ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

A Refined 3-Dimensional QSAR of Cytochrome P450 2C9:  Computational Predictions of Drug Interactions

View Author Information
Department of Chemistry, Washington State University, Pullman, Washington, and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington
Cite this: J. Med. Chem. 2000, 43, 15, 2789–2796
Publication Date (Web):June 30, 2000
https://doi.org/10.1021/jm000048n
Copyright © 2000 American Chemical Society
Article Views
682
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (290 KB)

Abstract

Abstract Image

A ligand-based model is reported that predicts the Ki values for cytochrome P450 2C9 (CYP2C9) inhibitors. This CoMFA model was used to predict the affinity of 14 structurally diverse compounds not in the training set and appears to be robust. The mean error of the predictions is 6 μM. The experimentally measured Ki values of the 14 compounds range from 0.1 to 48 μM. Leave-one-out cross-validated partial least-squares gives a q2 value of between 0.6 and 0.8 for the various models which indicates internal consistency. Random assignment of biological data to structure leads to negative q2 values. These models are useful in that they establish a pharmacophore for binding to CYP2C9 that can be tested with site-directed mutagenesis. These models can also be used to screen for potential drug interactions and to design compounds that will not bind to this enzyme with high affinity.

 Washington State University.

 University of Washington.

*

 To whom correspondence should be addressed at:  Rm. 477, Fulmer Synthesis, Dept. of Chemistry, P.O. Box 644630, Pullman, WA 99164-4630. Tel:  (509) 335-5083. Fax:  (509) 335-8867. E-mail:  [email protected]

Cited By


This article is cited by 73 publications.

  1. Alfonso T. García-Sosa, Sulev Sild, Kalev Takkis, and Uko Maran . Combined Approach Using Ligand Efficiency, Cross-Docking, and Antitarget Hits for Wild-Type and Drug-Resistant Y181C HIV-1 Reverse Transcriptase. Journal of Chemical Information and Modeling 2011, 51 (10) , 2595-2611. https://doi.org/10.1021/ci200203h
  2. Bernd Wendt, Marcel Mülbaier, Sabine Wawro, Christoph Schultes, Jorge Alonso, Bernd Janssen, and Joe Lewis . Toluidinesulfonamide Hypoxia-Induced Factor 1 Inhibitors: Alleviating Drug–Drug Interactions through Use of PubChem Data and Comparative Molecular Field Analysis Guided Synthesis. Journal of Medicinal Chemistry 2011, 54 (11) , 3982-3986. https://doi.org/10.1021/jm200272h
  3. Aleksejs Kontijevskis, Jan Komorowski and Jarl E. S. Wikberg . Generalized Proteochemometric Model of Multiple Cytochrome P450 Enzymes and Their Inhibitors. Journal of Chemical Information and Modeling 2008, 48 (9) , 1840-1850. https://doi.org/10.1021/ci8000953
  4. Matthew J. Sykes, Ross A. McKinnon and John O. Miners. Prediction of Metabolism by Cytochrome P450 2C9: Alignment and Docking Studies of a Validated Database of Substrates. Journal of Medicinal Chemistry 2008, 51 (4) , 780-791. https://doi.org/10.1021/jm7009793
  5. Matthew G. Hudelson, Nikhil S. Ketkar, Lawrence B. Holder, Timothy J. Carlson, Chi-Chi Peng, Benjamin J. Waldher and Jeffrey P. Jones . High Confidence Predictions of Drug−Drug Interactions: Predicting Affinities for Cytochrome P450 2C9 with Multiple Computational Methods. Journal of Medicinal Chemistry 2008, 51 (3) , 648-654. https://doi.org/10.1021/jm701130z
  6. Daniela Schuster and, Thierry Langer. The Identification of Ligand Features Essential for PXR Activation by Pharmacophore Modeling. Journal of Chemical Information and Modeling 2005, 45 (2) , 431-439. https://doi.org/10.1021/ci049722q
  7. Bernard Meunier,, Samuël P. de Visser, and, Sason Shaik. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chemical Reviews 2004, 104 (9) , 3947-3980. https://doi.org/10.1021/cr020443g
  8. Harutoshi Kato. Computational prediction of cytochrome P450 inhibition and induction. Drug Metabolism and Pharmacokinetics 2020, 35 (1) , 30-44. https://doi.org/10.1016/j.dmpk.2019.11.006
  9. Vaibhav A. Dixit, Shirish Deshpande. Advances in Computational Prediction of Regioselective and Isoform-Specific Drug Metabolism Catalyzed by CYP450s.. ChemistrySelect 2016, 1 (20) , 6571-6597. https://doi.org/10.1002/slct.201601051
  10. Li Di, Edward H. Kerns. Metabolic Stability. 2016,,, 161-194. https://doi.org/10.1016/B978-0-12-801076-1.00011-3
  11. Yoshiyuki Hizukuri, Ryusuke Sawada, Yoshihiro Yamanishi. Predicting target proteins for drug candidate compounds based on drug-induced gene expression data in a chemical structure-independent manner. BMC Medical Genomics 2015, 8 (1) https://doi.org/10.1186/s12920-015-0158-1
  12. Jessica H. Hartman, Steven D. Cothren, Sun-Ha Park, Chul-Ho Yun, Jerry A. Darsey, Grover P. Miller. Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code. Bioorganic & Medicinal Chemistry 2013, 21 (13) , 3749-3759. https://doi.org/10.1016/j.bmc.2013.04.044
  13. Pius Fasinu, Yahya E. Choonara, Riaz A. Khan, Lisa C. Du Toit, Pradeep Kumar, Valence M. K. Ndesendo, Viness Pillay. Flavonoids and Polymer Derivatives as CYP3A4 Inhibitors for Improved Oral Drug Bioavailability. Journal of Pharmaceutical Sciences 2013, 102 (2) , 541-555. https://doi.org/10.1002/jps.23382
  14. Hans Matter, Wolfgang Schmider. In-Silico ADME Modeling. 2013,,, 1005-1052. https://doi.org/10.1007/978-3-642-25240-2_45
  15. A. Bhatnagar, P. K. Sharma, N. Kumar, A. Upadhyay. Synthesis and in vitro evaluation of antioxidant and anti-inflammatory activity of 3-[4,5-dihydro-(5-substituted phenyl)-1H-pyrazol-3-yl]-2H-chromen-2-one derivatives. Pharmaceutical Chemistry Journal 2012, 46 (8) , 482-487. https://doi.org/10.1007/s11094-012-0830-0
  16. . Soft Drugs. 2012,,, 77-258. https://doi.org/10.1002/9781118407738.ch5
  17. Jayalakshmi Sridhar, Jiawang Liu, Maryam Foroozesh, Cheryl L. Klein Stevens. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies. Molecules 2012, 17 (8) , 9283-9305. https://doi.org/10.3390/molecules17089283
  18. Dong Dong, Baojian Wu, Diana Chow, Ming Hu. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Drug Metabolism Reviews 2012, 44 (2) , 192-208. https://doi.org/10.3109/03602532.2011.645580
  19. Dong Dong, Baojian Wu. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Drug Metabolism Reviews 2012, 44 (1) , 1-17. https://doi.org/10.3109/03602532.2011.645581
  20. Nitish Kumar Mishra. Computational modeling of P450s for toxicity prediction. Expert Opinion on Drug Metabolism & Toxicology 2011, 7 (10) , 1211-1231. https://doi.org/10.1517/17425255.2011.611501
  21. Gianluca Rossato, Beat Ernst, Martin Smiesko, Morena Spreafico, Angelo Vedani. Probing Small-Molecule Binding to Cytochrome P450 2D6 and 2C9: An In Silico Protocol for Generating Toxicity Alerts. ChemMedChem 2010, 5 (12) , 2088-2101. https://doi.org/10.1002/cmdc.201000358
  22. William R. Porter. Warfarin: history, tautomerism and activity. Journal of Computer-Aided Molecular Design 2010, 24 (6-7) , 553-573. https://doi.org/10.1007/s10822-010-9335-7
  23. Ákos Tarcsay, Róbert Kiss, György M. Keserű. Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach. Journal of Computer-Aided Molecular Design 2010, 24 (5) , 399-408. https://doi.org/10.1007/s10822-010-9347-3
  24. A. V. Veselovsky, B. N. Sobolev, M. S. Zharkova, A. I. Archakov. Computer-based substrate specificity prediction for cytochrome P450. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2010, 4 (1) , 75-81. https://doi.org/10.1134/S1990750810010105
  25. A.V. Veselovsky, B.N. Sobolev, M.S. Zharkova, A.I. Archakov. Computer-based substrate specifity prediction for cytochrome P450. Biomeditsinskaya Khimiya 2010, 56 (1) , 90-100. https://doi.org/10.18097/pbmc20105601090
  26. Kunal Roy, Partha Pratim Roy. QSAR of cytochrome inhibitors. Expert Opinion on Drug Metabolism & Toxicology 2009, 5 (10) , 1245-1266. https://doi.org/10.1517/17425250903158940
  27. Kazuya Yasuo, Noriyuki Yamaotsu, Hiroaki Gouda, Hideki Tsujishita, Shuichi Hirono. Structure-Based CoMFA As a Predictive Model - CYP2C9 Inhibitors As a Test Case. Journal of Chemical Information and Modeling 2009, 49 (4) , 853-864. https://doi.org/10.1021/ci800313h
  28. John H. Block, Douglas R. Henry. Evaluation of descriptors and classification schemes to predict cytochrome substrates in terms of chemical information. Journal of Computer-Aided Molecular Design 2008, 22 (6-7) , 385-392. https://doi.org/10.1007/s10822-008-9176-9
  29. Eva Stjernschantz, Nico PE Vermeulen, Chris Oostenbrink. Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expert Opinion on Drug Metabolism & Toxicology 2008, 4 (5) , 513-527. https://doi.org/10.1517/17425255.4.5.513
  30. Ana Ruiz-Garcia, Marival Bermejo, Aaron Moss, Vicente G. Casabo. Pharmacokinetics in Drug Discovery. Journal of Pharmaceutical Sciences 2008, 97 (2) , 654-690. https://doi.org/10.1002/jps.21009
  31. Jeffrey P. Jones. Metabolic Concerns in Drug Design. 2008,,, 1-24. https://doi.org/10.1007/978-0-387-77300-1_1
  32. Edward H. Kerns, Li Di. Metabolic Stability. 2008,,, 137-II. https://doi.org/10.1016/B978-012369520-8.50012-7
  33. Tímea Polgár, Dóra K. Menyhárd, György M. Keserű. Effective virtual screening protocol for CYP2C9 ligands using a screening site constructed from flurbiprofen and S-warfarin pockets. Journal of Computer-Aided Molecular Design 2007, 21 (9) , 539-548. https://doi.org/10.1007/s10822-007-9137-8
  34. M. Paul Gleeson, Andrew M. Davis, Kamaldeep K. Chohan, Stuart W. Paine, Scott Boyer, Claire L. Gavaghan, Catrin Hasselgren Arnby, Cecilia Kankkonen, Nan Albertson. Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models. Journal of Computer-Aided Molecular Design 2007, 21 (10-11) , 559-573. https://doi.org/10.1007/s10822-007-9139-6
  35. Evgeny Byvatov, Karl-Heinz Baringhaus, Gisbert Schneider, Hans Matter. A Virtual Screening Filter for Identification of Cytochrome P450 2C9 (CYP2C9) Inhibitors. QSAR & Combinatorial Science 2007, 26 (5) , 618-628. https://doi.org/10.1002/qsar.200630143
  36. Charles W. Locuson, J. Matthew Hutzler, Timothy S. Tracy. Visible Spectra of Type II Cytochrome P450-Drug Complexes: Evidence that “Incomplete” Heme Coordination Is Common. Drug Metabolism and Disposition 2007, 35 (4) , 614-622. https://doi.org/10.1124/dmd.106.012609
  37. Thomas Fox, Jan M. Kriegl. Chapter 5 Linear Quantitative Structure–Activity Relationships for the Interaction of Small Molecules with Human Cytochrome P450 Isoenzymes. 2007,,, 63-81. https://doi.org/10.1016/S1574-1400(07)03005-8
  38. Jan L Wahlstrom, Dan A Rock, J Greg Slatter, Larry C Wienkers. Advances in predicting CYP-mediated drug interactions in the drug discovery setting. Expert Opinion on Drug Discovery 2006, 1 (7) , 677-691. https://doi.org/10.1517/17460441.1.7.677
  39. Marcel J. de Groot. Designing better drugs: predicting cytochrome P450 metabolism. Drug Discovery Today 2006, 11 (13-14) , 601-606. https://doi.org/10.1016/j.drudis.2006.05.001
  40. P. Crivori, I. Poggesi. Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. European Journal of Medicinal Chemistry 2006, 41 (7) , 795-808. https://doi.org/10.1016/j.ejmech.2006.03.003
  41. Hanne H. F. Refsgaard, Berith F. Jensen, Inge Thøger Christensen, Nina Hagen, Per B. Brockhoff. In silico prediction of cytochrome P450 inhibitors. Drug Development Research 2006, 67 (5) , 417-429. https://doi.org/10.1002/ddr.20108
  42. Hans Matter, Wolfgang Schmider. In-Silico ADME Modeling. 2006,,, 409-436. https://doi.org/10.1007/3-540-29804-5_20
  43. Andreas Verras, Irwin D. Kuntz, Paul R. Ortiz de Montellano. Chapter 10 Cytochrome P450 Enzymes: Computational Approaches to Substrate Prediction. 2006,,, 171-195. https://doi.org/10.1016/S1574-1400(06)02010-X
  44. Vivekananda M. Vrudhula, Bireshwar Dasgupta, Christopher G. Boissard, Valentin K. Gribkoff, Kenneth S. Santone, Richard A. Dalterio, Nicholas J. Lodge, John E. Starrett. Analogs of a potent maxi-K potassium channel opener with an improved inhibitory profile toward cytochrome P450 isozymes. Bioorganic & Medicinal Chemistry Letters 2005, 15 (19) , 4286-4290. https://doi.org/10.1016/j.bmcl.2005.06.056
  45. Allan E. Rettie, Jeffrey P. Jones. CLINICAL AND TOXICOLOGICAL RELEVANCE OF CYP2C9: Drug-Drug Interactions and Pharmacogenetics. Annual Review of Pharmacology and Toxicology 2005, 45 (1) , 477-494. https://doi.org/10.1146/annurev.pharmtox.45.120403.095821
