ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Structural Interaction Fingerprint (SIFt):  A Novel Method for Analyzing Three-Dimensional Protein−Ligand Binding Interactions

View Author Information
Department of Structural Informatics, Biogen, Inc., 12 Cambridge Center, Cambridge, Massachusetts 02142
Cite this: J. Med. Chem. 2004, 47, 2, 337–344
Publication Date (Web):December 12, 2003
https://doi.org/10.1021/jm030331x
Copyright © 2004 American Chemical Society

    Article Views

    5895

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (730 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Representing and understanding the three-dimensional (3D) structural information of protein−ligand complexes is a critical step in the rational drug discovery process. Traditional analysis methods are proving inadequate and inefficient in dealing with the massive amount of structural information being generated from X-ray crystallography, NMR, and in silico approaches such as structure-based docking experiments. Here, we present SIFt (structural interaction fingerprint), a novel method for representing and analyzing 3D protein−ligand binding interactions. Key to this approach is the generation of an interaction fingerprint that translates 3D structural binding information from a protein−ligand complex into a one-dimensional binary string. Each fingerprint represents the “structural interaction profile” of the complex that can be used to organize, analyze, and visualize the rich amount of information encoded in ligand−receptor complexes and also to assist database mining. We have applied SIFt to tackle three common tasks in structure-based drug design. The first involved the analysis and organization of a typical set of results generated from a docking study. Using SIFt, docking poses with similar binding modes were identified, clustered, and subsequently compared with conventional scoring function information. A second application of SIFt was to analyze ∼90 known X-ray crystal structures of protein kinase−inhibitor complexes obtained from the Protein Databank. Using SIFt, we were able to organize the structures and reveal striking similarities and diversity between their small molecule binding interactions. Finally, we have shown how SIFt can be used as an effective molecular filter during the virtual chemical library screening process to select molecules with desirable binding mode(s) and/or desirable interaction patterns with the protein target. In summary, SIFt shows promise to fully leverage the wealth of information being generated in rational drug design.

    *

     To whom correspondence should be addressed. Tel:  (617)679-2027. Fax:  (617)679-2616. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Table of comparison of the SIFt bit strings of seven different poses of SB203580, docked into human p38 structures. Table of 89 crystal structures of protein kinases−ligand complexes and references. Table of 16 known database p38 inhibitors. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 424 publications.

    1. Christopher A. Kalnmals, Zoltan L. Benko, Adel Hamza, Karla Bravo-Altamirano, Thomas L. Siddall, Moriah Zielinski, Hudson K. Takano, Dilpreet S. Riar, Norbert M. Satchivi, Joshua J. Roth, Jeffrey B. Church. A New Class of Diaryl Ether Herbicides: Structure–Activity Relationship Studies Enabled by a Rapid Scaffold Hopping Approach. Journal of Agricultural and Food Chemistry 2023, 71 (47) , 18171-18187. https://doi.org/10.1021/acs.jafc.3c01285
    2. Alessandro Nicoli, Verena Weber, Carlotta Bon, Alexandra Steuer, Stefano Gustincich, Raul R. Gainetdinov, Roman Lang, Stefano Espinoza, Antonella Di Pizio. Structure-Based Discovery of Mouse Trace Amine-Associated Receptor 5 Antagonists. Journal of Chemical Information and Modeling 2023, 63 (21) , 6667-6680. https://doi.org/10.1021/acs.jcim.3c00755
    3. Zheng Zhao, Philip E. Bourne. How Ligands Interact with the Kinase Hinge. ACS Medicinal Chemistry Letters 2023, 14 (11) , 1503-1508. https://doi.org/10.1021/acsmedchemlett.3c00212
    4. Deborah Palazzotti, Tommaso Felicetti, Stefano Sabatini, Stefano Moro, Maria Letizia Barreca, Mattia Sturlese, Andrea Astolfi. Fighting Antimicrobial Resistance: Insights on How the Staphylococcus aureus NorA Efflux Pump Recognizes 2-Phenylquinoline Inhibitors by Supervised Molecular Dynamics (SuMD) and Molecular Docking Simulations. Journal of Chemical Information and Modeling 2023, 63 (15) , 4875-4887. https://doi.org/10.1021/acs.jcim.3c00516
    5. Zheng Zhao, Philip E. Bourne. Rigid Scaffolds Are Promising for Designing Macrocyclic Kinase Inhibitors. ACS Pharmacology & Translational Science 2023, 6 (8) , 1182-1191. https://doi.org/10.1021/acsptsci.3c00078
    6. Zheng Zhao, Niraja Bohidar, Philip E. Bourne. Analysis of KRAS–Ligand Interaction Modes and Flexibilities Reveals the Binding Characteristics. Journal of Chemical Information and Modeling 2023, 63 (4) , 1362-1370. https://doi.org/10.1021/acs.jcim.3c00097
    7. Shuoyan Tan, Ruiqiang Lu, Dahong Yao, Jun Wang, Peng Gao, Guotong Xie, Huanxiang Liu, Xiaojun Yao. Identification of LRRK2 Inhibitors through Computational Drug Repurposing. ACS Chemical Neuroscience 2023, 14 (3) , 481-493. https://doi.org/10.1021/acschemneuro.2c00672
    8. Francesca Intranuovo, Leonardo Brunetti, Pietro DelRe, Giuseppe Felice Mangiatordi, Angela Stefanachi, Antonio Laghezza, Mauro Niso, Francesco Leonetti, Fulvio Loiodice, Alessia Ligresti, Magdalena Kostrzewa, Jose Brea, Maria Isabel Loza, Eddy Sotelo, Michele Saviano, Nicola Antonio Colabufo, Chiara Riganti, Carmen Abate, Marialessandra Contino. Development of N-(1-Adamantyl)benzamides as Novel Anti-Inflammatory Multitarget Agents Acting as Dual Modulators of the Cannabinoid CB2 Receptor and Fatty Acid Amide Hydrolase. Journal of Medicinal Chemistry 2023, 66 (1) , 235-250. https://doi.org/10.1021/acs.jmedchem.2c01084
    9. Soumyo Sen, Aleksandar Spasic, Anjana Sinha, Jialing Wang, Martin Bush, Jihong Li, Dragana Nešić, Yuchen Zhou, Gabriella Angiulli, Paul Morgan, Leslie Salas-Estrada, Junichi Takagi, Thomas Walz, Barry S. Coller, Marta Filizola. Structure-Based Discovery of a Novel Class of Small-Molecule Pure Antagonists of Integrin αVβ3. Journal of Chemical Information and Modeling 2022, 62 (22) , 5607-5621. https://doi.org/10.1021/acs.jcim.2c00999
    10. Alexandre V. Fassio, Laura Shub, Luca Ponzoni, Jessica McKinley, Matthew J. O’Meara, Rafaela S. Ferreira, Michael J. Keiser, Raquel C. de Melo Minardi. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints. Journal of Chemical Information and Modeling 2022, 62 (18) , 4300-4318. https://doi.org/10.1021/acs.jcim.2c00695
    11. Daniel J. Woodward, Anthony R. Bradley, Willem P. van Hoorn. Coverage Score: A Model Agnostic Method to Efficiently Explore Chemical Space. Journal of Chemical Information and Modeling 2022, 62 (18) , 4391-4402. https://doi.org/10.1021/acs.jcim.2c00258
    12. Lara A. Patel, Phuong Chau, Serena Debesai, Leah Darwin, Chris Neale. Drug Discovery by Automated Adaptation of Chemical Structure and Identity. Journal of Chemical Theory and Computation 2022, 18 (8) , 5006-5024. https://doi.org/10.1021/acs.jctc.1c01271
    13. Xiaolin Pan, Hao Wang, Yueqing Zhang, Xingyu Wang, Cuiyu Li, Changge Ji, John Z. H. Zhang. AA-Score: a New Scoring Function Based on Amino Acid-Specific Interaction for Molecular Docking. Journal of Chemical Information and Modeling 2022, 62 (10) , 2499-2509. https://doi.org/10.1021/acs.jcim.1c01537
    14. Tomomi Shimazaki, Masanori Tachikawa. Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2. ACS Omega 2022, 7 (12) , 10372-10381. https://doi.org/10.1021/acsomega.1c06976
    15. Mihaela D. Smilova, Peter R. Curran, Chris J. Radoux, Frank von Delft, Jason C. Cole, Anthony R. Bradley, Brian D. Marsden. Fragment Hotspot Mapping to Identify Selectivity-Determining Regions between Related Proteins. Journal of Chemical Information and Modeling 2022, 62 (2) , 284-294. https://doi.org/10.1021/acs.jcim.1c00823
    16. Jun Pei, Lin Frank Song, Kenneth M. Merz, Jr.. FFENCODER-PL: Pair Wise Energy Descriptors for Protein-Ligand Pose Selection. Journal of Chemical Theory and Computation 2021, 17 (10) , 6647-6657. https://doi.org/10.1021/acs.jctc.1c00503
    17. Teresa Maria Creanza, Pietro Delre, Nicola Ancona, Giovanni Lentini, Michele Saviano, Giuseppe Felice Mangiatordi. Structure-Based Prediction of hERG-Related Cardiotoxicity: A Benchmark Study. Journal of Chemical Information and Modeling 2021, 61 (9) , 4758-4770. https://doi.org/10.1021/acs.jcim.1c00744
    18. Tao Hu, Guoxun Zheng, Dongxiang Xue, Simeng Zhao, Fei Li, Fang Zhou, Fei Zhao, Linshan Xie, Cuiping Tian, Tian Hua, Suwen Zhao, Yueming Xu, Guisheng Zhong, Zhi-Jie Liu, Alexandros Makriyannis, Raymond C. Stevens, Houchao Tao. Rational Remodeling of Atypical Scaffolds for the Design of Photoswitchable Cannabinoid Receptor Tools. Journal of Medicinal Chemistry 2021, 64 (18) , 13752-13765. https://doi.org/10.1021/acs.jmedchem.1c01088
    19. Katarina Tomovic, Budimir S. Ilic, Andrija Smelcerovic. Structure–Activity Relationship Analysis of Cocrystallized Gliptin-like Pyrrolidine, Trifluorophenyl, and Pyrimidine-2,4-Dione Dipeptidyl Peptidase-4 Inhibitors. Journal of Medicinal Chemistry 2021, 64 (14) , 9639-9648. https://doi.org/10.1021/acs.jmedchem.1c00293
    20. Shigenori Tanaka, Shusuke Tokutomi, Ryo Hatada, Koji Okuwaki, Kazuki Akisawa, Kaori Fukuzawa, Yuto Komeiji, Yoshio Okiyama, Yuji Mochizuki. Dynamic Cooperativity of Ligand–Residue Interactions Evaluated with the Fragment Molecular Orbital Method. The Journal of Physical Chemistry B 2021, 125 (24) , 6501-6512. https://doi.org/10.1021/acs.jpcb.1c03043
    21. Ashley N. Matthew, Florian Leidner, Gordon J. Lockbaum, Mina Henes, Jacqueto Zephyr, Shurong Hou, Desaboini Nageswara Rao, Jennifer Timm, Linah N. Rusere, Debra A. Ragland, Janet L. Paulsen, Kristina Prachanronarong, Djade I. Soumana, Ellen A. Nalivaika, Nese Kurt Yilmaz, Akbar Ali, Celia A. Schiffer. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chemical Reviews 2021, 121 (6) , 3238-3270. https://doi.org/10.1021/acs.chemrev.0c00648
    22. Maximilian Grimm, Yang Liu, Xiaocong Yang, Chunya Bu, Zhixiong Xiao, Yang Cao. LigMate: A Multifeature Integration Algorithm for Ligand-Similarity-Based Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (12) , 6044-6053. https://doi.org/10.1021/acs.jcim.9b01210
    23. Zheng Zhao, Philip E. Bourne. Structural Insights into the Binding Modes of Viral RNA-Dependent RNA Polymerases Using a Function-Site Interaction Fingerprint Method for RNA Virus Drug Discovery. Journal of Proteome Research 2020, 19 (11) , 4698-4705. https://doi.org/10.1021/acs.jproteome.0c00623
    24. Stanisław Jastrzębski, Maciej Szymczak, Agnieszka Pocha, Stefan Mordalski, Jacek Tabor, Andrzej J. Bojarski, Sabina Podlewska. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4246-4262. https://doi.org/10.1021/acs.jcim.9b01202
    25. Hanna Andersson, Patrik Jarvoll, Shao-Kang Yang, Ke-Wu Yang, Máté Erdélyi. Binding of 2-(Triazolylthio)acetamides to Metallo-β-lactamase CcrA Determined with NMR. ACS Omega 2020, 5 (34) , 21570-21578. https://doi.org/10.1021/acsomega.0c02187
    26. Adrian Stecula, Muhammad S. Hussain, Ronald E. Viola. Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a Deep Convolutional Neural Network. Journal of Medicinal Chemistry 2020, 63 (16) , 8867-8875. https://doi.org/10.1021/acs.jmedchem.0c00473
    27. Natesh Singh, Ludovic Chaput, Bruno O. Villoutreix. Fast Rescoring Protocols to Improve the Performance of Structure-Based Virtual Screening Performed on Protein–Protein Interfaces. Journal of Chemical Information and Modeling 2020, 60 (8) , 3910-3934. https://doi.org/10.1021/acs.jcim.0c00545
    28. Feng Deng, Leo Ghemtio, Evgeni Grazhdankin, Peter Wipf, Henri Xhaard, Heidi Kidron. Binding Site Interactions of Modulators of Breast Cancer Resistance Protein, Multidrug Resistance-Associated Protein 2, and P-Glycoprotein Activity. Molecular Pharmaceutics 2020, 17 (7) , 2398-2410. https://doi.org/10.1021/acs.molpharmaceut.0c00155
    29. Parker Ladd Bremer, Danna De Boer, Walter Alvarado, Xavier Martinez, Eric J. Sorin. Overcoming the Heuristic Nature of k-Means Clustering: Identification and Characterization of Binding Modes from Simulations of Molecular Recognition Complexes. Journal of Chemical Information and Modeling 2020, 60 (6) , 3081-3092. https://doi.org/10.1021/acs.jcim.9b01137
    30. Lena Hefke, Kerstin Hiesinger, W. Felix Zhu, Jan S. Kramer, Ewgenij Proschak. Computer-Aided Fragment Growing Strategies to Design Dual Inhibitors of Soluble Epoxide Hydrolase and LTA4 Hydrolase. ACS Medicinal Chemistry Letters 2020, 11 (6) , 1244-1249. https://doi.org/10.1021/acsmedchemlett.0c00102
    31. Jonathan Fine, Janez Konc, Ram Samudrala, Gaurav Chopra. CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible Docking Algorithm Using Generalized Statistical Potentials. Journal of Chemical Information and Modeling 2020, 60 (3) , 1509-1527. https://doi.org/10.1021/acs.jcim.9b00686
    32. H. C. Stephen Chan, Yueming Xu, Liang Tan, Horst Vogel, Jianjun Cheng, Dong Wu, Shuguang Yuan. Enhancing the Signaling of GPCRs via Orthosteric Ions. ACS Central Science 2020, 6 (2) , 274-282. https://doi.org/10.1021/acscentsci.9b01247
    33. Zhou Yin. Mechanism of Small Molecules Inhibiting Activator Protein-1 DNA Binding Probed with Induced Fit Docking and Metadynamics Simulations. Journal of Chemical Information and Modeling 2019, 59 (12) , 5276-5280. https://doi.org/10.1021/acs.jcim.9b00693
    34. Thomas J. Summers, Baty P. Daniel, Qianyi Cheng, Nathan J. DeYonker. Quantifying Inter-Residue Contacts through Interaction Energies. Journal of Chemical Information and Modeling 2019, 59 (12) , 5034-5044. https://doi.org/10.1021/acs.jcim.9b00804
    35. Nicolas K. Shinada, Alexandre G. de Brevern, Peter Schmidtke. Halogens in Protein–Ligand Binding Mechanism: A Structural Perspective. Journal of Medicinal Chemistry 2019, 62 (21) , 9341-9356. https://doi.org/10.1021/acs.jmedchem.8b01453
    36. Florian Leidner, Nese Kurt Yilmaz, Celia A. Schiffer. Target-Specific Prediction of Ligand Affinity with Structure-Based Interaction Fingerprints. Journal of Chemical Information and Modeling 2019, 59 (9) , 3679-3691. https://doi.org/10.1021/acs.jcim.9b00457
    37. Carmen Cerchia, Rosarita Nasso, Matteo Mori, Stefania Villa, Arianna Gelain, Alessandra Capasso, Federica Aliotta, Martina Simonetti, Rosario Rullo, Mariorosario Masullo, Emmanuele De Vendittis, Maria Rosaria Ruocco, Antonio Lavecchia. Discovery of Novel Naphthylphenylketone and Naphthylphenylamine Derivatives as Cell Division Cycle 25B (CDC25B) Phosphatase Inhibitors: Design, Synthesis, Inhibition Mechanism, and in Vitro Efficacy against Melanoma Cell Lines. Journal of Medicinal Chemistry 2019, 62 (15) , 7089-7110. https://doi.org/10.1021/acs.jmedchem.9b00632
    38. Jun Pei, Zheng Zheng, Hyunji Kim, Lin Frank Song, Sarah Walworth, Margaux R. Merz, Kenneth M. Merz, Jr.. Random Forest Refinement of Pairwise Potentials for Protein–Ligand Decoy Detection. Journal of Chemical Information and Modeling 2019, 59 (7) , 3305-3315. https://doi.org/10.1021/acs.jcim.9b00356
    39. Dominique Sydow, Lindsey Burggraaff, Angelika Szengel, Herman W. T. van Vlijmen, Adriaan P. IJzerman, Gerard J. P. van Westen, Andrea Volkamer. Advances and Challenges in Computational Target Prediction. Journal of Chemical Information and Modeling 2019, 59 (5) , 1728-1742. https://doi.org/10.1021/acs.jcim.8b00832
    40. Tom D. Heightman, James F. Callahan, Elisabetta Chiarparin, Joseph E. Coyle, Charlotte Griffiths-Jones, Ami S. Lakdawala, Rachel McMenamin, Paul N. Mortenson, David Norton, Torren M. Peakman, Sharna J. Rich, Caroline Richardson, William L. Rumsey, Yolanda Sanchez, Gordon Saxty, Henriëtte M. G. Willems, Lawrence Wolfe, III, Alison J.-A. Woolford, Zining Wu, Hongxing Yan, Jeffrey K. Kerns, Thomas G. Davies. Structure–Activity and Structure–Conformation Relationships of Aryl Propionic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1/Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1/NRF2) Protein–Protein Interaction. Journal of Medicinal Chemistry 2019, 62 (9) , 4683-4702. https://doi.org/10.1021/acs.jmedchem.9b00279
    41. Nobuaki Yasuo, Masakazu Sekijima. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning. Journal of Chemical Information and Modeling 2019, 59 (3) , 1050-1061. https://doi.org/10.1021/acs.jcim.8b00673
    42. Zoe Cournia, Bryce Allen, and Woody Sherman . Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. Journal of Chemical Information and Modeling 2017, 57 (12) , 2911-2937. https://doi.org/10.1021/acs.jcim.7b00564
    43. Yuna Yan, Weijun Wang, Zhaoxi Sun, John Z. H. Zhang, and Changge Ji . Protein–Ligand Empirical Interaction Components for Virtual Screening. Journal of Chemical Information and Modeling 2017, 57 (8) , 1793-1806. https://doi.org/10.1021/acs.jcim.7b00017
    44. Arun Chandramohan, Nikhil K. Tulsian, and Ganesh S. Anand . Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design. Analytical Chemistry 2017, 89 (15) , 7876-7885. https://doi.org/10.1021/acs.analchem.7b00587
    45. Jie Xia, Jui-Hua Hsieh, Huabin Hu, Song Wu, and Xiang Simon Wang . The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2017, 57 (6) , 1414-1425. https://doi.org/10.1021/acs.jcim.6b00749
    46. Junfeng Liu and Xia Ning . Multi-Assay-Based Compound Prioritization via Assistance Utilization: A Machine Learning Framework. Journal of Chemical Information and Modeling 2017, 57 (3) , 484-498. https://doi.org/10.1021/acs.jcim.6b00737
    47. Dawid Warszycki, Manuel Rueda, Stefan Mordalski, Kurt Kristiansen, Grzegorz Satała, Krzysztof Rataj, Zdzisław Chilmonczyk, Ingebrigt Sylte, Ruben Abagyan, and Andrzej J. Bojarski . From Homology Models to a Set of Predictive Binding Pockets–a 5-HT1A Receptor Case Study. Journal of Chemical Information and Modeling 2017, 57 (2) , 311-321. https://doi.org/10.1021/acs.jcim.6b00263
    48. Therese Inhester, Stefan Bietz, Matthias Hilbig, Robert Schmidt, and Matthias Rarey . Index-Based Searching of Interaction Patterns in Large Collections of Protein–Ligand Interfaces. Journal of Chemical Information and Modeling 2017, 57 (2) , 148-158. https://doi.org/10.1021/acs.jcim.6b00561
    49. Eelke B. Lenselink, Willem Jespers, Herman W. T. van Vlijmen, Adriaan P. IJzerman, and Gerard J. P. van Westen . Interacting with GPCRs: Using Interaction Fingerprints for Virtual Screening. Journal of Chemical Information and Modeling 2016, 56 (10) , 2053-2060. https://doi.org/10.1021/acs.jcim.6b00314
    50. María-Jesús Pérez-Pérez, Eva-María Priego, Oskía Bueno, Maria Solange Martins, María-Dolores Canela, and Sandra Liekens . Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. Journal of Medicinal Chemistry 2016, 59 (19) , 8685-8711. https://doi.org/10.1021/acs.jmedchem.6b00463
    51. Anthony J. Clark, Pratyush Tiwary, Ken Borrelli, Shulu Feng, Edward B. Miller, Robert Abel, Richard A. Friesner, and B. J. Berne . Prediction of Protein–Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations. Journal of Chemical Theory and Computation 2016, 12 (6) , 2990-2998. https://doi.org/10.1021/acs.jctc.6b00201
    52. Zheng Zhao, Li Xie, Lei Xie, and Philip E. Bourne . Delineation of Polypharmacology across the Human Structural Kinome Using a Functional Site Interaction Fingerprint Approach. Journal of Medicinal Chemistry 2016, 59 (9) , 4326-4341. https://doi.org/10.1021/acs.jmedchem.5b02041
    53. Dávid Bajusz, György G. Ferenczy, and György M. Keserű . Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2016, 56 (1) , 234-247. https://doi.org/10.1021/acs.jcim.5b00634
    54. Albert J. Kooistra, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Journal of Chemical Information and Modeling 2015, 55 (5) , 1045-1061. https://doi.org/10.1021/acs.jcim.5b00066
    55. Sabina Smusz, Stefan Mordalski, Jagna Witek, Krzysztof Rataj, Rafał Kafel, and Andrzej J. Bojarski . Multi-Step Protocol for Automatic Evaluation of Docking Results Based on Machine Learning Methods—A Case Study of Serotonin Receptors 5-HT6 and 5-HT7. Journal of Chemical Information and Modeling 2015, 55 (4) , 823-832. https://doi.org/10.1021/ci500564b
    56. Hongbo Zhang, Qingpeng Wang, Xin Ning, Hang Hang, Jing Ma, Xiande Yang, Xiaolin Lu, Jiabao Zhang, Yonghong Li, Congwei Niu, Haoran Song, Xin Wang, and Peng George Wang . Synthesis and Biological Evaluations of a Series of Thaxtomin Analogues. Journal of Agricultural and Food Chemistry 2015, 63 (14) , 3734-3741. https://doi.org/10.1021/jf506153t
    57. Jie Liu and Renxiao Wang . Classification of Current Scoring Functions. Journal of Chemical Information and Modeling 2015, 55 (3) , 475-482. https://doi.org/10.1021/ci500731a
    58. Garima Tiwari and Debasisa Mohanty . Structure-Based Multiscale Approach for Identification of Interaction Partners of PDZ Domains. Journal of Chemical Information and Modeling 2014, 54 (4) , 1143-1156. https://doi.org/10.1021/ci400627y
    59. Pedro J. Ballester, Adrian Schreyer, and Tom L. Blundell . Does a More Precise Chemical Description of Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?. Journal of Chemical Information and Modeling 2014, 54 (3) , 944-955. https://doi.org/10.1021/ci500091r
    60. Maciej Wójcikowski, Piotr Zielenkiewicz, and Paweł Siedlecki . DiSCuS: An Open Platform for (Not Only) Virtual Screening Results Management. Journal of Chemical Information and Modeling 2014, 54 (1) , 347-354. https://doi.org/10.1021/ci400587f
    61. Oscar P. J. van Linden, Albert J. Kooistra, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . KLIFS: A Knowledge-Based Structural Database To Navigate Kinase–Ligand Interaction Space. Journal of Medicinal Chemistry 2014, 57 (2) , 249-277. https://doi.org/10.1021/jm400378w
    62. Rafał Kurczab and Andrzej J. Bojarski . New Strategy for Receptor-Based Pharmacophore Query Construction: A Case Study for 5-HT7 Receptor Ligands. Journal of Chemical Information and Modeling 2013, 53 (12) , 3233-3243. https://doi.org/10.1021/ci4005207
    63. Kelly L. Damm-Ganamet, Richard D. Smith, James B. Dunbar, Jr., Jeanne A. Stuckey, and Heather A. Carlson . CSAR Benchmark Exercise 2011–2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series. Journal of Chemical Information and Modeling 2013, 53 (8) , 1853-1870. https://doi.org/10.1021/ci400025f
    64. Vladimir Chupakhin, Gilles Marcou, Igor Baskin, Alexandre Varnek, and Didier Rognan . Predicting Ligand Binding Modes from Neural Networks Trained on Protein–Ligand Interaction Fingerprints. Journal of Chemical Information and Modeling 2013, 53 (4) , 763-772. https://doi.org/10.1021/ci300200r
    65. Daniele Pala, Thijs Beuming, Woody Sherman, Alessio Lodola, Silvia Rivara, and Marco Mor . Structure-Based Virtual Screening of MT2 Melatonin Receptor: Influence of Template Choice and Structural Refinement. Journal of Chemical Information and Modeling 2013, 53 (4) , 821-835. https://doi.org/10.1021/ci4000147
    66. Jérémy Desaphy, Eric Raimbaud, Pierre Ducrot, and Didier Rognan . Encoding Protein–Ligand Interaction Patterns in Fingerprints and Graphs. Journal of Chemical Information and Modeling 2013, 53 (3) , 623-637. https://doi.org/10.1021/ci300566n
    67. Laurent Hoffer and Dragos Horvath . S4MPLE – Sampler For Multiple Protein–Ligand Entities: Simultaneous Docking of Several Entities. Journal of Chemical Information and Modeling 2013, 53 (1) , 88-102. https://doi.org/10.1021/ci300495r
    68. Bo Ding, Jian Wang, Nan Li, and Wei Wang . Characterization of Small Molecule Binding. I. Accurate Identification of Strong Inhibitors in Virtual Screening. Journal of Chemical Information and Modeling 2013, 53 (1) , 114-122. https://doi.org/10.1021/ci300508m
    69. Paola Bisignano, Chiara Lambruschini, Manuele Bicego, Vittorio Murino, Angelo D. Favia, and Andrea Cavalli . In Silico Deconstruction of ATP-Competitive Inhibitors of Glycogen Synthase Kinase-3β. Journal of Chemical Information and Modeling 2012, 52 (12) , 3233-3244. https://doi.org/10.1021/ci300355p
    70. Thijs Beuming and Woody Sherman . Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines. Journal of Chemical Information and Modeling 2012, 52 (12) , 3263-3277. https://doi.org/10.1021/ci300411b
    71. José L. Medina-Franco . Scanning Structure–Activity Relationships with Structure–Activity Similarity and Related Maps: From Consensus Activity Cliffs to Selectivity Switches. Journal of Chemical Information and Modeling 2012, 52 (10) , 2485-2493. https://doi.org/10.1021/ci300362x
    72. Martin Weisel, Hans-Marcus Bitter, François Diederich, W. Venus So, and Rama Kondru . PROLIX: Rapid Mining of Protein–Ligand Interactions in Large Crystal Structure Databases. Journal of Chemical Information and Modeling 2012, 52 (6) , 1450-1461. https://doi.org/10.1021/ci300034x
    73. Satoshi Niijima, Akira Shiraishi, and Yasushi Okuno . Dissecting Kinase Profiling Data to Predict Activity and Understand Cross-Reactivity of Kinase Inhibitors. Journal of Chemical Information and Modeling 2012, 52 (4) , 901-912. https://doi.org/10.1021/ci200607f
    74. Peter C. Anderson, Vincent De Sapio, Kevin B. Turner, Sidney P. Elmer, Diana C. Roe, and Joseph S. Schoeniger . Identification of Binding Specificity-Determining Features in Protein Families. Journal of Medicinal Chemistry 2012, 55 (5) , 1926-1939. https://doi.org/10.1021/jm200979x
    75. Angelo D. Favia, Giovanni Bottegoni, Irene Nobeli, Paola Bisignano, and Andrea Cavalli . SERAPhiC: A Benchmark for in Silico Fragment-Based Drug Design. Journal of Chemical Information and Modeling 2011, 51 (11) , 2882-2896. https://doi.org/10.1021/ci2003363
    76. Sayan Ranu and Ambuj K. Singh . Novel Method for Pharmacophore Analysis by Examining the Joint Pharmacophore Space. Journal of Chemical Information and Modeling 2011, 51 (5) , 1106-1121. https://doi.org/10.1021/ci100503y
    77. Lirong Wang, Zhaojun Xie, Peter Wipf, and Xiang-Qun Xie . Residue Preference Mapping of Ligand Fragments in the Protein Data Bank. Journal of Chemical Information and Modeling 2011, 51 (4) , 807-815. https://doi.org/10.1021/ci100386y
    78. Ronak Y. Patel and Robert J. Doerksen . Protein Kinase−Inhibitor Database: Structural Variability of and Inhibitor Interactions with the Protein Kinase P-Loop. Journal of Proteome Research 2010, 9 (9) , 4433-4442. https://doi.org/10.1021/pr100662s
    79. Lu Tan, José Batista and Jürgen Bajorath . Rationalization of the Performance and Target Dependence of Similarity Searching Incorporating Protein−Ligand Interaction Information. Journal of Chemical Information and Modeling 2010, 50 (6) , 1042-1052. https://doi.org/10.1021/ci1001197
    80. Sara Núñez, Jennifer Venhorst and Chris G. Kruse. Assessment of a Novel Scoring Method Based on Solvent Accessible Surface Area Descriptors. Journal of Chemical Information and Modeling 2010, 50 (4) , 480-486. https://doi.org/10.1021/ci9004628
    81. Andrew R. Leach, Valerie J. Gillet, Richard A. Lewis and Robin Taylor . Three-Dimensional Pharmacophore Methods in Drug Discovery. Journal of Medicinal Chemistry 2010, 53 (2) , 539-558. https://doi.org/10.1021/jm900817u
    82. Tomohiro Sato, Teruki Honma and Shigeyuki Yokoyama. Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for in Silico Screening. Journal of Chemical Information and Modeling 2010, 50 (1) , 170-185. https://doi.org/10.1021/ci900382e
    83. José Batista, Lu Tan and Jürgen Bajorath. Atom-Centered Interacting Fragments and Similarity Search Applications. Journal of Chemical Information and Modeling 2010, 50 (1) , 79-86. https://doi.org/10.1021/ci9004223
    84. Xia Ning, Huzefa Rangwala and George Karypis . Multi-Assay-Based Structure−Activity Relationship Models: Improving Structure−Activity Relationship Models by Incorporating Activity Information from Related Targets. Journal of Chemical Information and Modeling 2009, 49 (11) , 2444-2456. https://doi.org/10.1021/ci900182q
    85. R. S. K. Vijayan, Indrani Bera, M. Prabu, Sangita Saha and Nanda Ghoshal . Combinatorial Library Enumeration and Lead Hopping using Comparative Interaction Fingerprint Analysis and Classical 2D QSAR Methods for Seeking Novel GABAA α3 Modulators. Journal of Chemical Information and Modeling 2009, 49 (11) , 2498-2511. https://doi.org/10.1021/ci900309s
    86. Izhar Wallach and Ryan Lilien. Predicting Multiple Ligand Binding Modes Using Self-Consistent Pharmacophore Hypotheses. Journal of Chemical Information and Modeling 2009, 49 (9) , 2116-2128. https://doi.org/10.1021/ci900199e
    87. Ravi K. Nandigam, Sangtae Kim, Juswinder Singh and Claudio Chuaqui . Position Specific Interaction Dependent Scoring Technique for Virtual Screening Based on Weighted Protein−Ligand Interaction Fingerprint Profiles. Journal of Chemical Information and Modeling 2009, 49 (5) , 1185-1192. https://doi.org/10.1021/ci800466n
    88. Violeta I. Pérez-Nueno, Obdulia Rabal, José I. Borrell and Jordi Teixidó. APIF: A New Interaction Fingerprint Based on Atom Pairs and Its Application to Virtual Screening. Journal of Chemical Information and Modeling 2009, 49 (5) , 1245-1260. https://doi.org/10.1021/ci900043r
    89. Fabrice Moriaud, Olivia Doppelt-Azeroual, Laetitia Martin, Ksenia Oguievetskaia, Kerstin Koch, Artem Vorotyntsev, Stewart A. Adcock and François Delfaud . Computational Fragment-Based Approach at PDB Scale by Protein Local Similarity. Journal of Chemical Information and Modeling 2009, 49 (2) , 280-294. https://doi.org/10.1021/ci8003094
    90. Ashutosh Kumar, Vinita Chaturvedi, Shalini Bhatnagar, Sudhir Sinha and Mohammad Imran Siddiqi . Knowledge Based Identification of Potent Antitubercular Compounds Using Structure Based Virtual Screening and Structure Interaction Fingerprints. Journal of Chemical Information and Modeling 2009, 49 (1) , 35-42. https://doi.org/10.1021/ci8003607
    91. Lu Tan, Eugen Lounkine and Jürgen Bajorath. Similarity Searching Using Fingerprints of Molecular Fragments Involved in Protein−Ligand Interactions. Journal of Chemical Information and Modeling 2008, 48 (12) , 2308-2312. https://doi.org/10.1021/ci800322y
    92. Thomas J. Crisman, Mihiret T. Sisay and Jürgen Bajorath . Ligand-Target Interaction-Based Weighting of Substructures for Virtual Screening. Journal of Chemical Information and Modeling 2008, 48 (10) , 1955-1964. https://doi.org/10.1021/ci800229q
    93. Esther Kellenberger, Nicolas Foata and Didier Rognan. Ranking Targets in Structure-Based Virtual Screening of Three-Dimensional Protein Libraries: Methods and Problems. Journal of Chemical Information and Modeling 2008, 48 (5) , 1014-1025. https://doi.org/10.1021/ci800023x
    94. Sebastian Radestock, Tanja Weil and Steffen Renner . Homology Model-Based Virtual Screening for GPCR Ligands Using Docking and Target-Biased Scoring. Journal of Chemical Information and Modeling 2008, 48 (5) , 1104-1117. https://doi.org/10.1021/ci8000265
    95. Eric J. Martin and David C. Sullivan. AutoShim: Empirically Corrected Scoring Functions for Quantitative Docking with a Crystal Structure and IC50 Training Data. Journal of Chemical Information and Modeling 2008, 48 (4) , 861-872. https://doi.org/10.1021/ci7004548
    96. Yanbei Li, Zhehuan Fan, Jingxin Rao, Zhiyi Chen, Qinyu Chu, Mingyue Zheng, Xutong Li. An overview of recent advances and challenges in predicting compound-protein interaction (CPI). Medical Review 2023, Article ASAP.
    97. George Nicolae Daniel Ion, George Mihai Nitulescu, Dragos Paul Mihai. A PIM-1 Kinase Inhibitor Docking Optimization Study Based on Logistic Regression Models and Interaction Analysis. Life 2023, 13 (8) , 1635. https://doi.org/10.3390/life13081635
    98. Izudin Redžepović, Boris Furtula. Chemical similarity of molecules with physiological response. Molecular Diversity 2023, 27 (4) , 1603-1612. https://doi.org/10.1007/s11030-022-10514-5
    99. Cillian Variot, Daniel Capule, Xhulio Arolli, Jackson Baumgartner, Cory Reidl, Charles Houseman, Miguel A. Ballicora, Daniel P. Becker, Misty L. Kuhn. Mapping roles of active site residues in the acceptor site of the PA3944 Gcn5‐related N ‐acetyltransferase enzyme. Protein Science 2023, 32 (8) https://doi.org/10.1002/pro.4725
    100. Natalia A Szulc, Zuzanna Mackiewicz, Janusz M Bujnicki, Filip Stefaniak. Structural interaction fingerprints and machine learning for predicting and explaining binding of small molecule ligands to RNA. Briefings in Bioinformatics 2023, 24 (4) https://doi.org/10.1093/bib/bbad187
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect