey M. Shine, Lashelle E. Spencer. Anthocyanins, total phenolics, ORAC and moisture content of wild and cultivated dark-fruited Aronia species. Scientia Horticulturae 2017, 224 , 332-342. https://doi.org/10.1016/j.scienta.2017.06.021
    88. Agnieszka Szopa, Adam Kokotkiewicz, Paweł Kubica, Piotr Banaszczak, Agnieszka Wojtanowska-Krośniak, Mirosław Krośniak, Urszula Marzec-Wróblewska, Anna Badura, Paweł Zagrodzki, Adam Bucinski, Maria Luczkiewicz, Halina Ekiert. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities. European Food Research and Technology 2017, 243 (9) , 1645-1657. https://doi.org/10.1007/s00217-017-2872-8
    89. Maharshi Bhaswant, Siti Raihanah Shafie, Michael L. Mathai, Peter Mouatt, Lindsay Brown. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition 2017, 41 , 24-31. https://doi.org/10.1016/j.nut.2016.12.009
    90. , N. B. Eremeeva, N. V. Makarova, . The effect of extraction technology on antioxidant activity of black chokeberry. Vestnik MGTU 2017, 20 (3) , 600-608. https://doi.org/10.21443/1560-9278-2017-20-3-600-608
    91. Mustapha Imam, Shenshen Zhang, Jifei Ma, Hao Wang, Fudi Wang. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017, 9 (7) , 671. https://doi.org/10.3390/nu9070671
    92. Tunde Jurikova, Jiri Mlcek, Sona Skrovankova, Daniela Sumczynski, Jiri Sochor, Irena Hlavacova, Lukas Snopek, Jana Orsavova. Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases. Molecules 2017, 22 (6) , 944. https://doi.org/10.3390/molecules22060944
    93. Michael Vagiri, Martin Jensen. Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chemistry 2017, 217 , 409-417. https://doi.org/10.1016/j.foodchem.2016.08.121
    94. Kanwal Rehman, Kaïs Hussain Al-Gubory, Ismail Laher, Muhammad Sajid Hamid Akash. Dietary Polyphenols in the Prevention and Treatment of Diabetes Mellitus. 2017, 377-395. https://doi.org/10.1007/978-3-319-67625-8_15
    95. Liyang Xie, Terrence Vance, Bohkyung Kim, Sang Gil Lee, Christian Caceres, Ying Wang, Patrice A. Hubert, Ji-Young Lee, Ock K. Chun, Bradley W. Bolling. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: a randomized controlled trial. Nutrition Research 2017, 37 , 67-77. https://doi.org/10.1016/j.nutres.2016.12.007
    96. Valerie B. Duffy, Shristi Rawal, Jeeha Park, Mark H. Brand, Mastaneh Sharafi, Bradley W. Bolling. Characterizing and improving the sensory and hedonic responses to polyphenol-rich aronia berry juice. Appetite 2016, 107 , 116-125. https://doi.org/10.1016/j.appet.2016.07.026
    97. Danijela Bursać Kovačević, Jasenka Gajdoš Kljusurić, Predrag Putnik, Tomislava Vukušić, Zoran Herceg, Verica Dragović-Uzelac. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry 2016, 212 , 323-331. https://doi.org/10.1016/j.foodchem.2016.05.192
    98. Liyang Xie, Sang Gil Lee, Terrence M. Vance, Ying Wang, Bohkyung Kim, Ji-Young Lee, Ock K. Chun, Bradley W. Bolling. Bioavailability of anthocyanins and colonic polyphenol metabolites following consumption of aronia berry extract. Food Chemistry 2016, 211 , 860-868. https://doi.org/10.1016/j.foodchem.2016.05.122
    99. Sylwia Borowska, Malgorzata M. Brzóska. Chokeberries ( Aronia melanocarpa ) and Their Products as a Possible Means for the Prevention and Treatment of Noncommunicable Diseases and Unfavorable Health Effects Due to Exposure to Xenobiotics. Comprehensive Reviews in Food Science and Food Safety 2016, 15 (6) , 982-1017. https://doi.org/10.1111/1541-4337.12221
    100. T. Brazdauskas, L. Montero, P.R. Venskutonis, E. Ibañez, M. Herrero. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries ( Aronia melanocarpa ) pomace. Journal of Chromatography A 2016, 1468 , 126-135. https://doi.org/10.1016/j.chroma.2016.09.033
    Load all citations

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2013, 61, 36, 8581–8588
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jf402449q
    Published August 13, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    2699

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.