  46. Imtyaz A. Khan, Manohar V. Kulkarni, M. Gopal, M.S. Shahabuddin, Chung-Ming Sun. Synthesis and biological evaluation of novel angularly fused polycyclic coumarins. Bioorganic & Medicinal Chemistry Letters 2005, 15 (15) , 3584-3587. https://doi.org/10.1016/j.bmcl.2005.05.063
  47. Charles W. Locuson, Jan L. Wahlstrom. THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP ANALYSIS OF CYTOCHROMES P450: EFFECT OF INCORPORATING HIGHER-AFFINITY LIGANDS AND POTENTIAL NEW APPLICATIONS. Drug Metabolism and Disposition 2005, 33 (7) , 873-878. https://doi.org/10.1124/dmd.105.004325
  48. Jan M. Kriegl, Thomas Arnhold, Bernd Beck, Thomas Fox. Prediction of Human Cytochrome P450 Inhibition Using Support Vector Machines. QSAR & Combinatorial Science 2005, 24 (4) , 491-502. https://doi.org/10.1002/qsar.200430925
  49. Hisashi Suzuki, M.Byron Kneller, Dan A Rock, Jeffrey P Jones, William F Trager, Allan E Rettie. Active-site characteristics of CYP2C19 and CYP2C9 probed with hydantoin and barbiturate inhibitors. Archives of Biochemistry and Biophysics 2004, 429 (1) , 1-15. https://doi.org/10.1016/j.abb.2004.05.015
  50. Robert D Clark, Philippa R.N Wolohan, Edward E Hodgkin, James H Kelly, Norman L Sussman. Modelling in vitro hepatotoxicity using molecular interaction fields and SIMCA. Journal of Molecular Graphics and Modelling 2004, 22 (6) , 487-497. https://doi.org/10.1016/j.jmgm.2004.03.009
  51. Martin Payne. Computer-Based Methods for the Prediction of Chemical Metabolism and Biotransformation within Biological Organisms. 2004,,https://doi.org/10.1201/9780203642627.ch10
  52. Carwyn Davies, Katey Witham, Justin R. Scott, Andrew Pearson, James J. DeVoss, Sandra E. Graham, Elizabeth M. J. Gillam. ASSESSMENT OF ARGININE 97 AND LYSINE 72 AS DETERMINANTS OF SUBSTRATE SPECIFICITY IN CYTOCHROME P450 2C9 (CYP2C9). Drug Metabolism and Disposition 2004, 32 (4) , 431-436. https://doi.org/10.1124/dmd.32.4.431
  53. Leslie J. Dickmann, Charles W. Locuson, Jeffrey P. Jones, Allan E. Rettie. Differential Roles of Arg97, Asp293, and Arg108 in Enzyme Stability and Substrate Specificity of CYP2C9. Molecular Pharmacology 2004, 65 (4) , 842-850. https://doi.org/10.1124/mol.65.4.842
  54. Sean Ekins. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discovery Today 2004, 9 (6) , 276-285. https://doi.org/10.1016/S1359-6446(03)03008-3
  55. David F.V. Lewis. Quantitative structure–activity relationships (QSARs) for substrates of human cytochromes P450 CYP2 family enzymes. Toxicology in Vitro 2004, 18 (1) , 89-97. https://doi.org/10.1016/S0887-2333(03)00134-6
  56. Fumiyoshi Yamashita, Mitsuru Hashida. In Silico Approaches for Predicting ADME Properties of Drugs. Drug Metabolism and Pharmacokinetics 2004, 19 (5) , 327-338. https://doi.org/10.2133/dmpk.19.327
  57. Ann-Charlotte Egnell, Cecilia Eriksson, Nan Albertson, Brian Houston, Scott Boyer. Generation and Evaluation of a CYP2C9 Heteroactivation Pharmacophore. Journal of Pharmacology and Experimental Therapeutics 2003, 307 (3) , 878-887. https://doi.org/10.1124/jpet.103.054999
  58. Lawrence H. Cohen, Michael J. Remley, David Raunig, Alfin D. N. Vaz. IN VITRO DRUG INTERACTIONS OF CYTOCHROME P450: AN EVALUATION OF FLUOROGENIC TO CONVENTIONAL SUBSTRATES. Drug Metabolism and Disposition 2003, 31 (8) , 1005-1015. https://doi.org/10.1124/dmd.31.8.1005
  59. Charles W. Locuson, Jan L. Wahlstrom, Denise A. Rock, Dan A. Rock, Jeffrey P. Jones. A NEW CLASS OF CYP2C9 INHIBITORS: PROBING 2C9 SPECIFICITY WITH HIGH-AFFINITY BENZBROMARONE DERIVATIVES. Drug Metabolism and Disposition 2003, 31 (7) , 967-971. https://doi.org/10.1124/dmd.31.7.967
  60. Armelle Melet, Nadine Assrir, Pascale Jean, Maria Pilar Lopez-Garcia, Cristina Marques-Soares, Maryse Jaouen, Patrick M Dansette, Marie-Agnès Sari, Daniel Mansuy. Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Archives of Biochemistry and Biophysics 2003, 409 (1) , 80-91. https://doi.org/10.1016/S0003-9861(02)00548-9
  61. Timothy S. Tracy, J. Matthew Hutzler, Robert L. Haining, Allan E. Rettie, Matthew A. Hummel, Leslie J. Dickmann. Polymorphic Variants (CYP2C9*3 and CYP2C9*5) and the F114L Active Site Mutation of CYP2C9: Effect on Atypical Kinetic Metabolism Profiles. Drug Metabolism and Disposition 2002, 30 (4) , 385-390. https://doi.org/10.1124/dmd.30.4.385
  62. Marcel J. de Groot, Sean Ekins. Pharmacophore modeling of cytochromes P450. Advanced Drug Delivery Reviews 2002, 54 (3) , 367-383. https://doi.org/10.1016/S0169-409X(02)00009-1
  63. Jeffrey P. Jones, Michael Mysinger, Kenneth Ray Korzekwa. Computational Models for Cytochrome P450: A Predictive Electronic Model for Aromatic Oxidation and Hydrogen Atom Abstraction. Drug Metabolism and Disposition 2002, 30 (1) , 7-12. https://doi.org/10.1124/dmd.30.1.7
  64. Qinmi Wang, James R. Halpert. Combined Three-Dimensional Quantitative Structure-Activity Relationship Analysis of Cytochrome P450 2B6 Substrates and Protein Homology Modeling. Drug Metabolism and Disposition 2002, 30 (1) , 86-95. https://doi.org/10.1124/dmd.30.1.86
  65. Nguyêt-Thanh Ha-Duong, Cristina Marques-Soares, Sylvie Dijols, Marie-Agnès Sari, Patrick M. Dansette, Daniel Mansuy. Interaction of New Sulfaphenazole Derivatives with Human Liver Cytochrome P450 2Cs: Structural Determinants Required for Selective Recognition by CYP 2C9 and for Inhibition of Human CYP 2Cs. Archives of Biochemistry and Biophysics 2001, 394 (2) , 189-200. https://doi.org/10.1006/abbi.2001.2511
  66. . References. 2001,,, 164-210. https://doi.org/10.1201/9781420023046.bmatt2
  67. A.David Rodrigues, Jiunn H Lin. Screening of drug candidates for their drug–drug interaction potential. Current Opinion in Chemical Biology 2001, 5 (4) , 396-401. https://doi.org/10.1016/S1367-5931(00)00220-9
  68. Lovisa Afzelius, Ismael Zamora, Marianne Ridderström, Tommy B. Andersson, Anders Karlén, Collen M. Masimirembwa. Competitive CYP2C9 Inhibitors: Enzyme Inhibition Studies, Protein Homology Modeling, and Three-Dimensional Quantitative Structure-Activity Relationship Analysis. Molecular Pharmacology 2001, 59 (4) , 909-919. https://doi.org/10.1124/mol.59.4.909
  69. Matthew D. Wessel, Scot Mente. Chapter 25. ADME by computer. 2001,,, 257-266. https://doi.org/10.1016/S0065-7743(01)36065-7
  70. Ken Appell, John J. Baldwin, William J. Egan. Combinatorial chemistry and high-throughput screening in drug discovery and development. 2001,,, 23-56. https://doi.org/10.1016/S0149-6395(01)80004-0
  71. Sean Ekins, Steven A Wrighton. Application of in silico approaches to predicting drug–drug interactions. Journal of Pharmacological and Toxicological Methods 2001, 45 (1) , 65-69. https://doi.org/10.1016/S1056-8719(01)00119-8
  72. Sean Ekins, Chris L Waller, Peter W Swaan, Gabriele Cruciani, Steven A Wrighton, James H Wikel. Progress in predicting human ADME parameters in silico. Journal of Pharmacological and Toxicological Methods 2000, 44 (1) , 251-272. https://doi.org/10.1016/S1056-8719(00)00109-X
  73. S. Polak, J. Brandys, A. Mendyk. Neural System for in silico Drug-Drug Interaction Screening. ,,, 75-80. https://doi.org/10.1109/CIMCA.2005.1631448

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE