ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Comparison of Free and Glycosidically Linked Volatile Components from Polyembryonic and Monoembryonic Mango (Mangifera indica L.) Cultivars

View Author Information
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Département FLHOR, 2477 Avenue du Val de Montferrand, B.P. 5035, 34032 Montpellier Cedex 1, France, Institut National de la Recherche Agronomique (INRA), Institut des Produits de la Vigne, Unité de Recherches Arômes et Substances Naturelles, and Institut National de la Recherche Agronomique (INRA), Institut des Produits de la Vigne, Unité de Recherches Polymères et Techniques Physico-Chimiques, 34060 Montpellier Cedex 1, France
Cite this: J. Agric. Food Chem. 1998, 46, 3, 1094–1100
Publication Date (Web):February 14, 1998
https://doi.org/10.1021/jf9705781
Copyright © 1998 American Chemical Society

    Article Views

    451

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Free and glycosidically linked volatile components of four mango cultivars of polyembryonic (M'Bingué and Tête de Chat) and monoembryonic (Amélie and Palmer) seed origins were examined. Eighty-five free volatile components were identified in the four cultivars, of which 33 are newly described as mango volatile compounds. Terpene hydrocarbons (104, 139, 26, and 35 mg/kg of fresh pulp, respectively) were the major volatiles of all four cultivars (>90% of the total volatiles), the dominant terpenes being (Z,E)-ocimenes (70%) in Amélie and car-3-ene (80%) in the other cultivars. Free oxygenated volatiles, mainly represented by monoterpenoids, and C13 norisoprenoids were present in all cultivars, the African Tête de Chat cultivar being by far the richest (12.3 mg/kg). Of the 29 aglycons characterized, 12 were identified for the first time as mango bound volatiles. Again, the Tête de Chat cultivar was the richest (2.1 mg/kg) with monoterpenoids and C13 norisoprenoids as the main glycosidically linked volatile compounds.

    Keywords: Mango; Mangifera indica L.; volatile; polyembryonic cultivars; monoembryonic cultivars

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Author to whom correspondence should be addressed (e-mail [email protected]; fax + 33/4 67 61 44 33).

     CIRAD  FLHOR.

     Unité de Recherches Arômes et Substances Naturelles, INRA.

    §

     Unité de Recherches Polymères et Techniques Physico-Chimiques, INRA.

    Cited By

    This article is cited by 28 publications.

    1. John P. Munafo, Jr., John Didzbalis, Raymond J. Schnell, Peter Schieberle, and Martin Steinhaus . Characterization of the Major Aroma-Active Compounds in Mango (Mangifera indica L.) Cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi by Application of a Comparative Aroma Extract Dilution Analysis. Journal of Agricultural and Food Chemistry 2014, 62 (20) , 4544-4551. https://doi.org/10.1021/jf5008743
    2. Kristen R. Kennison, Mark R. Gibberd, Alan P. Pollnitz and Kerry L. Wilkinson . Smoke-Derived Taint in Wine: The Release of Smoke-Derived Volatile Phenols during Fermentation of Merlot Juice following Grapevine Exposure to Smoke. Journal of Agricultural and Food Chemistry 2008, 56 (16) , 7379-7383. https://doi.org/10.1021/jf800927e
    3. Jorge A. Pino,, Judith Mesa,, Yamilie Muñoz,, M. Pilar Martí, and, Rolando Marbot. Volatile Components from Mango (Mangifera indica L.) Cultivars. Journal of Agricultural and Food Chemistry 2005, 53 (6) , 2213-2223. https://doi.org/10.1021/jf0402633
    4. Ana M. Gil,, Iola F. Duarte,, Ivonne Delgadillo,, Ian J. Colquhoun,, Francesco Casuscelli,, Eberhard Humpfer, and, Manfred Spraul. Study of the Compositional Changes of Mango during Ripening by Use of Nuclear Magnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry 2000, 48 (5) , 1524-1536. https://doi.org/10.1021/jf9911287
    5. B. Bicalho,, A. S. Pereira,, F. R. Aquino Neto,, A. C. Pinto, and, C. M. Rezende. Application of High-Temperature Gas Chromatography−Mass Spectrometry to the Investigation of Glycosidically Bound Components Related to Cashew Apple (Anacardium occidentale L. Var. nanum) Volatiles. Journal of Agricultural and Food Chemistry 2000, 48 (4) , 1167-1174. https://doi.org/10.1021/jf9909252
    6. Nandkishor M. Kanade, Reju M. Kurian, K. S. Shivashankara, M. Sankaran, R. Venugopalan, Prashant Kalal, Nusrat Perveen. Leaf Volatiles as a Biomarker for Identification of Nucellar and Zygotic Seedlings in Polyembryonic Mango (Mangifera Indica L.) Genotypes. Applied Fruit Science 2024, 66 (2) , 709-717. https://doi.org/10.1007/s10341-024-01045-4
    7. Doreen Schober, Michael Wacker, Hans-Georg Schmarr, Ulrich Fischer. Understanding the Contribution of Co-Fermenting Non-Saccharomyces and Saccharomyces Yeasts to Aroma Precursor Degradation and Formation of Sensory Profiles in Wine Using a Model System. Fermentation 2023, 9 (11) , 931. https://doi.org/10.3390/fermentation9110931
    8. Ravish Godse, Hemangi Bawane, Riyakshi Rajkhowa, Jyoti Tripathi, Ram Kulkarni. Comprehensive in situ and ex situ β-glucosidase-assisted assessment reveals Indian mangoes as reservoirs of glycosidic aroma precursors. Food Research International 2023, 173 , 113355. https://doi.org/10.1016/j.foodres.2023.113355
    9. Julio César Barros‐Castillo, Montserrat Calderón‐Santoyo, Luis Fernando Cuevas‐Glory, Carolina Calderón‐Chiu, Juan Arturo Ragazzo‐Sánchez. Contribution of glycosidically bound compounds to aroma potential of jackfruit ( Artocarpus heterophyllus lam). Flavour and Fragrance Journal 2023, 38 (3) , 193-203. https://doi.org/10.1002/ffj.3730
    10. Kosuke Shimizu, Tetsuya Matsukawa, Risa Kanematsu, Kimihisa Itoh, Shinya Kanzaki, Shigeru Shigeoka, Shin'ichiro Kajiyama. Volatile profiling of fruits of 17 mango cultivars by HS-SPME-GC/MS combined with principal component analysis. Bioscience, Biotechnology, and Biochemistry 2021, 85 (8) , 1789-1797. https://doi.org/10.1093/bbb/zbab097
    11. Maria Elena Maldonado-Celis, Elhadi M. Yahia, Ramiro Bedoya, Patricia Landázuri, Nelsy Loango, Johanny Aguillón, Beatriz Restrepo, Juan Camilo Guerrero Ospina. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Frontiers in Plant Science 2019, 10 https://doi.org/10.3389/fpls.2019.01073
    12. Tina Ilc, Claire Parage, Benoît Boachon, Nicolas Navrot, Danièle Werck-Reichhart. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.00509
