ACS Publications. Most Trusted. Most Cited. Most Read
DNA Binding To Guide the Development of Tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline Derivatives as Cytotoxic Agents
My Activity
    Article

    DNA Binding To Guide the Development of Tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline Derivatives as Cytotoxic Agents
    Click to copy article linkArticle link copied!

    View Author Information
    Institut de Chimie Pharmaceutique Albert Lespagnol, EA 2692, Université de Lille 2, Rue du Professeur Laguesse, BP 83, 59006 Lille, France, Biospectroscopy and Physical Chemistry Unit, University of Liege, Sart-Tilman, 4000 Liege, Belgium, and INSERM U-524 and Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France
    Other Access OptionsSupporting Information (1)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2004, 47, 14, 3665–3673
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm0400193
    Published June 3, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline chromophore was initially designed as a DNA intercalating unit because of its planar structure. Unexpectedly, one molecule (15d) bearing two N-methylpiperazine chains on both sides of this condensed pentacyclic skeleton fits into the minor groove of DNA and preferentially recognizes AT-rich sequences. The monosubstituted compound 16d was identified as a potent cytotoxic DNA intercalator, whereas the disubstituted analogue 15d represents a new structural motif for the development of DNA sequence-reading small molecules.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    §

     Université de Lille 2.

     Present address:  Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083.

     INSERM U-524 and Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret.

    #

     University of Liege.

     Present address:  Département de Cancérologie Expérimentale, Centre de Recherche Pierre Fabre, Avenue Jean Moulin, 81106 Castres, France.

    *

     To whom correspondence should be addressed. Phone: +33-3-2096-4374. Fax:  +33-3-2096-4906. E-mail:  henicha@ pharma.univ-lille2.fr.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Elemental analyses for compounds 9i, 14ad,gk, 15d,j,k, and 16ad,g,h,j,k. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 38 publications.

    1. Tiebo Xiao, Linyong Li, Yang Xie, Zong-Wan Mao, and Lei Zhou . Synthesis of Gem-Difluorinated Fused Quinolines via Visible Light-Mediated Cascade Radical Cyclization. Organic Letters 2016, 18 (5) , 1004-1007. https://doi.org/10.1021/acs.orglett.6b00119
    2. Nikolai M. Evdokimov, Severine Van slambrouck, Petra Heffeter, Lee Tu, Benjamin Le Calvé, Delphine Lamoral-Theys, Carla J. Hooten, Pavel Y. Uglinskii, Snezna Rogelj, Robert Kiss, Wim F. A. Steelant, Walter Berger, Jeremy J. Yang, Cristian G. Bologa, Alexander Kornienko, and Igor V. Magedov . Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 3. Fused Uracil-Containing Heterocycles as Novel Topoisomerase-Targeting Agents. Journal of Medicinal Chemistry 2011, 54 (7) , 2012-2021. https://doi.org/10.1021/jm1009428
    3. Jyotirmayee Dash, Pravin S. Shirude, Shang-Te Danny Hsu and Shankar Balasubramanian. Diarylethynyl Amides That Recognize the Parallel Conformation of Genomic Promoter DNA G-Quadruplexes. Journal of the American Chemical Society 2008, 130 (47) , 15950-15956. https://doi.org/10.1021/ja8046552
    4. Andrey S. Plaskon, Sergey V. Ryabukhin, Dmitriy M. Volochnyuk, Konstantin S. Gavrilenko, Alexander N. Shivanyuk and Andrey A. Tolmachev . Synthesis of Quinolines from 3-Formylchromone. The Journal of Organic Chemistry 2008, 73 (15) , 6010-6013. https://doi.org/10.1021/jo800950y
    5. Eric Fillion,, Dan Fishlock,, Ashraf Wilsily, and, Julie M. Goll. Meldrum's Acids as Acylating Agents in the Catalytic Intramolecular Friedel−Crafts Reaction. The Journal of Organic Chemistry 2005, 70 (4) , 1316-1327. https://doi.org/10.1021/jo0483724
    6. Shivangi Sharma, Shivendra Singh, Dhananjay Yadav. Quinoline-based Anti-oncogenic Molecules: Synthesis and Biological Evaluation. Medicinal Chemistry 2023, 19 (9) , 848-858. https://doi.org/10.2174/1573406419666230411110025
    7. Shivangi Sharma, Kuldeep Singh, Shivendra Singh. Synthetic Strategies for Quinoline Based Derivatives as Potential Bioactive Heterocycles. Current Organic Synthesis 2023, 20 (6) , 606-629. https://doi.org/10.2174/1570179420666221004143910
    8. Vikas Sharma, Mohit Gupta, Pradeep Kumar, Atul Sharma. A Comprehensive Review on Fused Heterocyclic as DNA Intercalators: Promising Anticancer Agents. Current Pharmaceutical Design 2021, 27 (1) , 15-42. https://doi.org/10.2174/1381612826666201118113311
    9. Agnieszka Chylewska, Aleksandra M. Dąbrowska, Sandra Ramotowska, Natalia Maciejewska, Mateusz Olszewski, Maciej Bagiński, Mariusz Makowski. Photosensitive and pH-dependent activity of pyrazine-functionalized carbazole derivative as promising antifungal and imaging agent. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-68758-w
    10. Munusamy Saravanabhavan, Vishnu Nayak Badavath, Siddhartha Maji, Shabbir Muhammad, Marimuthu Sekar. Novel halogenated pyrido[2,3- a ]carbazoles with enhanced aromaticity as potent anticancer and antioxidant agents: rational design and microwave assisted synthesis. New Journal of Chemistry 2019, 43 (44) , 17231-17240. https://doi.org/10.1039/C8NJ06504G
    11. Shireen Mohammed. A Novel Synthetic Route of Fused Tricyclic Framework Quinoline Derivatives from Readily Available Aliphatic Amino Carboxylic Acid Substrates. Oriental Journal of Chemistry 2019, 35 (2) , 611-617. https://doi.org/10.13005/ojc/350215
    12. Milad Motaghi, Hormoz Khosravi, Saeed Balalaie, Frank Rominger. Catalytic formal [4 + 1] isocyanide-based cycloaddition: an efficient strategy for the synthesis of 1 H -cyclopenta[ b ]quinolin-1-one derivatives. Organic & Biomolecular Chemistry 2019, 17 (2) , 275-282. https://doi.org/10.1039/C8OB02857E
    13. Mustapha C. Mandewale, Udaysinha C. Patil, Supriya V. Shedge, Uttam R. Dappadwad, Ramesh S. Yamgar. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef University Journal of Basic and Applied Sciences 2017, 6 (4) , 354-361. https://doi.org/10.1016/j.bjbas.2017.07.005
    14. Fenglin Hong, Nannan Lu, Beili Lu, Jiajia Cheng. Synthesis of Fused Heterocycles via One‐pot Oxidative O‐Arylation, Pd‐Catalyzed C(sp 3 )‐H Arylation. Advanced Synthesis & Catalysis 2017, 359 (19) , 3299-3303. https://doi.org/10.1002/adsc.201700761
    15. Tohasib Yusub Chaudhari, Sandeep K. Ginotra, Vibha Tandon. Facile access to functionalized indenes and fused quinolines by regioselective 5- enolexo -dig Michael addition and cyclization reactions. Organic & Biomolecular Chemistry 2017, 15 (44) , 9319-9330. https://doi.org/10.1039/C7OB02498C
    16. Murat Bingul, Owen Tan, Christopher Gardner, Selina Sutton, Greg Arndt, Glenn Marshall, Belamy Cheung, Naresh Kumar, David Black. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety. Molecules 2016, 21 (7) , 916. https://doi.org/10.3390/molecules21070916
    17. Obaid Afzal, Suresh Kumar, Md Rafi Haider, Md Rahmat Ali, Rajiv Kumar, Manu Jaggi, Sandhya Bawa. A review on anticancer potential of bioactive heterocycle quinoline. European Journal of Medicinal Chemistry 2015, 97 , 871-910. https://doi.org/10.1016/j.ejmech.2014.07.044
    18. Ying Chen, Ke Ma, Ting Hu, Bo Jiang, Bin Xu, Wenjing Tian, Jing Zhi Sun, Wenke Zhang. Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy. Nanoscale 2015, 7 (19) , 8939-8945. https://doi.org/10.1039/C5NR01247C
    19. Tiantong Lou, E‐Ting Liao, E‐Ting Wilsily, Eric Fillion. Catalytic IntramolecularFriedel‐Crafts Reaction of Benzyl Meldrum's Acid Derivatives: Preparation of 5,6‐Dimethoxy‐2‐Methyl‐1‐Indanone. 2014, 115-125. https://doi.org/10.1002/0471264229.os089.13
    20. Jing Han, Li Li, Yangyong Shen, Jie Chen, Hongmei Deng, Min Shao, Xuesheng Lu, Hui Zhang, Weiguo Cao. Copper(I)‐Catalyzed Intermolecular Cyclization of Methyl Perfluoroalk‐2‐ynoates with o ‐Aminophenyl Ketones: Access to 2‐Perfluoroalkylated Quinolines. European Journal of Organic Chemistry 2013, 2013 (36) , 8323-8329. https://doi.org/10.1002/ejoc.201300916
    21. N.C. Desai, Amit Dodiya, Niraj Shihory. Synthesis and antimicrobial activity of novel quinazolinone–thiazolidine–quinoline compounds. Journal of Saudi Chemical Society 2013, 17 (3) , 259-267. https://doi.org/10.1016/j.jscs.2011.04.001
    22. Tao Jia, Jin Xiang, Jing Wang, Peng Guo, Junping Yu. Interactions of newly designed dicationic carbazole derivatives with double-stranded DNA: syntheses, binding studies and AFM imaging. Organic & Biomolecular Chemistry 2013, 11 (33) , 5512. https://doi.org/10.1039/c3ob40799c
    23. Yoichi Hoshimoto, Yukari Hayashi, Haruka Suzuki, Masato Ohashi, Sensuke Ogoshi. Synthesis of Five‐ and Six‐Membered Benzocyclic Ketones through Intramolecular Alkene Hydroacylation Catalyzed by Nickel(0)/N‐Heterocyclic Carbenes. Angewandte Chemie 2012, 124 (43) , 10970-10973. https://doi.org/10.1002/ange.201206186
    24. Yoichi Hoshimoto, Yukari Hayashi, Haruka Suzuki, Masato Ohashi, Sensuke Ogoshi. Synthesis of Five‐ and Six‐Membered Benzocyclic Ketones through Intramolecular Alkene Hydroacylation Catalyzed by Nickel(0)/N‐Heterocyclic Carbenes. Angewandte Chemie International Edition 2012, 51 (43) , 10812-10815. https://doi.org/10.1002/anie.201206186
    25. Despina Livadiotou, Anna Maria Fadel, Constantinos A. Tsoleridis, Julia Stephanidou-Stephanatou. One-pot efficient synthesis of novel fused pentacyclic indolopyridobenzimidazoles and pyridoimidazopyridoindoles from the reaction of pyranoindolones with 1,2-diaminobenzenes and 2,3-diaminopyridines. Tetrahedron 2012, 68 (22) , 4202-4209. https://doi.org/10.1016/j.tet.2012.03.101
    26. Viktor O. Iaroshenko, Satenik Mkrtchyan, Ashot Gevorgyan, Marcelo Vilches-Herrera, Dmitri V. Sevenard, Alexander Villinger, Tariel V. Ghochikyan, Ashot Saghiyan, Vyacheslav Ya. Sosnovskikh, Peter Langer. Synthesis of heteroannulated 3-nitro- and 3-aminopyridines by cyclocondensation of electron-rich aminoheterocycles with 3-nitrochromone. Tetrahedron 2012, 68 (11) , 2532-2543. https://doi.org/10.1016/j.tet.2011.06.101
    27. Navin B. Patel, Jaymin C. Patel, Sandip H. Modi. Synthesis and antimicrobial activity of carbonyl pyridoquinolones containing urea and piperazine residue. Journal of Saudi Chemical Society 2011, 15 (2) , 167-176. https://doi.org/10.1016/j.jscs.2010.07.004
    28. Morteza Shiri, Mohammad Ali Zolfigol, Hendrik G. Kruger, Zahra Tanbakouchian. Friedländer Annulation in the Synthesis of Azaheterocyclic Compounds. 2011, 139-227. https://doi.org/10.1016/B978-0-12-385464-3.00002-9
    29. M. S. Shahabuddin, Mridula Nambiar, Bibha Choudhary, Gopal M. Advirao, Sathees C. Raghavan. A novel DNA intercalator, butylamino-pyrimido[4′,5′:4,5]selenolo(2,3-b)quinoline, induces cell cycle arrest and apoptosis in leukemic cells. Investigational New Drugs 2010, 28 (1) , 35-48. https://doi.org/10.1007/s10637-008-9212-6
    30. Yvette A. Jackson, Andrew L. C. Morris. Synthesis of a 6H-Chromeno[3,4-b]quinoline and a 6a,12a-Dehydro-7-azarotenoid. HETEROCYCLES 2010, 81 (2) , 371. https://doi.org/10.3987/COM-09-11868
    31. Kamel Metwally, Omar Aly, Enayat Aly, Abhijit Banerjee, Rudravajhala Ravindra, Susan Bane. Synthesis and biological activity of 2,5-diaryl-3-methylpyrimido[4,5-c]quinolin-1(2H)-one derivatives. Bioorganic & Medicinal Chemistry 2007, 15 (6) , 2434-2440. https://doi.org/10.1016/j.bmc.2007.01.016
    32. Kamel Metwally, Harris Pratsinis, Dimitris Kletsas. Pyrimido[4,5-c]quinolin-1(2H)-ones as a novel class of antimitotic agents: Synthesis and in vitro cytotoxic activity. European Journal of Medicinal Chemistry 2007, 42 (3) , 344-350. https://doi.org/10.1016/j.ejmech.2006.10.008
    33. Madhuri Manpadi, Pavel Y. Uglinskii, Shiva K. Rastogi, Karen M. Cotter, Yin-Shan C. Wong, Lisa A. Anderson, Amber J. Ortega, Severine Van slambrouck, Wim F. A. Steelant, Snezna Rogelj, Paul Tongwa, Mikhail Yu. Antipin, Igor V. Magedov, Alexander Kornienko. Three-component synthesis and anticancer evaluation of polycyclic indenopyridines lead to the discovery of a novel indenoheterocycle with potent apoptosis inducing properties. Organic & Biomolecular Chemistry 2007, 5 (23) , 3865. https://doi.org/10.1039/b713820b
    34. Zhichao Zhang, Yuanyuan Yang, Danni Zhang, Yuanyuan Wang, Xuhong Qian, Fengyu Liu. Acenaphtho[1,2-b]pyrrole derivatives as new family of intercalators: Various DNA binding geometry and interesting antitumor capacity. Bioorganic & Medicinal Chemistry 2006, 14 (20) , 6962-6970. https://doi.org/10.1016/j.bmc.2006.06.029
    35. Sébastien Gluszok, Laurence Goossens, Patrick Depreux, Jean-Pierre Hénichart. Efficient synthesis of tetramethylsulfonylguanidines between a free sulfonamide group and HBTU. Tetrahedron Letters 2006, 47 (34) , 6087-6090. https://doi.org/10.1016/j.tetlet.2006.06.094
    36. Deevi Basavaiah, Raju Jannapu Reddy, Jamjanam Srivardhana Rao. Applications of Baylis–Hillman adducts: a simple, convenient, and one-pot synthesis of 3-benzoylquinolines. Tetrahedron Letters 2006, 47 (1) , 73-77. https://doi.org/10.1016/j.tetlet.2005.10.133
    37. Natacha Malecki, Pascal Carato, Raymond Houssin, Philippe Cotelle, Jean-Pierre Hénichart. Electrophilic Nitration of Electron-Rich Acetophenones. Monatshefte für Chemie - Chemical Monthly 2005, 136 (9) , 1601-1606. https://doi.org/10.1007/s00706-005-0346-3
    38. Renfang Song, Wenbing Zhang, Huayong Chen, Huimin Ma, Yulian Dong, Guoying Sheng, Zhen Zhou, Jiamo Fua. Comparison of a + T-Rich Oligonucleotides with and without Self-Complementary Sequence Using Ion-Pair Reversed-Phase High-Performance Liquid Chromatography/Tandem Electrospray Ionization Mass Spectrometry. European Journal of Mass Spectrometry 2005, 11 (1) , 83-91. https://doi.org/10.1255/ejms.717

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2004, 47, 14, 3665–3673
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm0400193
    Published June 3, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    565

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.