Structure-Based Approach for Binding Site Identification on AmpC β-LactamaseClick to copy article linkArticle link copied!
Abstract
β-Lactamases are the most widespread resistance mechanism to β-lactam antibiotics and are an increasing menace to public health. Several β-lactamase structures have been determined, making this enzyme an attractive target for structure-based drug design. To facilitate inhibitor design for the class C β-lactamase AmpC, binding site “hot spots” on the enzyme were identified using experimental and computational approaches. Experimentally, X-ray crystal structures of AmpC in complexes with four boronic acid inhibitors and a higher resolution (1.72 Å) native apo structure were determined. Along with previously determined structures of AmpC in complexes with five other boronic acid inhibitors and four β-lactams, consensus binding sites were identified. Computationally, the programs GRID, MCSS, and X-SITE were used to predict potential binding site hot spots on AmpC. Several consensus binding sites were identified from the crystal structures. An amide recognition site was identified by the interaction between the carbonyl oxygen in the R1 side chain of β-lactams and the atom Nδ2 of the conserved Asn152. Surprisingly, this site also recognizes the aryl rings of arylboronic acids, appearing to form quadrupole−dipole interactions with Asn152. The highly conserved “oxyanion” hole defines a site that recognizes both carbonyl and hydroxyl groups. A hydroxyl binding site was identified by the O2 hydroxyl in the boronic acids, which hydrogen bonds with Tyr150 and a conserved water. A hydrophobic site is formed by Leu119 and Leu293. A carboxylate binding site was identified by the ubiquitous C3(4) carboxylate of the β-lactams, which interacts with Asn346 and Arg349. Four water sites were identified by ordered waters observed in most of the structures; these waters form extensive hydrogen-bonding networks with AmpC and occasionally the ligand. Predictions by the computational programs showed some correlation with the experimentally observed binding sites. Several sites were not predicted, but novel binding sites were suggested. Taken together, a map of binding site hot spots found on AmpC, along with information on the functionality recognized at each site, was constructed. This map may be useful for structure-based inhibitor design against AmpC.
*
To whom correspondence should be addressed. Tel.: 312-503-0081. Fax: 312-503-5349. E-mail: [email protected].
Cited By
This article is cited by 108 publications.
- Yujin Wu, Fangyu Liu, Isabella Glenn, Karla Fonseca-Valencia, Lu Paris, Yuyue Xiong, Steven V. Jerome, Charles L. Brooks, III, Brian K. Shoichet. Identifying Artifacts from Large Library Docking. Journal of Medicinal Chemistry 2024, 67
(18)
, 16796-16806. https://doi.org/10.1021/acs.jmedchem.4c01632
- Rachel A. Powers, Cynthia M. June, Micah C. Fernando, Erin R. Fish, Olivia L. Maurer, Rachelle M. Baumann, Trevor J. Beardsley, Magdalena A. Taracila, Susan D. Rudin, Kristine M. Hujer, Andrea M. Hujer, Nicolò Santi, Valentina Villamil, Maria Luisa Introvigne, Fabio Prati, Emilia Caselli, Robert A. Bonomo, Bradley J. Wallar. Synthesis of a Novel Boronic Acid Transition State Inhibitor, MB076: A Heterocyclic Triazole Effectively Inhibits Acinetobacter-Derived Cephalosporinase Variants with an Expanded-Substrate Spectrum. Journal of Medicinal Chemistry 2023, 66
(13)
, 8510-8525. https://doi.org/10.1021/acs.jmedchem.3c00144
- Shalini Awasthi, Shalini Gupta, Ravi Tripathi, Nisanth N. Nair. Mechanism and Kinetics of Aztreonam Hydrolysis Catalyzed by Class-C β-Lactamase: A Temperature-Accelerated Sliced Sampling Study. The Journal of Physical Chemistry B 2018, 122
(15)
, 4299-4308. https://doi.org/10.1021/acs.jpcb.8b01287
- Selvakumar Edwardraja, Andreas Eichinger, Ina Theobald, Carina Andrea Sommer, Andreas J. Reichert, and Arne Skerra . Rational Design of an Anticalin-Type Sugar-Binding Protein Using a Genetically Encoded Boronate Side Chain. ACS Synthetic Biology 2017, 6
(12)
, 2241-2247. https://doi.org/10.1021/acssynbio.7b00199
- Ravi Tripathi and Nisanth N. Nair . Deacylation Mechanism and Kinetics of Acyl–Enzyme Complex of Class C β-Lactamase and Cephalothin. The Journal of Physical Chemistry B 2016, 120
(10)
, 2681-2690. https://doi.org/10.1021/acs.jpcb.5b11623
- Yan Li, Zhixiong Zhao, Zhihai Liu, Minyi Su, and Renxiao Wang . AutoT&T v.2: An Efficient and Versatile Tool for Lead Structure Generation and Optimization. Journal of Chemical Information and Modeling 2016, 56
(2)
, 435-453. https://doi.org/10.1021/acs.jcim.5b00691
- David C. McKinney, Fei Zhou, Charles J. Eyermann, Andrew D. Ferguson, D. Bryan Prince, John Breen, Robert A. Giacobbe, Sushmita Lahiri, and Jeroen C. Verheijen . 4,5-Disubstituted 6-Aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles Are Broad-Spectrum Serine β-Lactamase Inhibitors. ACS Infectious Diseases 2015, 1
(7)
, 310-316. https://doi.org/10.1021/acsinfecdis.5b00031
- Rachel A. Powers, Hollister C. Swanson, Magdalena A. Taracila, Nicholas W. Florek, Chiara Romagnoli, Emilia Caselli, Fabio Prati, Robert A. Bonomo, and Bradley J. Wallar . Biochemical and Structural Analysis of Inhibitors Targeting the ADC-7 Cephalosporinase of Acinetobacter baumannii. Biochemistry 2014, 53
(48)
, 7670-7679. https://doi.org/10.1021/bi500887n
- Katsumasa Kamiya, Takeshi Baba, Mauro Boero, Toru Matsui, Seiji Negoro, and Yasuteru Shigeta . Nylon-Oligomer Hydrolase Promoting Cleavage Reactions in Unnatural Amide Compounds. The Journal of Physical Chemistry Letters 2014, 5
(7)
, 1210-1216. https://doi.org/10.1021/jz500323y
- Ravi Tripathi and Nisanth N. Nair . Mechanism of Acyl–Enzyme Complex Formation from the Henry–Michaelis Complex of Class C β-Lactamases with β-Lactam Antibiotics. Journal of the American Chemical Society 2013, 135
(39)
, 14679-14690. https://doi.org/10.1021/ja405319n
- Reem Smoum, Abraham Rubinstein, Valery M. Dembitsky, and Morris Srebnik . Boron Containing Compounds as Protease Inhibitors. Chemical Reviews 2012, 112
(7)
, 4156-4220. https://doi.org/10.1021/cr608202m
- Fung-Yi Chan, Marco A. C. Neves, Ning Sun, Man-Wah Tsang, Yun-Chung Leung, Tak-Hang Chan, Ruben Abagyan, and Kwok-Yin Wong . Validation of the AmpC β-Lactamase Binding Site and Identification of Inhibitors with Novel Scaffolds. Journal of Chemical Information and Modeling 2012, 52
(5)
, 1367-1375. https://doi.org/10.1021/ci300068m
- Ravi Tripathi and Nisanth N. Nair . Thermodynamic and Kinetic Stabilities of Active Site Protonation States of Class C β-Lactamase. The Journal of Physical Chemistry B 2012, 116
(16)
, 4741-4753. https://doi.org/10.1021/jp212186q
- Hao Fan, Dina Schneidman-Duhovny, John J. Irwin, Guangqiang Dong, Brian K. Shoichet, and Andrej Sali . Statistical Potential for Modeling and Ranking of Protein–Ligand Interactions. Journal of Chemical Information and Modeling 2011, 51
(12)
, 3078-3092. https://doi.org/10.1021/ci200377u
- Ramasamy Thilagavathi and Ricardo L. Mancera. Ligand−Protein Cross-Docking with Water Molecules. Journal of Chemical Information and Modeling 2010, 50
(3)
, 415-421. https://doi.org/10.1021/ci900345h
- Sarah M. Drawz, Maja Babic, Christopher R. Bethel, Magda Taracila, Anne M. Distler, Claudia Ori, Emilia Caselli, Fabio Prati and Robert A. Bonomo . Inhibition of the Class C β-Lactamase from Acinetobacter spp.: Insights into Effective Inhibitor Design. Biochemistry 2010, 49
(2)
, 329-340. https://doi.org/10.1021/bi9015988
- Ryan B. Pelto and R. F. Pratt. Kinetics and Mechanism of Inhibition of a Serine β-Lactamase by O-Aryloxycarbonyl Hydroxamates. Biochemistry 2008, 47
(46)
, 12037-12046. https://doi.org/10.1021/bi8015247
- Benjamin C. Roberts and, Ricardo L. Mancera. Ligand−Protein Docking with Water Molecules. Journal of Chemical Information and Modeling 2008, 48
(2)
, 397-408. https://doi.org/10.1021/ci700285e
- Alberto Venturelli,, Donatella Tondi,, Laura Cancian,, Federica Morandi,, Giuseppe Cannazza,, Bernardetta Segatore,, Fabio Prati,, Gianfranco Amicosante,, Brian K. Shoichet, and, M. Paola Costi. Optimizing Cell Permeation of an Antibiotic Resistance Inhibitor for Improved Efficacy. Journal of Medicinal Chemistry 2007, 50
(23)
, 5644-5654. https://doi.org/10.1021/jm070643q
- Yu Chen,, George Minasov,, Tomer A. Roth,, Fabio Prati, and, Brian K. Shoichet. The Deacylation Mechanism of AmpC β-Lactamase at Ultrahigh Resolution. Journal of the American Chemical Society 2006, 128
(9)
, 2970-2976. https://doi.org/10.1021/ja056806m
- Masayuki Hata,, Yoshikazu Tanaka,, Yasuyuki Fujii,, Saburo Neya, and, Tyuji Hoshino. A Theoretical Study on the Substrate Deacylation Mechanism of Class C β-Lactamase. The Journal of Physical Chemistry B 2005, 109
(33)
, 16153-16160. https://doi.org/10.1021/jp045403q
- Jed F. Fisher,, Samy O. Meroueh, and, Shahriar Mobashery. Bacterial Resistance to β-Lactam Antibiotics: Compelling Opportunism, Compelling Opportunity. Chemical Reviews 2005, 105
(2)
, 395-424. https://doi.org/10.1021/cr030102i
- Tomer A. Roth,, George Minasov,, Stefania Morandi,, Fabio Prati, and, Brian K. Shoichet. Thermodynamic Cycle Analysis and Inhibitor Design against Beta-Lactamase. Biochemistry 2003, 42
(49)
, 14483-14491. https://doi.org/10.1021/bi035054a
- Xiaojun Wang,, George Minasov,, Jesús Blázquez,, Emilia Caselli,, Fabio Prati, and, Brian K. Shoichet. Recognition and Resistance in TEM β-Lactamase. Biochemistry 2003, 42
(28)
, 8434-8444. https://doi.org/10.1021/bi034242y
- Federica Morandi,, Emilia Caselli,, Stefania Morandi,, Pamela J. Focia,, Jesús Blázquez,, Brian K. Shoichet, and, Fabio Prati. Nanomolar Inhibitors of AmpC β-Lactamase. Journal of the American Chemical Society 2003, 125
(3)
, 685-695. https://doi.org/10.1021/ja0288338
- Hyeonmin Lee, Hyunjae Park, Kiwoong Kwak, Chae-eun Lee, Jiwon Yun, Donghyun Lee, Jung Hun Lee, Sang Hee Lee, Lin-Woo Kang. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. Journal of Enzyme Inhibition and Medicinal Chemistry 2025, 40
(1)
https://doi.org/10.1080/14756366.2024.2435365
- Maria Assunta Chiacchio, Laura Legnani, Enrico Mario Alessandro Fassi, Gabriella Roda, Giovanni Grazioso. Development of AMBER Parameters for Molecular Simulations of Selected Boron-Based Covalent Ligands. Molecules 2023, 28
(6)
, 2866. https://doi.org/10.3390/molecules28062866
- Gabriel Cabot, Kihun Kim, Brian L. Mark, Antonio Oliver, Mazdak Khajehpour. Biochemical Insights into Imipenem Collateral Susceptibility Driven by
ampC
Mutations Conferring Ceftolozane/Tazobactam Resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 2023, 67
(2)
https://doi.org/10.1128/aac.01409-22
- Alain Philippon, Guillaume Arlet, Roger Labia, Bogdan I. Iorga. Class C β-Lactamases: Molecular Characteristics. Clinical Microbiology Reviews 2022, 35
(3)
https://doi.org/10.1128/cmr.00150-21
- Shazad Mushtaq, Anna Vickers, Nicholas Ellaby, Neil Woodford, David M Livermore. Selection and characterization of mutational resistance to aztreonam/avibactam in β-lactamase-producing Enterobacterales. Journal of Antimicrobial Chemotherapy 2021, 77
(1)
, 98-111. https://doi.org/10.1093/jac/dkab346
- Montserrat Mora-Ochomogo, Christopher T. Lohans. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Medicinal Chemistry 2021, 12
(10)
, 1623-1639. https://doi.org/10.1039/D1MD00200G
- Abdolkarim Farrokhzadeh, Ali Reza Modarresi-Alam, Farideh Badichi Akher, Erich Kleinpeter, Alexandra Kelling, Uwe Schilde. Investigation of the unusually high rotational energy barrier about the C-N bond in 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides: Insights from dynamic 1H-NMR and DFT calculations. Journal of Molecular Structure 2021, 1226 , 129363. https://doi.org/10.1016/j.molstruc.2020.129363
- Brandy N. Curtis, Kali A. Smolen, Sara J. Barlow, Emilia Caselli, Fabio Prati, Magdalena A. Taracila, Robert A. Bonomo, Bradley J. Wallar, Rachel A. Powers. Structural Insights into Inhibition of the Acinetobacter-Derived Cephalosporinase ADC-7 by Ceftazidime and Its Boronic Acid Transition State Analog. Antimicrobial Agents and Chemotherapy 2020, 64
(12)
https://doi.org/10.1128/AAC.01183-20
- Kemparaje Gowda, Hassan A. Swarup, Sandhya C. Nagarakere, Shobith Rangappa, Rangappa S. Kanchugarkoppal, Mantelingu Kempegowda. Structural studies of 2,5-disubstituted 1,3,4-thiadiazole derivatives from dithioesters under the mild condition: Studies on antioxidant, antimicrobial activities, and molecular docking. Synthetic Communications 2020, 50
(10)
, 1528-1544. https://doi.org/10.1080/00397911.2020.1745843
- Ben A Shurina, Richard C Page. Influence of substrates and inhibitors on the structure of
Klebsiella pneumoniae
carbapenemase-2. Experimental Biology and Medicine 2019, 244
(17)
, 1596-1604. https://doi.org/10.1177/1535370219854322
- Ziping Cao, Changyin Zhao, Jiekun Zhu, Shikun Yan, Laijin Tian, Xuejun Sun, Xin Meng. Gold‐Catalyzed Reaction of 2
H
‐Tetrazoles with Alkynes: Efficient Route to N‐Alkenylated Tetrazoles. ChemistrySelect 2019, 4
(40)
, 11785-11789. https://doi.org/10.1002/slct.201902532
- Mahrokh Baghershiroudi, Kazem D. Safa, Khosro Adibkia, Farzaneh Lotfipour. Bulky organosilicon compounds based on sulfanyltetrazoles: their synthesis and in vitro antibacterial evaluation. Journal of the Iranian Chemical Society 2018, 15
(6)
, 1279-1286. https://doi.org/10.1007/s13738-018-1325-z
- T.J.P. McGivern, S. Afsharpour, C.J. Marmion. Copper complexes as artificial DNA metallonucleases: From Sigman’s reagent to next generation anti-cancer agent?. Inorganica Chimica Acta 2018, 472 , 12-39. https://doi.org/10.1016/j.ica.2017.08.043
- Daisuke Ichinari, Aiichiro Nagaki, Jun-ichi Yoshida. Generation of hazardous methyl azide and its application to synthesis of a key-intermediate of picarbutrazox, a new potent pesticide in flow. Bioorganic & Medicinal Chemistry 2017, 25
(23)
, 6224-6228. https://doi.org/10.1016/j.bmc.2017.07.005
- Mercy A. Ezeokonkwo, Onyinyechi N. Ogbonna, Sunday N. Okafor, Evelyn U. Godwin-Nwakwasi, Fidelia N. Ibeanu, Uchechukwu C. Okoro. Angular Phenozaxine Ethers as Potent Multi-microbial Targets Inhibitors: Design, Synthesis, and Molecular Docking Studies. Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00107
- Simona Zuppolini, Giuseppe Quero, Marco Consales, Laura Diodato, Patrizio Vaiano, Alberto Venturelli, Matteo Santucci, Francesca Spyrakis, Maria P. Costi, Michele Giordano, Antonello Cutolo, Andrea Cusano, Anna Borriello. Label-free fiber optic optrode for the detection of class C β-lactamases expressed by drug resistant bacteria. Biomedical Optics Express 2017, 8
(11)
, 5191. https://doi.org/10.1364/BOE.8.005191
- Anshu Dandia, Shahnawaz Khan, Ruchi Sharma, Sonam Parihar, Vijay Parewa. “On Water” Sustainable Synthesis of 1,5‐Disubstituted Tetrazoles via Ugi‐Azide Reaction through Perturbation of Kosmotropes Using Nacl.. ChemistrySelect 2017, 2
(30)
, 9684-9690. https://doi.org/10.1002/slct.201702234
- Tamer K. Khatab, Ahmed Y. Mubarak, Hanan A. Soliman. Design and Synthesis Pairing Between Xanthene and Tetrazole in Pentacyclic System Using Tetrachlorosilane with Aurora Kinase Inhibitor Validation. Journal of Heterocyclic Chemistry 2017, 54
(4)
, 2463-2470. https://doi.org/10.1002/jhet.2846
- Hiroko Tokunaga, Junpei Maeda, Tsutomu Arakawa, Masao Tokunaga. Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart. The Protein Journal 2017, 36
(3)
, 228-237. https://doi.org/10.1007/s10930-017-9715-0
- Fahimeh Movahedifar, Ali Reza Modarresi-Alam, Erich Kleinpeter, Uwe Schilde. Dynamic 1H-NMR study of unusually high barrier to rotation about the partial C N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles. Journal of Molecular Structure 2017, 1133 , 244-252. https://doi.org/10.1016/j.molstruc.2016.12.010
- Josephine P. Werner, Joshua M. Mitchell, Magdalena A. Taracila, Robert A. Bonomo, Rachel A. Powers. Exploring the potential of boronic acids as inhibitors of OXA‐24/40 β‐lactamase. Protein Science 2017, 26
(3)
, 515-526. https://doi.org/10.1002/pro.3100
- M.S. Surendra Babu, B. Umamaheswara Rao, V. Krishna, Shaik Mustafa, G. Nageswara Rao. Synthesis, characterization and DNA cleavage studies of isomeric pyridyl-tetrazole ligands and their Ni(II) and Zn(II) complexes. Journal of Saudi Chemical Society 2017, 21
(3)
, 291-299. https://doi.org/10.1016/j.jscs.2015.07.003
- Angélica de Fátima S Barreto, Veronica Alves dos Santos, Carlos Kleber Z Andrade. Consecutive hydrazino-Ugi-azide reactions: synthesis of acylhydrazines bearing 1,5-disubstituted tetrazoles. Beilstein Journal of Organic Chemistry 2017, 13 , 2596-2602. https://doi.org/10.3762/bjoc.13.256
- Fatma Gizem Avci, Fatma Ece Altinisik, Didem Vardar Ulu, Elif Ozkirimli Olmez, Berna Sariyar Akbulut. An evolutionarily conserved allosteric site modulates beta-lactamase activity. Journal of Enzyme Inhibition and Medicinal Chemistry 2016, 31
(sup3)
, 33-40. https://doi.org/10.1080/14756366.2016.1201813
- A. Dileep Kumar, S. Naveen, H.K. Vivek, M. Prabhuswamy, N.K. Lokanath, K. Ajay Kumar. Synthesis, crystal and molecular structure of ethyl 2-(4-chlorobenzylidene)-3-oxobutanoate: Studies on antioxidant, antimicrobial activities and molecular docking. Chemical Data Collections 2016, 5-6 , 36-45. https://doi.org/10.1016/j.cdc.2016.10.002
- K. Parthasarathy, Chandrasekar Praveen, K. Saranraj, C. Balachandran, P. Senthil Kumar. Synthesis, antimicrobial and cytotoxic evaluation of spirooxindole[pyrano-bis-2H-l-benzopyrans]. Medicinal Chemistry Research 2016, 25
(10)
, 2155-2170. https://doi.org/10.1007/s00044-016-1645-4
- Jacopo Sgrignani, Filomena De Luca, Hayarpi Torosyan, Jean-Denis Docquier, Da Duan, Beatrice Novati, Fabio Prati, Giorgio Colombo, Giovanni Grazioso. Structure-based approach for identification of novel phenylboronic acids as serine-β-lactamase inhibitors. Journal of Computer-Aided Molecular Design 2016, 30
(10)
, 851-861. https://doi.org/10.1007/s10822-016-9962-8
- K. Parthasarathy, Chandrasekar Praveen, J.C. Jeyaveeran, A.A.M. Prince. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorganic & Medicinal Chemistry Letters 2016, 26
(17)
, 4310-4317. https://doi.org/10.1016/j.bmcl.2016.07.036
- Celine Lacroix, Inbar Fish, Hayarpi Torosyan, Pranavan Parathaman, John J. Irwin, Brian K. Shoichet, Stephane Angers, . Identification of Novel Smoothened Ligands Using Structure-Based Docking. PLOS ONE 2016, 11
(8)
, e0160365. https://doi.org/10.1371/journal.pone.0160365
- Pankaj Sharma, Kishna Ram Senwar, Manish Kumar Jeengar, T. Srinivasa Reddy, V.G.M. Naidu, Ahmed Kamal, Nagula Shankaraiah. H2O-mediated isatin spiro-epoxide ring opening with NaCN: Synthesis of novel 3-tetrazolylmethyl-3-hydroxy-oxindole hybrids and their anticancer evaluation. European Journal of Medicinal Chemistry 2015, 104 , 11-24. https://doi.org/10.1016/j.ejmech.2015.09.025
- Shaik Mustafa, Bommuluri Umamaheswara Rao, Manubolu Surya Surendrababu, Kalidindi Krishnam Raju, Gollapalli Nageswara Rao. Synthesis, Characterization, and Biological Activities of Pendant Arm‐Pyridyltetrazole Copper(II) Complexes: DNA Binding/Cleavage Activity and Cytotoxic Studies. Chemistry & Biodiversity 2015, 12
(10)
, 1516-1534. https://doi.org/10.1002/cbdv.201400369
- Ali Nikbakht, Sorour Ramezanpour, Saeed Balalaie, Frank Rominger. Efficient and stereoselective synthesis of α-hydrazino tetrazoles through a pseudo five-component domino reaction. Tetrahedron 2015, 71
(38)
, 6790-6795. https://doi.org/10.1016/j.tet.2015.07.037
- Takuma Oguri, Yoshikazu Ishii, Akiko Shimizu-Ibuka. Conformational Change Observed in the Active Site of Class C β-Lactamase MOX-1 upon Binding to Aztreonam. Antimicrobial Agents and Chemotherapy 2015, 59
(8)
, 5069-5072. https://doi.org/10.1128/AAC.04428-14
- Jacopo Sgrignani, Beatrice Novati, Giorgio Colombo, Giovanni Grazioso. Covalent docking of selected boron-based serine beta-lactamase inhibitors. Journal of Computer-Aided Molecular Design 2015, 29
(5)
, 441-450. https://doi.org/10.1007/s10822-015-9834-7
- Shigeki Arai, Yasushi Yonezawa, Nobuo Okazaki, Fumiko Matsumoto, Chie Shibazaki, Rumi Shimizu, Mitsugu Yamada, Motoyasu Adachi, Taro Tamada, Masahide Kawamoto, Hiroko Tokunaga, Matsujiro Ishibashi, Michael Blaber, Masao Tokunaga, Ryota Kuroki. Structure of a highly acidic β-lactamase from the moderate halophile
Chromohalobacter
sp. 560 and the discovery of a Cs
+
-selective binding site. Acta Crystallographica Section D Biological Crystallography 2015, 71
(3)
, 541-554. https://doi.org/10.1107/S1399004714027734
- Afshin Sarvary, Ali Maleki. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Molecular Diversity 2015, 19
(1)
, 189-212. https://doi.org/10.1007/s11030-014-9553-3
- Jenna M. Hendershot, Uma J. Mishra, Robert P. Smart, William Schroeder, Rachel A. Powers. Structure-based efforts to optimize a non-β-lactam inhibitor of AmpC β-lactamase. Bioorganic & Medicinal Chemistry 2014, 22
(13)
, 3351-3359. https://doi.org/10.1016/j.bmc.2014.04.051
- C. Bauvois, J. Wouters. Crystal Structures of Class C β-Lactamases: Mechanistic Implications and Perspectives in Drug Design. 2014, 145-161. https://doi.org/10.1128/9781555815615.ch10
- . Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases. 2014, 171-198. https://doi.org/10.1128/9781555817794.ch12
- Alexander Draganov, Danzhu Wang, Binghe Wang. The Future of Boron in Medicinal Chemistry: Therapeutic and Diagnostic Applications. 2014, 1-27. https://doi.org/10.1007/7355_2014_65
- Sun-Shin Cha, Young Jun An, Chang-Sook Jeong, Min-Kyu Kim, Jeong Ho Jeon, Chang-Muk Lee, Hyun Sook Lee, Sung Gyun Kang, Jung-Hyun Lee. Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase. Proteins: Structure, Function, and Bioinformatics 2013, 81
(11)
, 2045-2051. https://doi.org/10.1002/prot.24334
- Parvathaneni Saiprathima, Keesara Srinivas, Balasubramanian Sridhar, Mandapati Mohan Rao. “On water” one-pot synthesis of quaternary centered 3-hydroxy-3-(1H-tetrazol-5-yl)indolin-2-ones. RSC Advances 2013, 3
(21)
, 7708. https://doi.org/10.1039/c3ra00021d
- James F. Ruble, Scott T. Lefurgy, Virginia W. Cornish, Rachel A. Powers. Structural analysis of the Asn152Gly mutant of P99 cephalosporinase. Acta Crystallographica Section D Biological Crystallography 2012, 68
(9)
, 1189-1193. https://doi.org/10.1107/S0907444912024080
- Wei Ke, Christopher R. Bethel, Krisztina M. Papp-Wallace, Sundar Ram Reddy Pagadala, Micheal Nottingham, Daniel Fernandez, John D. Buynak, Robert A. Bonomo, Focco van den Akker. Crystal Structures of KPC-2 β-Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226. Antimicrobial Agents and Chemotherapy 2012, 56
(5)
, 2713-2718. https://doi.org/10.1128/AAC.06099-11
- Smriti Sharma, Pradipta Bandyopadhyay. Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation. Journal of Molecular Modeling 2012, 18
(2)
, 481-492. https://doi.org/10.1007/s00894-011-1087-3
- Krisztina M. Papp-Wallace, Christopher R. Bethel, Thomas D. Gootz, Wenchi Shang, Justin Stroh, William Lau, Dale McLeod, Loren Price, Anthony Marfat, Anne Distler, Sarah M. Drawz, Hansong Chen, Emily Harry, Micheal Nottingham, Paul R. Carey, John D. Buynak, Robert A. Bonomo. Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone. Biochemical Pharmacology 2012, 83
(4)
, 462-471. https://doi.org/10.1016/j.bcp.2011.11.015
- Andrew D. Bond, Adrienne Fleming, Jackie Gaire, Fintan Kelleher, John McGinley, Vickie McKee, Ursula Sheridan. Coordination studies of copper(II), cobalt(II) and iron(II) with isomeric pyridyl–tetrazole ligands. Polyhedron 2012, 33
(1)
, 289-296. https://doi.org/10.1016/j.poly.2011.11.038
- Xiaochuan Yang, Yunfeng Cheng, Binghe Wang. Synthetic Lectin Mimics Artificial Carbohydrate Receptors. 2011, 301-327. https://doi.org/10.1002/9781118017586.ch12
- Yunfeng Cheng, Xiaochuan Yang, Binghe Wang. Covalent Interactions in Chemosensor Design. 2011, 25-40. https://doi.org/10.1002/9781118019580.ch3
- Sarah M. Drawz, Magdalena Taracila, Emilia Caselli, Fabio Prati, Robert A. Bonomo. Exploring sequence requirements for C
3
/C
4
carboxylate recognition in the
Pseudomonas aeruginosa
cephalosporinase: Insights into plasticity of the AmpC β‐lactamase. Protein Science 2011, 20
(6)
, 941-958. https://doi.org/10.1002/pro.612
- Sabrina Touchet, François Carreaux, Bertrand Carboni, Alexandre Bouillon, Jean-Luc Boucher. Aminoboronic acids and esters: from synthetic challenges to the discovery of unique classes of enzyme inhibitors. Chemical Society Reviews 2011, 40
(7)
, 3895. https://doi.org/10.1039/c0cs00154f
- Shu-Yu Liu, Dou-Sheng Zhang, Chang-Qin Hu. On the isomerisation of cefozopran in solution. European Journal of Medicinal Chemistry 2010, 45
(12)
, 5808-5816. https://doi.org/10.1016/j.ejmech.2010.09.043
- Hedi Mammeri, Hélène Guillon, François Eb, Patrice Nordmann. Phenotypic and Biochemical Comparison of the Carbapenem-Hydrolyzing Activities of Five Plasmid-Borne AmpC β-Lactamases. Antimicrobial Agents and Chemotherapy 2010, 54
(11)
, 4556-4560. https://doi.org/10.1128/AAC.01762-09
- Donatella Tondi, Samuele Calò, Brian K. Shoichet, Maria Paola Costi. Structural study of phenyl boronic acid derivatives as AmpC β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters 2010, 20
(11)
, 3416-3419. https://doi.org/10.1016/j.bmcl.2010.04.007
- Gerard J. P. van Westen, Jörg K. Wegner, Andreas Bender, Adriaan P. IJzerman, Herman W. T. van Vlijmen. Mining protein dynamics from sets of crystal structures using “consensus structures”. Protein Science 2010, 19
(4)
, 742-752. https://doi.org/10.1002/pro.350
- YunFeng Cheng, MinYong Li, ShaoRu Wang, HanJing Peng, Suazette Reid, NanTing Ni, Hao Fang, WenFang Xu, BingHe Wang. Carbohydrate biomarkers for future disease detection and treatment. Science China Chemistry 2010, 53
(1)
, 3-20. https://doi.org/10.1007/s11426-010-0021-3
- Sarah M. Drawz, Robert A. Bonomo. Three Decades of β-Lactamase Inhibitors. Clinical Microbiology Reviews 2010, 23
(1)
, 160-201. https://doi.org/10.1128/CMR.00037-09
- Denise G. Teotico, Kerim Babaoglu, Gabriel J. Rocklin, Rafaela S. Ferreira, Anthony M. Giannetti, Brian K. Shoichet. Docking for fragment inhibitors of AmpC β-lactamase. Proceedings of the National Academy of Sciences 2009, 106
(18)
, 7455-7460. https://doi.org/10.1073/pnas.0813029106
- Yu Chen, Andrea McReynolds, Brian K. Shoichet. Re‐examining the role of Lys67 in class C β‐lactamase catalysis. Protein Science 2009, 18
(3)
, 662-669. https://doi.org/10.1002/pro.60
- Hedi Mammeri, Moreno Galleni, Patrice Nordmann. Role of the Ser-287-Asn Replacement in the Hydrolysis Spectrum Extension of AmpC β-Lactamases in
Escherichia coli. Antimicrobial Agents and Chemotherapy 2009, 53
(1)
, 323-326. https://doi.org/10.1128/AAC.00608-08
- Cristina Fenollar-Ferrer, Juan Frau, Josefa Donoso, Francisco Muñoz. Evolution of class C β-lactamases: factors influencing their hydrolysis and recognition mechanisms. Theoretical Chemistry Accounts 2008, 121
(3-4)
, 209-218. https://doi.org/10.1007/s00214-008-0463-2
- Agata Białońska, Robert Bronisz. Application of N-(ω-bromoalkyl)tetrazoles for the preparation of bitopic ligands containing pyridylazole chelators or azole rings as building blocks for iron(II) spin crossover polymeric materials. Tetrahedron 2008, 64
(41)
, 9771-9779. https://doi.org/10.1016/j.tet.2008.07.065
- Kenji Murano, Toshio Yamanaka, Ayako Toda, Hidenori Ohki, Shinya Okuda, Kohji Kawabata, Kazuo Hatano, Shinobu Takeda, Hisashi Akamatsu, Kenji Itoh, Keiji Misumi, Satoshi Inoue, Tatsuya Takagi. Structural requirements for the stability of novel cephalosporins to AmpC β-lactamase based on 3D-structure. Bioorganic & Medicinal Chemistry 2008, 16
(5)
, 2261-2275. https://doi.org/10.1016/j.bmc.2007.11.074
- Patrice Nordmann, Hedi Mammeri. Extended-Spectrum Cephalosporinases: Structure, Detection and Epidemiology. Future Microbiology 2007, 2
(3)
, 297-307. https://doi.org/10.2217/17460913.2.3.297
- Vanesa Lillo, Elena Fernández, Anna M. Segarra. Catalytic asymmetric hydroboration of heterofunctional allylic substrates: an efficient heterogenized version. Tetrahedron: Asymmetry 2007, 18
(8)
, 911-914. https://doi.org/10.1016/j.tetasy.2007.03.031
- Jodi M. Thomson, Fabio Prati, Christopher R. Bethel, Robert A. Bonomo. Use of Novel Boronic Acid Transition State Inhibitors To Probe Substrate Affinity in SHV-Type Extended-Spectrum β-Lactamases. Antimicrobial Agents and Chemotherapy 2007, 51
(4)
, 1577-1579. https://doi.org/10.1128/AAC.01293-06
- L. V. Myznikov, A. Hrabalek, G. I. Koldobskii. Drugs in the tetrazole series. (Review). Chemistry of Heterocyclic Compounds 2007, 43
(1)
, 1-9. https://doi.org/10.1007/s10593-007-0001-5
- G. Cruciani, E. Carosati, R.C. Wade, M. Baroni. Characterization of Protein-Binding Sites and Ligands Using Molecular Interaction Fields. 2007, 237-253. https://doi.org/10.1016/B0-08-045044-X/00252-2
- Kerim Babaoglu, Brian K Shoichet. Deconstructing fragment-based inhibitor discovery. Nature Chemical Biology 2006, 2
(12)
, 720-723. https://doi.org/10.1038/nchembio831
- Rudolf Kiralj, Márcia M.C. Ferreira. Molecular graphics approach to bacterial AcrB protein–β-lactam antibiotic molecular recognition in drug efflux mechanism. Journal of Molecular Graphics and Modelling 2006, 25
(1)
, 126-145. https://doi.org/10.1016/j.jmgm.2005.10.010
- Christopher A. Bottoms, Tommi A. White, John J. Tanner. Exploring structurally conserved solvent sites in protein families. Proteins: Structure, Function, and Bioinformatics 2006, 64
(2)
, 404-421. https://doi.org/10.1002/prot.21014
- Oludotun A Phillips. β-Lactamase inhibitors: a survey of the patent literature 2000 – 2004. Expert Opinion on Therapeutic Patents 2006, 16
(3)
, 319-331. https://doi.org/10.1517/13543776.16.3.319
- Andrea Tafi, Mariangela Agamennone, Paolo Tortorella, Stefano Alcaro, Carlo Gallina, Maurizio Botta. AMBER force field implementation of the boronate function to simulate the inhibition of β-lactamases by alkyl and aryl boronic acids. European Journal of Medicinal Chemistry 2005, 40
(11)
, 1134-1142. https://doi.org/10.1016/j.ejmech.2005.06.011
- N. G. Egorova, T. V. Artamonova, A. Hrabalek, G. I. Koldobskii. Reactions of 5-Methylsulfinyl-1-(4-nitrophenyl)tetrazole with N-Nucleophiles. Russian Journal of Organic Chemistry 2005, 41
(9)
, 1399-1401. https://doi.org/10.1007/s11178-005-0356-y
- Cristina Fenollar-Ferrer, Josefa Donoso, Juan Frau, Francisco Muñoz. Molecular Modeling ofHenry-Michaelis and Acyl-Enzyme Complexes between Imipenem andEnterobacter cloacae P99β-Lactamase. Chemistry & Biodiversity 2005, 2
(5)
, 645-656. https://doi.org/10.1002/cbdv.200590041
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.