    13. Muna El Hadi, Feng-Jie Zhang, Fei-Fei Wu, Chun-Hua Zhou, Jun Tao. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18 (7) , 8200-8229. https://doi.org/10.3390/molecules18078200
    14. Henryk Jeleń. Specificity of Food Odorants. 2011, 1-18. https://doi.org/10.1201/b11187-2
    15. Hong-Wu Wang, Yan-Qing Liu, Shou-Lian Wei, Zi-Jun Yan, Kuan Lu. Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers. Molecules 2010, 15 (11) , 7715-7723. https://doi.org/10.3390/molecules15117715
    16. O. P. Chauhan, P. S. Raju, A. S. Bawa. Mango Flavor. 2010, 319-343. https://doi.org/10.1002/9780470622834.ch19
    17. Sagar S Pandit, Ram S Kulkarni, Hemangi G Chidley, Ashok P Giri, Keshav H Pujari, Tobias G Köllner, Jörg Degenhardt, Jonathan Gershenzon, Vidya S Gupta. Changes in volatile composition during fruit development and ripening of ‘Alphonso’ mango. Journal of the Science of Food and Agriculture 2009, 89 (12) , 2071-2081. https://doi.org/10.1002/jsfa.3692
    18. Todd E. Shelly, Amy N. Cowan, James Edu, Elaine Pahio. Mating Success of Male Mediterranean Fruit Flies Following Exposure to Two Sources of α-Copaene, Manuka Oil and Mango. Florida Entomologist 2008, 91 (1) , 9-15. https://doi.org/10.1653/0015-4040(2008)091[0009:MSOMMF]2.0.CO;2
    19. Clara E. Quijano, Guillermo Salamanca, Jorge A. Pino. Aroma volatile constituents of Colombian varieties of mango ( Mangifera indica L.). Flavour and Fragrance Journal 2007, 22 (5) , 401-406. https://doi.org/10.1002/ffj.1812
    20. Clara E. Quijano, Jorge A. Pino. Volatile compounds of copoazú (Theobroma grandiflorum Schumann) fruit. Food Chemistry 2007, 104 (3) , 1123-1126. https://doi.org/10.1016/j.foodchem.2007.01.006
    21. Jean-Yves Rey, Thierno Mamadou Diallo, Henri Vannière, Christian Didier, Sidiki Kéita, Morodjan Sangaré. The mango in French-speaking West Africa: varieties and varietal composition of the orchards. Fruits 2007, 62 (1) , 57-73. https://doi.org/10.1051/fruits:2006051
    22. Jorge A. Pino, Judith Mesa. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour and Fragrance Journal 2006, 21 (2) , 207-213. https://doi.org/10.1002/ffj.1703
    23. Keith Cadwallader. Flavor and Volatile Metabolism in Produce. 2005, 155-189. https://doi.org/10.1201/9781420039610.ch6
    24. S. H. Ansari, Mohammed Ali, Arturo Velasco-Negueruela, Maria Jose Perez-Alonso. Characterization of Volatile Constituents of Mango ‘Qalmi’ ( Mangifera indica L.) Fruit. Journal of Essential Oil Research 2004, 16 (5) , 417-419. https://doi.org/10.1080/10412905.2004.9698759
    25. Jean-Yves Rey, Thierno Mamadou Diallo, Henri Vannière, Christian Didier, Sidiki Kéita, Morodjan Sangaré. La mangue en Afrique de l’Ouest francophone : variétés et composition variétale des vergers. Fruits 2004, 59 (3) , 191-208. https://doi.org/10.1051/fruits:2004018
    26. John C. Beaulieu, Jeanne M. Lea. Volatile and quality changes in fresh-cut mangos prepared from firm-ripe and soft-ripe fruit, stored in clamshell containers and passive MAP. Postharvest Biology and Technology 2003, 30 (1) , 15-28. https://doi.org/10.1016/S0925-5214(03)00081-4
    27. Herianus J.D Lalel, Zora Singh, Soon Chye Tan. Glycosidically-bound aroma volatile compounds in the skin and pulp of ‘Kensington Pride’ mango fruit at different stages of maturity. Postharvest Biology and Technology 2003, 29 (2) , 205-218. https://doi.org/10.1016/S0925-5214(02)00250-8
    28. Sumitra BOONBUMRUNG, Hirotoshi TAMURA, Juta MOOKDASANIT, Hideki NAKAMOTO, Masakazu ISHIHARA, Takumi YOSHIZAWA, Warunee VARANYANOND. Characteristic Aroma Components of the Volatile Oil of Yellow Keaw Mango Fruits Determined by Limited Odor Unit Method.. Food Science and Technology Research 2001, 7 (3) , 200-206. https://doi.org/10.3136/fstr.7.200

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect