Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Physiological Model for the Estimation of the Fraction Dose Absorbed in Humans

View Author Information
Bayer Technology Services GmbH, Biophysics, 51368 Leverkusen, Germany, BAYER AG, Bayer HealthCare, Chemical Research, 42096 Wuppertal, Germany, Bayer Technology Services GmbH, Computational Solutions, 51368 Leverkusen, Germany, and Institute of Pharmaceutical Technology, University of Frankfurt, 60439 Frankfurt, Germany
Cite this: J. Med. Chem. 2004, 47, 16, 4022–4031
Publication Date (Web):July 2, 2004
https://doi.org/10.1021/jm030999b
Copyright © 2004 American Chemical Society

    Article Views

    2507

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A physiologically based model for gastrointestinal transit and absorption in humans is presented. The model can be used to study the dependency of the fraction dose absorbed (Fabs) of both neutral and ionizable compounds on the two main physicochemical input parameters (the intestinal permeability coefficient (Pint) and the solubility in the intestinal fluids (Sint)) as well as physiological parameters such as the gastric emptying time and the intestinal transit time. For permeability-limited compounds, the model produces the established sigmoidal dependence between Fabs and Pint. In case of solubility-limited absorption, the model enables calculation of the critical mass−solubility ratio, which defines the onset of nonlinearity in the response of fraction absorbed to dose. In addition, an analytical equation to calculate the intestinal permeability coefficient based on the compound's membrane affinity and molecular weight was used successfully in combination with the physiologically based pharmacokinetic (PB−PK) model to predict the human fraction dose absorbed of compounds with permeability-limited absorption. Cross-validation demonstrated a root-mean-square prediction error of 7% for passively absorbed compounds.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author:  Dr. Stefan Willmann. Bayer Technology Services GmbH, Process Technology/Biophysics, Building 460 Rm 443, 42096 Wuppertal, Germany. Phone:  +49 (0)202/36-4097; fax:  +49 (0)202/36-4546; e-mail:  [email protected]; internet:  http://www.zentraletechnik.bayer.de.

     Bayer Technology Services GmbH, Biophysics.

     BAYER AG, Bayer HealthCare, Chemical Research.

    §

     Bayer Technology Services GmbH, Computational Solutions.

     University of Frankfurt.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    A table containing all relevant compound data and information about the chemical diversity of this data set are provided as supportive information. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 185 publications.

    1. Dabing Chen, Wenjun Huang, Qinfang Zhang, Zenghui Zhang, Yiwang Guo, Gerrit Vreeman, Changquan Calvin Sun, Michael Hawley, Bing-Shiou Yang, Xiaorong He. Bioavailability-Enhancing Cocrystals: Screening, In Vivo Predictive Dissolution, and Supersaturation Maintenance. Crystal Growth & Design 2022, 22 (9) , 5154-5167. https://doi.org/10.1021/acs.cgd.1c00950
    2. Emma Eckernäs, Christer Tannergren. Physiologically Based Biopharmaceutics Modeling of Regional and Colon Absorption in Dogs. Molecular Pharmaceutics 2021, 18 (4) , 1699-1710. https://doi.org/10.1021/acs.molpharmaceut.0c01201
    3. Maiara Camotti Montanha, Andréa Diniz, Nuno Miguel Elvas Neves Silva, Elza Kimura, Paulo Paixão. Physiologically-Based Pharmacokinetic Model on the Oral Drug Absorption in Roux-en-Y Gastric Bypass Bariatric Patients: Amoxicillin Tablet and Suspension. Molecular Pharmaceutics 2019, 16 (12) , 5025-5034. https://doi.org/10.1021/acs.molpharmaceut.9b00870
    4. Erik Sjögren, Helena Thörn, and Christer Tannergren . In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models. Molecular Pharmaceutics 2016, 13 (6) , 1763-1778. https://doi.org/10.1021/acs.molpharmaceut.5b00861
    5. Noha M. Zaki, Per Artursson, and Christel A. S. Bergström . A Modified Physiological BCS for Prediction of Intestinal Absorption in Drug Discovery. Molecular Pharmaceutics 2010, 7 (5) , 1478-1487. https://doi.org/10.1021/mp100124f
    6. Jiang B. Fang, Vivian K. Robertson, Archana Rawat, Tawnya Flick, Zhe J. Tang, Nina S. Cauchon, and James S. McElvain . Development and Application of a Biorelevant Dissolution Method Using USP Apparatus 4 in Early Phase Formulation Development. Molecular Pharmaceutics 2010, 7 (5) , 1466-1477. https://doi.org/10.1021/mp100125b
    7. Stefan Balaz. Modeling Kinetics of Subcellular Disposition of Chemicals. Chemical Reviews 2009, 109 (5) , 1793-1899. https://doi.org/10.1021/cr030440j
    8. Indah Epriliati, Bruce D’Arcy and Mike Gidley. Nutriomic Analysis of Fresh and Processed Fruit Products. 2. During in Vitro Simultaneous Molecular Passages Using Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry 2009, 57 (8) , 3377-3388. https://doi.org/10.1021/jf802226n
    9. Neil Parrott and Thierry Lave. Applications of Physiologically Based Absorption Models in Drug Discovery and Development. Molecular Pharmaceutics 2008, 5 (5) , 760-775. https://doi.org/10.1021/mp8000155
    10. Andreas Klamt, Uwe Huniar, Simon Spycher and Jörg Keldenich. COSMOmic: A Mechanistic Approach to the Calculation of Membrane−Water Partition Coefficients and Internal Distributions within Membranes and Micelles. The Journal of Physical Chemistry B 2008, 112 (38) , 12148-12157. https://doi.org/10.1021/jp801736k
    11. Lisa S. Bertram, Daniel Black, Paul H. Briner, Rosemary Chatfield, Andrew Cooke, Matthew C. T. Fyfe, P. John Murray, Frédéric Naud, Masao Nawano, Martin J. Procter, Günaj Rakipovski, Chrystelle M. Rasamison, Christine Reynet, Karen L. Schofield, Vilas K. Shah, Felix Spindler, Amanda Taylor, Roy Turton, Geoffrey M. Williams, Philippe Wong-Kai-In and Kosuke Yasuda. SAR, Pharmacokinetics, Safety, and Efficacy of Glucokinase Activating 2-(4-Sulfonylphenyl)-N-thiazol-2-ylacetamides: Discovery of PSN-GK1. Journal of Medicinal Chemistry 2008, 51 (14) , 4340-4345. https://doi.org/10.1021/jm8003202
    12. René Geci, Domenico Gadaleta, Marina García de Lomana, Rita Ortega-Vallbona, Erika Colombo, Eva Serrano-Candelas, Alicia Paini, Lars Kuepfer, Stephan Schaller. Systematic evaluation of high-throughput PBK modelling strategies for the prediction of intravenous and oral pharmacokinetics in humans. Archives of Toxicology 2024, 26 https://doi.org/10.1007/s00204-024-03764-9
    13. Christina Kovar, Helena Leonie Hanae Loer, Simeon Rüdesheim, Laura Maria Fuhr, Fatima Zahra Marok, Dominik Selzer, Matthias Schwab, Thorsten Lehr. A physiologically‐based pharmacokinetic precision dosing approach to manage dasatinib drug–drug interactions. CPT: Pharmacometrics & Systems Pharmacology 2024, 16 https://doi.org/10.1002/psp4.13146
    14. Ajita Paliwal, Smita Jain, Sachin Kumar, Pranay Wal, Madhusmruti Khandai, Prasanna Shama Khandige, Vandana Sadananda, Md. Khalid Anwer, Monica Gulati, Tapan Behl, Shriyansh Srivastava. Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine. Expert Opinion on Drug Metabolism & Toxicology 2024, 20 (4) , 181-195. https://doi.org/10.1080/17425255.2024.2330666
    15. Jelena Djuris, Sandra Cvijic, Ljiljana Djekic. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals 2024, 17 (2) , 177. https://doi.org/10.3390/ph17020177
    16. Sandra Cvijić, Jelisaveta Ignjatović, Jelena Parojčić, Zorica Đurić. Computer-aided biopharmaceutical characterization: Gastrointestinal absorption simulation. 2024, 199-283. https://doi.org/10.1016/B978-0-443-18655-4.00004-2
    17. Angela Effinger, Caitriona M. O´Driscoll, Mark McAllister, Nikoletta Fotaki. In Vitro and In Silico ADME Prediction. 2024, 337-366. https://doi.org/10.1007/978-3-031-50419-8_15
    18. Yehuda Arav, Assaf Zohar. Model-based optimization of controlled release formulation of levodopa for Parkinson’s disease. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-42878-5
    19. Lon W.R. Fong, Beibei Huang, Rajan Chaudhari, Shuxing Zhang. Computational Modeling of Drug Oral Bioavailability. 2023, 843-856. https://doi.org/10.1002/9781119660699.ch44
    20. Christer Tannergren, Harshad Jadhav, Emma Eckernäs, Jonas Fagerberg, Patrick Augustijns, Erik Sjögren. Physiologically based biopharmaceutics modeling of regional and colon absorption in humans. European Journal of Pharmaceutics and Biopharmaceutics 2023, 186 , 144-159. https://doi.org/10.1016/j.ejpb.2023.03.013
    21. Aoi Yoshitomo, Satoshi Asano, Shizuka Hozuki, Yuta Tamemoto, Yukihiro Shibata, Natsumi Hashimoto, Keita Takahashi, Yoko Sasaki, Naoka Ozawa, Michiharu Kageyama, Takeshi Iijima, Yasuhiro Kazuki, Hiromi Sato, Akihiro Hisaka. Significance of Basal Membrane Permeability of Epithelial Cells in Predicting Intestinal Drug Absorption. Drug Metabolism and Disposition 2023, 51 (3) , 318-328. https://doi.org/10.1124/dmd.122.000907
    22. Styliani Fragki, Aldert H. Piersma, Joost Westerhout, Anne Kienhuis, Nynke I. Kramer, Marco J. Zeilmaker. Applicability of generic PBK modelling in chemical hazard assessment: A case study with IndusChemFate. Regulatory Toxicology and Pharmacology 2022, 136 , 105267. https://doi.org/10.1016/j.yrtph.2022.105267
    23. Vanessa Baier, Alicia Paini, Stephan Schaller, Colin G. Scanes, Audrey J. Bone, Markus Ebeling, Thomas G. Preuss, Johannes Witt, David Heckmann. A generic avian physiologically-based kinetic (PBK) model and its application in three bird species. Environment International 2022, 169 , 107547. https://doi.org/10.1016/j.envint.2022.107547
    24. . Pharmacokinetic Modelling. 2022, 53-91. https://doi.org/10.1002/9781119589181.ch3
    25. Om Anand, Xavier J. H. Pepin, Vidula Kolhatkar, Paul Seo. The Use of Physiologically Based Pharmacokinetic Analyses—in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharmaceutical Research 2022, 39 (8) , 1681-1700. https://doi.org/10.1007/s11095-022-03280-4
    26. Donato Teutonico, Michael Block, Lars Kuepfer, Juri Solodenko, Thomas Eissing, Katrin Coboeken. PK‐Sim ® for Modeling Oral Drug Delivery of Modified‐Release Formulations. 2022, 375-389. https://doi.org/10.1002/9781119772729.ch21
    27. Suein Choi, Sungpil Han, So Jin Lee, Byunghee Lim, Soo Hyeon Bae, Seunghoon Han, Dong-Seok Yim. DallphinAtoM: Physiologically based pharmacokinetics software predicting human PK parameters based on physicochemical properties, in vitro and animal in vivo data. Computer Methods and Programs in Biomedicine 2022, 216 , 106662. https://doi.org/10.1016/j.cmpb.2022.106662
    28. Alan Talevi. Dynamic Transit Models. 2022, 456-462. https://doi.org/10.1007/978-3-030-84860-6_152
    29. Vanessa Baier, Alicia Paini, Stephan Schaller, Colin G. Scanes, Audrey Bone, Markus Ebeling, Thomas G. Preuss, Johannes Witt, David Heckmann. A Generic Avian Physiologically-Based Kinetic (Pbk) Model and its Application in Three Bird Species. SSRN Electronic Journal 2022, 38 https://doi.org/10.2139/ssrn.4123443
    30. Giovanni Palombo, Mario Merone, Annamaria Altomare, Manuele Gori, Carlotta Terradura, Luca Bacco, Federica Del Chierico, Lorenza Putignani, Michele Cicala, Michele Pier Luca Guarino, Vincenzo Piemonte. The impact of the intestinal microbiota and the mucosal permeability on three different antibiotic drugs. European Journal of Pharmaceutical Sciences 2021, 164 , 105869. https://doi.org/10.1016/j.ejps.2021.105869
    31. Urban Fagerholm. The Role of Permeability in Drug ADME/PK, Interactions and Toxicity, and the Permeability‐Based Classification System (PCS). 2021, 1-14. https://doi.org/10.1002/0471266949.bmc163.pub2
    32. Fang Wu, Heta Shah, Min Li, Peng Duan, Ping Zhao, Sandra Suarez, Kimberly Raines, Yang Zhao, Meng Wang, Ho-pi Lin, John Duan, Lawrence Yu, Paul Seo. Biopharmaceutics Applications of Physiologically Based Pharmacokinetic Absorption Modeling and Simulation in Regulatory Submissions to the U.S. Food and Drug Administration for New Drugs. The AAPS Journal 2021, 23 (2) https://doi.org/10.1208/s12248-021-00564-2
    33. Alan Talevi. Dynamic Transit Models. 2021, 1-7. https://doi.org/10.1007/978-3-030-51519-5_152-1
    34. Mohamed Elmeliegy, Oliver Ghobrial. Model-informed drug development and discovery: an overview of current practices. 2021, 263-280. https://doi.org/10.1016/B978-0-12-820007-0.00014-3
    35. Michiru Nagao, Yukako Nakano, Masataka Tajima, Erika Sugiyama, Vilasinee Hirunpanich Sato, Makoto Inada, Hitoshi Sato. Nonlinear Disposition and Metabolic Interactions of Cannabidiol Through CYP3A Inhibition In Vivo in Rats. Cannabis and Cannabinoid Research 2020, 5 (4) , 318-325. https://doi.org/10.1089/can.2019.0098
    36. Venkata Kashyap Yellepeddi, Olga J. Baker. Predictive modeling of aspirin‐triggered resolvin D1 pharmacokinetics for the study of Sjögren's syndrome. Clinical and Experimental Dental Research 2020, 6 (2) , 225-235. https://doi.org/10.1002/cre2.260
    37. Gopal Singh Rajawat, Tejashree Belubbi, Mangal S. Nagarsenker, Bertil Abrahamsson, Rodrigo Cristofoletti, Dirk W. Groot, Peter Langguth, Alan Parr, James E. Polli, Mehul Mehta, Vinod P. Shah, Tomokazu Tajiri, Jennifer Dressman. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Ondansetron. Journal of Pharmaceutical Sciences 2019, 108 (10) , 3157-3168. https://doi.org/10.1016/j.xphs.2019.05.033
    38. Dimosthenis A. Sarigiannis, Spyros Karakitsios, Elena Dominguez-Romero, Krystalia Papadaki, Celine Brochot, Vikas Kumar, Marta Schuhmacher, Moustapha Sy, Hans Mielke, Mathias Greiner, Marcel Mengelers, Martin Scheringer. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative. Environmental Research 2019, 172 , 216-230. https://doi.org/10.1016/j.envres.2019.01.045
    39. Nicola Melillo, Leon Aarons, Paolo Magni, Adam S. Darwich. Variance based global sensitivity analysis of physiologically based pharmacokinetic absorption models for BCS I–IV drugs. Journal of Pharmacokinetics and Pharmacodynamics 2019, 46 (1) , 27-42. https://doi.org/10.1007/s10928-018-9615-8
    40. Bart Hens, Michael B. Bolger. Application of a Dynamic Fluid and pH Model to Simulate Intraluminal and Systemic Concentrations of a Weak Base in GastroPlus™. Journal of Pharmaceutical Sciences 2019, 108 (1) , 305-315. https://doi.org/10.1016/j.xphs.2018.10.041
    41. Panteleimon D. Mavroudis, Helen E. Hermes, Donato Teutonico, Thomas G. Preuss, Sebastian Schneckener, . Development and validation of a physiology-based model for the prediction of pharmacokinetics/toxicokinetics in rabbits. PLOS ONE 2018, 13 (3) , e0194294. https://doi.org/10.1371/journal.pone.0194294
    42. Angela Effinger, Caitriona M. O’Driscoll, Mark McAllister, Nikoletta Fotaki. In Vitro and In Silico ADME Prediction. 2018, 301-330. https://doi.org/10.1007/978-3-319-99593-9_13
    43. André Dallmann, Ibrahim Ince, Juri Solodenko, Michaela Meyer, Stefan Willmann, Thomas Eissing, Georg Hempel. Physiologically Based Pharmacokinetic Modeling of Renally Cleared Drugs in Pregnant Women. Clinical Pharmacokinetics 2017, 56 (12) , 1525-1541. https://doi.org/10.1007/s40262-017-0538-0
    44. Ehsan Adeli. The use of spray freeze drying for dissolution and oral bioavailability improvement of Azithromycin. Powder Technology 2017, 319 , 323-331. https://doi.org/10.1016/j.powtec.2017.06.043
    45. . In Vitro and In Situ Approaches to Measure Intestinal Permeability and Efflux Transporters. 2017, 331-346. https://doi.org/10.1002/9781118916926.ch9
    46. Ahmad Y. Abuhelwa, Desmond B. Williams, Richard N. Upton, David J.R. Foster. Food, gastrointestinal pH, and models of oral drug absorption. European Journal of Pharmaceutics and Biopharmaceutics 2017, 112 , 234-248. https://doi.org/10.1016/j.ejpb.2016.11.034
    47. Andrés Olivares-Morales, Avijit Ghosh, Leon Aarons, Amin Rostami-Hodjegan. Development of a Novel Simplified PBPK Absorption Model to Explain the Higher Relative Bioavailability of the OROS® Formulation of Oxybutynin. The AAPS Journal 2016, 18 (6) , 1532-1549. https://doi.org/10.1208/s12248-016-9965-3
    48. L Kuepfer, C Niederalt, T Wendl, J‐F Schlender, S Willmann, J Lippert, M Block, T Eissing, D Teutonico. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT: Pharmacometrics & Systems Pharmacology 2016, 5 (10) , 516-531. https://doi.org/10.1002/psp4.12134
    49. Martin Kuentz, René Holm, David P. Elder. Methodology of oral formulation selection in the pharmaceutical industry. European Journal of Pharmaceutical Sciences 2016, 87 , 136-163. https://doi.org/10.1016/j.ejps.2015.12.008
    50. Alison Margolskee, Adam S. Darwich, Aleksandra Galetin, Amin Rostami-Hodjegan, Leon Aarons. Deconvolution and IVIVC: Exploring the Role of Rate-Limiting Conditions. The AAPS Journal 2016, 18 (2) , 321-332. https://doi.org/10.1208/s12248-015-9849-y
    51. Panos Macheras, Athanassios Iliadis. Oral Drug Absorption. 2016, 109-158. https://doi.org/10.1007/978-3-319-27598-7_6
    52. Markus Krauss, Kai Tappe, Andreas Schuppert, Lars Kuepfer, Linus Goerlitz, . Bayesian Population Physiologically-Based Pharmacokinetic (PBPK) Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations. PLOS ONE 2015, 10 (10) , e0139423. https://doi.org/10.1371/journal.pone.0139423
    53. Grace B. Hatton, Vipul Yadav, Abdul W. Basit, Hamid A. Merchant. Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. Journal of Pharmaceutical Sciences 2015, 104 (9) , 2747-2776. https://doi.org/10.1002/jps.24365
    54. Andrés Olivares-Morales, Hans Lennernäs, Leon Aarons, Amin Rostami-Hodjegan. Translating Human Effective Jejunal Intestinal Permeability to Surface-Dependent Intrinsic Permeability: a Pragmatic Method for a More Mechanistic Prediction of Regional Oral Drug Absorption. The AAPS Journal 2015, 17 (5) , 1177-1192. https://doi.org/10.1208/s12248-015-9758-0
    55. Raj K. Singh Badhan. Physiologically Based Pharmacokinetic Modelling in Drug Delivery. 2015, 263-291. https://doi.org/10.1002/9781118573983.ch13
    56. Michael Block. Physiologically based pharmacokinetic and pharmacodynamic modeling in cancer drug development: status, potential and gaps. Expert Opinion on Drug Metabolism & Toxicology 2015, 11 (5) , 743-756. https://doi.org/10.1517/17425255.2015.1037276
    57. Hirotaka Ando, Akihiro Hisaka, Hiroshi Suzuki. A New Physiologically Based Pharmacokinetic Model for the Prediction of Gastrointestinal Drug Absorption: Translocation Model. Drug Metabolism and Disposition 2015, 43 (4) , 590-602. https://doi.org/10.1124/dmd.114.060038
    58. HM Jones, Y Chen, C Gibson, T Heimbach, N Parrott, SA Peters, J Snoeys, VV Upreti, M Zheng, SD Hall. Physiologically based pharmacokinetic modeling in drug discovery and development: A pharmaceutical industry perspective. Clinical Pharmacology & Therapeutics 2015, 97 (3) , 247-262. https://doi.org/10.1002/cpt.37
    59. Shobha N. Bhattachar, David M. Bender, Stephanie A. Sweetana, James A. Wesley. Discovery Formulations: Approaches and Practices in Early Preclinical Development. 2015, 49-94. https://doi.org/10.1007/978-1-4939-1399-2_2
    60. Seung Rim Hwang, Youngro Byun. Advances in oral macromolecular drug delivery. Expert Opinion on Drug Delivery 2014, 11 (12) , 1955-1967. https://doi.org/10.1517/17425247.2014.945420
    61. Tomoyuki Takaku, Kazuki Mikata, Hirohisa Nagahori, Yoshihisa Sogame. Metabolism of propyrisulfuron: 14 C excretion, 14 C concentration in plasma and tissues, and amount of metabolites in rats. Xenobiotica 2014, 44 (10) , 882-892. https://doi.org/10.3109/00498254.2014.903009
    62. Hannah K. Batchelor, Nikoletta Fotaki, Sandra Klein. Paediatric oral biopharmaceutics: Key considerations and current challenges. Advanced Drug Delivery Reviews 2014, 73 , 102-126. https://doi.org/10.1016/j.addr.2013.10.006
    63. Edmund S. Kostewicz, Leon Aarons, Martin Bergstrand, Michael B. Bolger, Aleksandra Galetin, Oliver Hatley, Masoud Jamei, Richard Lloyd, Xavier Pepin, Amin Rostami-Hodjegan, Erik Sjögren, Christer Tannergren, David B. Turner, Christian Wagner, Werner Weitschies, Jennifer Dressman. PBPK models for the prediction of in vivo performance of oral dosage forms. European Journal of Pharmaceutical Sciences 2014, 57 , 300-321. https://doi.org/10.1016/j.ejps.2013.09.008
    64. Tomoyuki Takaku, Hirohisa Nagahori, Yoshihisa Sogame. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals. Toxicology and Applied Pharmacology 2014, 277 (3) , 242-249. https://doi.org/10.1016/j.taap.2014.03.022
    65. Urban Fagerholm. PK‐Matrix—A Permeability: Intrinsic Clearance System for Prediction, Classification, and Profiling of Pharmacokinetics and Drug–Drug Interactions. 2014, 89-101. https://doi.org/10.1002/9781118783344.ch5
    66. Feras Khalil, Stephanie Läer. Physiologically Based Pharmacokinetic Models in the Prediction of Oral Drug Exposure Over the Entire Pediatric Age Range—Sotalol as a Model Drug. The AAPS Journal 2014, 16 (2) , 226-239. https://doi.org/10.1208/s12248-013-9555-6
    67. John R. Foster, Garry Lund, Svetlana Sapelnikova, D. Lorne Tyrrell, Norman M. Kneteman. Chimeric rodents with humanized liver: bridging the preclinical/clinical trial gap in ADME/toxicity studies. Xenobiotica 2014, 44 (2) , 109-122. https://doi.org/10.3109/00498254.2013.867553
    68. Xinyuan Zhang. Bioequivalence: Modeling and Simulation. 2014, 395-417. https://doi.org/10.1007/978-1-4939-1252-0_15
    69. Sébastien Marze. A coarse-grained simulation to study the digestion and bioaccessibility of lipophilic nutrients and micronutrients in emulsion. Food Funct. 2014, 5 (1) , 129-139. https://doi.org/10.1039/C3FO60184F
    70. Henry T. Peng, Fethi Bouak, Oshin Vartanian, Bob Cheung. A physiologically based pharmacokinetics model for melatonin—Effects of light and routes of administration. International Journal of Pharmaceutics 2013, 458 (1) , 156-168. https://doi.org/10.1016/j.ijpharm.2013.09.033
    71. Markus Krauss, Rolf Burghaus, Jörg Lippert, Mikko Niemi, Pertti Neuvonen, Andreas Schuppert, Stefan Willmann, Lars Kuepfer, Linus Görlitz. Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification. In Silico Pharmacology 2013, 1 (1) https://doi.org/10.1186/2193-9616-1-6
    72. Henry T. Peng, Andrea N. Edginton, Bob Cheung. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress. The Journal of Clinical Pharmacology 2013, 53 (10) , 1048-1057. https://doi.org/10.1002/jcph.131
    73. Naresh Pavurala, Luke E.K. Achenie. A mechanistic approach for modeling oral drug delivery. Computers & Chemical Engineering 2013, 57 , 196-206. https://doi.org/10.1016/j.compchemeng.2013.06.002
    74. Po-Chang Chiang, Harvey Wong. Incorporation of Physiologically Based Pharmacokinetic Modeling in the Evaluation of Solubility Requirements for the Salt Selection Process: A Case Study Using Phenytoin. The AAPS Journal 2013, 15 (4) , 1109-1118. https://doi.org/10.1208/s12248-013-9519-x
    75. Christian Wagner, Kirstin Thelen, Stefan Willmann, Arzu Selen, Jennifer B. Dressman. Utilizing In Vitro and PBPK Tools to Link ADME Characteristics to Plasma Profiles: Case Example Nifedipine Immediate Release Formulation. Journal of Pharmaceutical Sciences 2013, 102 (9) , 3205-3219. https://doi.org/10.1002/jps.23611
    76. Chris De Savi, David Waterson, Andrew Pape, Scott Lamont, Elma Hadley, Mark Mills, Ken M. Page, Jonathan Bowyer, Rose A. Maciewicz. Hydantoin based inhibitors of MMP13—Discovery of AZD6605. Bioorganic & Medicinal Chemistry Letters 2013, 23 (16) , 4705-4712. https://doi.org/10.1016/j.bmcl.2013.05.089
    77. HM Jones, K Rowland‐Yeo. Basic Concepts in Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development. CPT: Pharmacometrics & Systems Pharmacology 2013, 2 (8) , 1-12. https://doi.org/10.1038/psp.2013.41
    78. Erik Sjögren, Jan Westergren, Iain Grant, Gunilla Hanisch, Lennart Lindfors, Hans Lennernäs, Bertil Abrahamsson, Christer Tannergren. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: Application of the mechanistic absorption model GI-Sim. European Journal of Pharmaceutical Sciences 2013, 49 (4) , 679-698. https://doi.org/10.1016/j.ejps.2013.05.019
    79. Keiichi Otsuka, Yasushi Shono, Jennifer Dressman. Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms. Journal of Pharmacy and Pharmacology 2013, 65 (7) , 937-952. https://doi.org/10.1111/jphp.12059
    80. Thomas Taupitz, Jennifer B. Dressman, Charles M. Buchanan, Sandra Klein. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: Itraconazole. European Journal of Pharmaceutics and Biopharmaceutics 2013, 83 (3) , 378-387. https://doi.org/10.1016/j.ejpb.2012.11.003
    81. Hannah M. Jones, Kapil Mayawala, Patrick Poulin. Dose Selection Based on Physiologically Based Pharmacokinetic (PBPK) Approaches. The AAPS Journal 2013, 15 (2) , 377-387. https://doi.org/10.1208/s12248-012-9446-2
    82. Tohru Kokubo, Shigeyuki Matsui, Makio Ishiguro. Meta-analysis of Oro-cecal Transit Time in Fasting Subjects. Pharmaceutical Research 2013, 30 (2) , 402-411. https://doi.org/10.1007/s11095-012-0882-6
    83. Sandra Grbic, Jelena Parojcic, Zorica Djuric. Computer-aided biopharmaceutical characterization: gastrointestinal absorption simulation. 2013, 177-232. https://doi.org/10.1533/9781908818324.177
    84. J Lippert, M Brosch, O von Kampen, M Meyer, H.‐U Siegmund, C Schafmayer, T Becker, B Laffert, L Görlitz, S Schreiber, PJ Neuvonen, M Niemi, J Hampe, L Kuepfer. A Mechanistic, Model‐Based Approach to Safety Assessment in Clinical Development. CPT: Pharmacometrics & Systems Pharmacology 2012, 1 (11) , 1-8. https://doi.org/10.1038/psp.2012.14
    85. Markus Krauss, Stephan Schaller, Steffen Borchers, Rolf Findeisen, Jörg Lippert, Lars Kuepfer, . Integrating Cellular Metabolism into a Multiscale Whole-Body Model. PLoS Computational Biology 2012, 8 (10) , e1002750. https://doi.org/10.1371/journal.pcbi.1002750
    86. Richard J. Dimelow, Paul D. Metcalfe, Simon Thomas. In Silico Models of Drug Metabolism and Drug Interactions. 2012, 1-55. https://doi.org/10.1002/9780470921920.edm057
    87. Christian Wagner, Ekarat Jantratid, Filippos Kesisoglou, Maria Vertzoni, Christos Reppas, Jennifer B. Dressman. Predicting the oral absorption of a poorly soluble, poorly permeable weak base using biorelevant dissolution and transfer model tests coupled with a physiologically based pharmacokinetic model. European Journal of Pharmaceutics and Biopharmaceutics 2012, 82 (1) , 127-138. https://doi.org/10.1016/j.ejpb.2012.05.008
    88. . Theoretical Framework IV: Gastrointestinal Transit Models and Integration. 2012, 122-159. https://doi.org/10.1002/9781118354339.ch5
    89. Yehuda Arav, Michel Bercovier, Hanna Parnas. Selecting the particle size distribution for drugs with low water solubility – mathematical model. Drug Development and Industrial Pharmacy 2012, 38 (8) , 940-951. https://doi.org/10.3109/03639045.2011.634808
    90. Stefan Willmann, Kirstin Thelen, Jörg Lippert. Integration of dissolution into physiologically-based pharmacokinetic models III: PK-Sim®. Journal of Pharmacy and Pharmacology 2012, 64 (7) , 997-1007. https://doi.org/10.1111/j.2042-7158.2012.01534.x
    91. Paulo Paixão, Luís F. Gouveia, José A.G. Morais. Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model. International Journal of Pharmaceutics 2012, 429 (1-2) , 84-98. https://doi.org/10.1016/j.ijpharm.2012.03.019
    92. Hermann‐Georg Holzhütter, Dirk Drasdo, Tobias Preusser, Jörg Lippert, Adriano M. Henney. The virtual liver: a multidisciplinary, multilevel challenge for systems biology. WIREs Systems Biology and Medicine 2012, 4 (3) , 221-235. https://doi.org/10.1002/wsbm.1158
    93. Michaela Meyer, Sebastian Schneckener, Bernd Ludewig, Lars Kuepfer, Joerg Lippert. Using Expression Data for Quantification of Active Processes in Physiologically Based Pharmacokinetic Modeling. Drug Metabolism and Disposition 2012, 40 (5) , 892-901. https://doi.org/10.1124/dmd.111.043174
    94. David Hallifax, Elisa Turlizzi, Ugo Zanelli, J. Brian Houston. Clearance-dependent underprediction of in vivo intrinsic clearance from human hepatocytes: Comparison with permeabilities from artificial membrane (PAMPA) assay, in silico and caco-2 assay, for 65 drugs. European Journal of Pharmaceutical Sciences 2012, 45 (5) , 570-574. https://doi.org/10.1016/j.ejps.2011.12.010
    95. François Bouzom, Kathryn Ball, Nathalie Perdaems, Bernard Walther. Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs?. Biopharmaceutics & Drug Disposition 2012, 33 (2) , 55-71. https://doi.org/10.1002/bdd.1767
    96. Olaf Weber, Stefan Willmann, Hilmar Bischoff, Volkhart Li, Alexandros Vakalopoulos, Klemens Lustig, Frank‐Thorsten Hafner, Roland Heinig, Carsten Schmeck, Klaus Buehner. Prediction of a potentially effective dose in humans for BAY 60–5521, a potent inhibitor of cholesteryl ester transfer protein (CETP) by allometric species scaling and combined pharmacodynamic and physiologically‐based pharmacokinetic modelling. British Journal of Clinical Pharmacology 2012, 73 (2) , 219-231. https://doi.org/10.1111/j.1365-2125.2011.04064.x
    97. Lars Kuepfer, Jörg Lippert, Thomas Eissing. Multiscale Mechanistic Modeling in Pharmaceutical Research and Development. 2012, 543-561. https://doi.org/10.1007/978-1-4419-7210-1_32
    98. Hannah M Jones, Maurice Dickins, Kuresh Youdim, James R Gosset, Neil J Attkins, Tanya L Hay, Ian K Gurrell, Y Raj Logan, Peter J Bungay, Barry C Jones, Iain B Gardner. Application of PBPK modelling in drug discovery and development at Pfizer. Xenobiotica 2012, 42 (1) , 94-106. https://doi.org/10.3109/00498254.2011.627477
    99. Kirstin Thelen, Katrin Coboeken, Stefan Willmann, Rolf Burghaus, Jennifer B. Dressman, Jörg Lippert. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, Part 1: Oral solutions. Journal of Pharmaceutical Sciences 2011, 100 (12) , 5324-5345. https://doi.org/10.1002/jps.22726
    100. Leslie Z. Benet, Fabio Broccatelli, Tudor I. Oprea. BDDCS Applied to Over 900 Drugs. The AAPS Journal 2011, 13 (4) , 519-547. https://doi.org/10.1208/s12248-011-9290-9
    Load all citations