The First Potent Inhibitors for Human Glutaminyl Cyclase: Synthesis and Structure−Activity RelationshipClick to copy article linkArticle link copied!
Abstract

The first effective inhibitors for human glutaminyl cyclase (QC) are described. The structures are developed by applying a ligand-based optimization approach starting from imidazole. Screening of derivatives of that heterocycle led to compounds of the imidazol-1-yl-alkyl thiourea type as a lead scaffold. A library of thiourea derivatives was synthesized, resulting in an inhibitory improvement by 2 orders of magnitude, leading to 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea as a potent inhibitor. Systematic exploitation of the scaffold revealed a strong impact on the inhibitory efficacy and resulted in the development of imidazole−propyl−thioamides as another new class of potent inhibitors. A flexible alignment of the most potent compounds of the thioamide and thiourea class and a QC substrate revealed a good match of characteristic features of the molecules, which suggests a similar binding mode of both inhibitors and the substrate to the active site of QC.
†
Department of Medicinal Chemistry.
*
Corresponding author. Tel: +49 (0)345 5559908. Fax: +49 (0) 345 5559901. E-mail: [email protected].
‡
Department of Enzymology.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 85 publications.
- Lei Yu, Yaoliang Sun, Longyan Xie, Xiao Tan, Ping Wang, Shilin Xu. Targeting QPCTL: An Emerging Therapeutic Opportunity. Journal of Medicinal Chemistry 2025, 68
(2)
, 929-943. https://doi.org/10.1021/acs.jmedchem.4c02247
- Jun Mou, Xiang-Li Ning, Xin-Yue Wang, Shu-Yan Hou, Fan-Bo Meng, Cong Zhou, Jing-Wei Wu, Chunyan Li, Tao Jia, Xiaoai Wu, Yong Wu, Yongping Chen, Guo-Bo Li. X-ray Structure-Guided Discovery of a Potent Benzimidazole Glutaminyl Cyclase Inhibitor That Shows Activity in a Parkinson’s Disease Mouse Model. Journal of Medicinal Chemistry 2024, 67
(11)
, 8730-8756. https://doi.org/10.1021/acs.jmedchem.4c00049
- Chenshu Xu, Yi-nan Wang, Haiqiang Wu. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. Journal of Medicinal Chemistry 2021, 64
(10)
, 6549-6565. https://doi.org/10.1021/acs.jmedchem.1c00325
- Oliver Kupski, Lisa-Marie Funk, Viktor Sautner, Franziska Seifert, Brigitte Worbs, Daniel Ramsbeck, Franc Meyer, Ulf Diederichsen, Mirko Buchholz, Stephan Schilling, Hans-Ulrich Demuth, Kai Tittmann. Hydrazides Are Potent Transition-State Analogues for Glutaminyl Cyclase Implicated in the Pathogenesis of Alzheimer’s Disease. Biochemistry 2020, 59
(28)
, 2585-2591. https://doi.org/10.1021/acs.biochem.0c00337
- Masha
G. Savelieff, Geewoo Nam, Juhye Kang, Hyuck Jin Lee, Misun Lee, Mi Hee Lim. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chemical Reviews 2019, 119
(2)
, 1221-1322. https://doi.org/10.1021/acs.chemrev.8b00138
- Manman Li, Yao Dong, Xi Yu, Yue Li, Yongdong Zou, Yizhi Zheng, Zhendan He, Zhigang Liu, Junmin Quan, Xianzhang Bu, and Haiqiang Wu . Synthesis and Evaluation of Diphenyl Conjugated Imidazole Derivatives as Potential Glutaminyl Cyclase Inhibitors for Treatment of Alzheimer’s Disease. Journal of Medicinal Chemistry 2017, 60
(15)
, 6664-6677. https://doi.org/10.1021/acs.jmedchem.7b00648
- Van-Hai Hoang, Phuong-Thao Tran, Minghua Cui, Van T. H. Ngo, Jihyae Ann, Jongmi Park, Jiyoun Lee, Kwanghyun Choi, Hanyang Cho, Hee Kim, Hee-Jin Ha, Hyun-Seok Hong, Sun Choi, Young-Ho Kim, and Jeewoo Lee . Discovery of Potent Human Glutaminyl Cyclase Inhibitors as Anti-Alzheimer’s Agents Based on Rational Design. Journal of Medicinal Chemistry 2017, 60
(6)
, 2573-2590. https://doi.org/10.1021/acs.jmedchem.7b00098
- Andrew V. Mossine, Allen F. Brooks, Isaac M. Jackson, Carole A. Quesada, Phillip Sherman, Erin L. Cole, David J. Donnelly, Peter J. H. Scott, and Xia Shao . Synthesis of Diverse 11C-Labeled PET Radiotracers via Direct Incorporation of [11C]CO2. Bioconjugate Chemistry 2016, 27
(5)
, 1382-1389. https://doi.org/10.1021/acs.bioconjchem.6b00163
- Daniel Ramsbeck, Mirko Buchholz, Birgit Koch, Livia Böhme, Torsten Hoffmann, Hans-Ulrich Demuth, and Ulrich Heiser . Structure–Activity Relationships of Benzimidazole-Based Glutaminyl Cyclase Inhibitors Featuring a Heteroaryl Scaffold. Journal of Medicinal Chemistry 2013, 56
(17)
, 6613-6625. https://doi.org/10.1021/jm4001709
- Matthias R. Bauer, Tamer M. Ibrahim, Simon M. Vogel, and Frank M. Boeckler . Evaluation and Optimization of Virtual Screening Workflows with DEKOIS 2.0 – A Public Library of Challenging Docking Benchmark Sets. Journal of Chemical Information and Modeling 2013, 53
(6)
, 1447-1462. https://doi.org/10.1021/ci400115b
- Birgit Koch, Petr Kolenko, Mirko Buchholz, David Ruiz Carrillo, Christoph Parthier, Michael Wermann, Jens-Ulrich Rahfeld, Gunter Reuter, Stephan Schilling, Milton T. Stubbs, and Hans-Ulrich Demuth . Crystal Structures of Glutaminyl Cyclases (QCs) from Drosophila melanogaster Reveal Active Site Conservation between Insect and Mammalian QCs. Biochemistry 2012, 51
(37)
, 7383-7392. https://doi.org/10.1021/bi300687g
- David Ruiz-Carrillo, Birgit Koch, Christoph Parthier, Michael Wermann, Tresfore Dambe, Mirko Buchholz, Hans-Henning Ludwig, Ulrich Heiser, Jens-Ulrich Rahfeld, Milton T. Stubbs, Stephan Schilling, and Hans-Ulrich Demuth . Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center. Biochemistry 2011, 50
(28)
, 6280-6288. https://doi.org/10.1021/bi200249h
- Mirko Buchholz, Antje Hamann, Susanne Aust, Wolfgang Brandt, Livia Böhme, Torsten Hoffmann, Stephan Schilling, Hans-Ulrich Demuth and Ulrich Heiser . Inhibitors for Human Glutaminyl Cyclase by Structure Based Design and Bioisosteric Replacement. Journal of Medicinal Chemistry 2009, 52
(22)
, 7069-7080. https://doi.org/10.1021/jm900969p
- Stephan Schilling,, Christiane Lindner,, Birgit Koch,, Michael Wermann,, Jens-Ulrich Rahfeld,, Alex von Bohlen,, Thomas Rudolph,, Gunter Reuter, and, Hans-Ulrich Demuth. Isolation and Characterization of Glutaminyl Cyclases from Drosophila: Evidence for Enzyme Forms with Different Subcellular Localization. Biochemistry 2007, 46
(38)
, 10921-10930. https://doi.org/10.1021/bi701043x
- David A. Evans,, Thompson N. Doman,, David A. Thorner, and, Michael J. Bodkin. 3D QSAR Methods: Phase and Catalyst Compared. Journal of Chemical Information and Modeling 2007, 47
(3)
, 1248-1257. https://doi.org/10.1021/ci7000082
- Jingjing Li, Keli Zong, Chaochun Wei, Qidi Zhong, Hong Yan, Juan Wang, Xingzhou Li. Design, synthesis, and biological activity of human glutaminyl cyclase inhibitors against Alzheimer’s disease. Bioorganic & Medicinal Chemistry 2025, 120 , 118105. https://doi.org/10.1016/j.bmc.2025.118105
- Qingqing Zhou, Zhenxin Wu, Feixia Qin, Pan He, Zhuoran Wang, Fangyi Zhu, Ying Gao, Wei Xiong, Chenyang Li, Haiqiang Wu. Design, synthesis, and evaluation of 4-(4-methyl-4H-1,2,4-triazol-3-yl)piperidine derivatives as potential glutaminyl cyclase isoenzyme inhibitors for the treatment of cancer. European Journal of Medicinal Chemistry 2025, 281 , 117019. https://doi.org/10.1016/j.ejmech.2024.117019
- Fei Ge, Yu Sun, Cong-Cong Han, Zi-Liang Wei, Xin Guan, Si-Wan Guo, Shui Quan, Jia-Guo Zhou, Rui-Ping Pang. Plasma Glutaminyl-Peptide Cyclotransferase Mediates Glucosamine-Metabolism-Driven Protection Against Hypertension: A Mendelian Randomization Study. International Journal of Molecular Sciences 2024, 25
(22)
, 12106. https://doi.org/10.3390/ijms252212106
- Ashanul Haque, Khalaf M. Alenezi, Mohd. Saeed Maulana Abdul Rasheed. Identification of imidazole-based small molecules to combat cognitive disability caused by Alzheimer’s disease: A molecular docking and MD simulations based approach. Computational Biology and Chemistry 2024, 112 , 108152. https://doi.org/10.1016/j.compbiolchem.2024.108152
- Dingjun Wei, Jiaxin Cai, Feixia Qin, Qingqing Zhou, Wei Xiong, Chenshu Xu, Chenyang Li, Haiqiang Wu. Structure-activity relationship of dual inhibitors containing maleimide and imidazole motifs against glutaminyl cyclase and glycogen synthase kinase-3β. Bioorganic & Medicinal Chemistry Letters 2024, 110 , 129851. https://doi.org/10.1016/j.bmcl.2024.129851
- Qingqing Zhou, Jiaxin Cai, Feixia Qin, Jiao Liu, Chenyang Li, Wei Xiong, Yinan Wang, Chenshu Xu, Haiqiang Wu. Discovery of potential scaffolds for glutaminyl cyclase inhibitors: Virtual screening, synthesis, and evaluation. Bioorganic & Medicinal Chemistry 2024, 97 , 117542. https://doi.org/10.1016/j.bmc.2023.117542
- Judite R.M. Coimbra, Paula I. Moreira, Armanda E. Santos, Jorge A.R. Salvador. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discovery Today 2023, 28
(10)
, 103644. https://doi.org/10.1016/j.drudis.2023.103644
- Daoyuan Chen, Qingxiu Chen, Xiaofei Qin, Peipei Tong, Liping Peng, Tao Zhang, Chunli Xia. Development and evolution of human glutaminyl cyclase inhibitors (QCIs): an alternative promising approach for disease-modifying treatment of Alzheimer's disease. Frontiers in Aging Neuroscience 2023, 15 https://doi.org/10.3389/fnagi.2023.1209863
- Yuzhen Niu, Ping Lin. Advances of computer-aided drug design (CADD) in the development of anti-Azheimer’s-disease drugs. Drug Discovery Today 2023, 28
(8)
, 103665. https://doi.org/10.1016/j.drudis.2023.103665
- Yazhou Xie, Chen Chen, Shujing Lin, Xi Yu, Shuixian Ye, Xiaojie Chen, Na Ouyang, Wei Xiong, Chenyang Li, Chenshu Xu, Guoli Song, Haiqiang Wu. Design, synthesis and anti-AD effects of dual inhibitor targeting glutaminyl cyclase/GSK-3β. European Journal of Medicinal Chemistry 2023, 248 , 115089. https://doi.org/10.1016/j.ejmech.2023.115089
- Kiran Bagri, Ashwani Kumar, Parvin Kumar, Archana Kapoor, Vikas Verma. Computational Methods for the Design and Development of Glutaminyl Cyclase Inhibitors in Alzheimer’s Disease. 2023, 383-403. https://doi.org/10.1007/978-1-0716-3311-3_13
- Yu’e Liu, Yufeng Shi, Ping Wang. Functions of glutaminyl cyclase and its isoform in diseases. Visualized Cancer Medicine 2023, 4 , 1. https://doi.org/10.1051/vcm/2022008
- Keng-Chang Tsai, Yi-Xuan Zhang, Hsiang-Yun Kao, Kit-Man Fung, Tien-Sheng Tseng. Pharmacophore-driven identification of human glutaminyl cyclase inhibitors from foods, plants and herbs unveils the bioactive property and potential of Azaleatin in the treatment of Alzheimer's disease. Food & Function 2022, 13
(24)
, 12632-12647. https://doi.org/10.1039/D2FO02507H
- Nguyen Van Manh, Van-Hai Hoang, Van T.H. Ngo, Soosung Kang, Jin Ju Jeong, Hee-Jin Ha, Hee Kim, Young-Ho Kim, Jihyae Ann, Jeewoo Lee. Discovery of potent indazole-based human glutaminyl cyclase (QC) inhibitors as Anti-Alzheimer's disease agents. European Journal of Medicinal Chemistry 2022, 244 , 114837. https://doi.org/10.1016/j.ejmech.2022.114837
- Yidan Zhang, Yifan Wang, Zhan Zhao, Weixun Peng, Peng Wang, Ximing Xu, Chenyang Zhao. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. European Journal of Pharmacology 2022, 931 , 175178. https://doi.org/10.1016/j.ejphar.2022.175178
- Niccolò Chiaramonte, Alessio Gabellini, Andrea Angeli, Gianluca Bartolucci, Laura Braconi, Silvia Dei, Elisabetta Teodori, Claudiu T. Supuran, Maria Novella Romanelli. New Histamine-Related Five-Membered N-Heterocycle Derivatives as Carbonic Anhydrase I Activators. Molecules 2022, 27
(2)
, 545. https://doi.org/10.3390/molecules27020545
- Ashwani Kumar, Kiran Bagri, Manisha Nimbhal, Parvin Kumar. In silico
exploration of the fingerprints triggering modulation of glutaminyl cyclase inhibition for the treatment of Alzheimer’s disease using SMILES based attributes in Monte Carlo optimization. Journal of Biomolecular Structure and Dynamics 2021, 39
(18)
, 7181-7193. https://doi.org/10.1080/07391102.2020.1806111
- Nguyen Van Manh, Van-Hai Hoang, Van T.H. Ngo, Jihyae Ann, Tae-ho Jang, Jung-Hye Ha, Jae Young Song, Hee-Jin Ha, Hee Kim, Young-Ho Kim, Jiyoun Lee, Jeewoo Lee. Discovery of highly potent human glutaminyl cyclase (QC) inhibitors as anti-Alzheimer's agents by the combination of pharmacophore-based and structure-based design. European Journal of Medicinal Chemistry 2021, 226 , 113819. https://doi.org/10.1016/j.ejmech.2021.113819
- Daniel Ramsbeck, Nadine Taudte, Nadine Jänckel, Stefanie Strich, Jens-Ulrich Rahfeld, Mirko Buchholz. Tetrahydroimidazo[4,5-c]pyridine-Based Inhibitors of Porphyromonas gingivalis Glutaminyl Cyclase. Pharmaceuticals 2021, 14
(12)
, 1206. https://doi.org/10.3390/ph14121206
- Judite R.M. Coimbra, Jorge A.R. Salvador. A patent review of glutaminyl cyclase inhibitors (2004–present). Expert Opinion on Therapeutic Patents 2021, 31
(9)
, 809-836. https://doi.org/10.1080/13543776.2021.1917549
- Chenshu Xu, Haoman Zou, Xi Yu, Yazhou Xie, Jiaxin Cai, Qi Shang, Na Ouyang, Yinan Wang, Pan Xu, Zhendan He, Haiqiang Wu. Repurposing FDA‐Approved Compounds for the Discovery of Glutaminyl Cyclase Inhibitors as Drugs Against Alzheimer's Disease. ChemistryOpen 2021, 10
(9)
, 877-881. https://doi.org/10.1002/open.202000235
- Sebastiaan Lamers, Qiaoli Feng, Yili Cheng, Sihong Yu, Bo Sun, Maxwell Lukman, Jie Jiang, David Ruiz-Carrillo. Structural and kinetic characterization of
Porphyromonas gingivalis
glutaminyl cyclase. Biological Chemistry 2021, 402
(7)
, 759-768. https://doi.org/10.1515/hsz-2020-0298
- Kai-Fa Huang, Jing-Siou Huang, Mao-Lun Wu, Wan-Ling Hsieh, Kai-Cheng Hsu, Hui-Ling Hsu, Tzu-Ping Ko, Andrew H.-J. Wang. A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes. Journal of Molecular Biology 2021, 433
(13)
, 166960. https://doi.org/10.1016/j.jmb.2021.166960
- Adam P. Gunn, Bruce X. Wong, Catriona McLean, Chris Fowler, Peter J. Barnard, James A. Duce, Blaine R. Roberts, . Increased glutaminyl cyclase activity in brains of Alzheimer’s disease individuals. Journal of Neurochemistry 2021, 156
(6)
, 979-987. https://doi.org/10.1111/jnc.15114
- Haizhou Zhu, Venkateshwara Dronamraju, Wei Xie, Swati S. More. Sulfur-containing therapeutics in the treatment of Alzheimer’s disease. Medicinal Chemistry Research 2021, 30
(2)
, 305-352. https://doi.org/10.1007/s00044-020-02687-1
- K.V. Dileep, Naoki Sakai, Kentaro Ihara, Miyuki Kato-Murayama, Akiko Nakata, Akihiro Ito, D.M. Sivaraman, Jay W. Shin, Minoru Yoshida, Mikako Shirouzu, Kam Y.J. Zhang. Piperidine-4-carboxamide as a new scaffold for designing secretory glutaminyl cyclase inhibitors. International Journal of Biological Macromolecules 2021, 170 , 415-423. https://doi.org/10.1016/j.ijbiomac.2020.12.118
- Judite RM Coimbra, Pedro JM Sobral, Armanda E Santos, Paula I Moreira, Jorge AR Salvador. An Overview of Glutaminyl Cyclase Inhibitors for Alzheimer’s Disease. Future Medicinal Chemistry 2019, 11
(24)
, 3179-3194. https://doi.org/10.4155/fmc-2019-0163
- Shulun Chen, Wei Guo, Xiaohua Liu, Pu Sun, Yi Wang, Chunyong Ding, Linghua Meng, Ao Zhang. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. European Journal of Medicinal Chemistry 2019, 179 , 38-55. https://doi.org/10.1016/j.ejmech.2019.06.037
- Xiaojuan Wang, Li Wang, Xi Yu, Yue Li, Zhigang Liu, Yongdong Zou, Yizhi Zheng, Zhendan He, Haiqiang Wu. Glutaminyl cyclase inhibitor exhibits anti-inflammatory effects in both AD and LPS-induced inflammatory model mice. International Immunopharmacology 2019, 75 , 105770. https://doi.org/10.1016/j.intimp.2019.105770
- Ana Xu, Feng He, Chenggong Yu, Ying Qu, Qiuqiong Zhang, Jiahui Lv, Xiangna Zhang, Yingying Ran, Chao Wei, Jingde Wu. The Development of Small Molecule Inhibitors of Glutaminyl Cyclase and Isoglutaminyl Cyclase for Alzheimer's Disease. ChemistrySelect 2019, 4
(35)
, 10591-10600. https://doi.org/10.1002/slct.201902852
- Phuong-Thao Tran, Van-Hai Hoang, Jeewoo Lee, Tran Thi Thu Hien, Nguyen Thanh Tung, Son Tung Ngo. In vitro
and
in silico
determination of glutaminyl cyclase inhibitors. RSC Advances 2019, 9
(51)
, 29619-29627. https://doi.org/10.1039/C9RA05763C
- Dileep K. Vijayan, Kam Y.J. Zhang. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacological Research 2019, 147 , 104342. https://doi.org/10.1016/j.phrs.2019.104342
- Xi Yu, Yue Li, Yongdong Zou, Yizhi Zheng, Zhendan He, Zhigang Liu, Wenlin Xie, Haiqiang Wu. Glutaminyl cyclase inhibitor contributes to the regulation of HSP70, HSP90, actin, and ribosome on gene and protein levels in vitro. Journal of Cellular Biochemistry 2019, 120
(6)
, 9460-9471. https://doi.org/10.1002/jcb.28222
- Weicong Lin, Xiaojie Zheng, Danqing Fang, Shengfu Zhou, Wenjuan Wu, Kangcheng Zheng. Identifying hQC Inhibitors of Alzheimer’s Disease by Effective Customized Pharmacophore-Based Virtual Screening, Molecular Dynamic Simulation, and Binding Free Energy Analysis. Applied Biochemistry and Biotechnology 2019, 187
(4)
, 1173-1192. https://doi.org/10.1007/s12010-018-2780-9
- Philip Bender, Andreas Egger, Martin Westermann, Nadine Taudte, Anton Sculean, Jan Potempa, Burkhard Möller, Mirko Buchholz, Sigrun Eick. Expression of human and Porphyromonas gingivalis glutaminyl cyclases in periodontitis and rheumatoid arthritis–A pilot study. Archives of Oral Biology 2019, 97 , 223-230. https://doi.org/10.1016/j.archoralbio.2018.10.022
- Cecilia Pozzi, Flavio Di Pisa, Manuela Benvenuti, Stefano Mangani. The structure of the human glutaminyl cyclase–SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. JBIC Journal of Biological Inorganic Chemistry 2018, 23
(8)
, 1219-1226. https://doi.org/10.1007/s00775-018-1605-1
- Chinmay Bhat, Polina Ilina, Irene Tilli, Manuela Voráčová, Tanja Bruun, Victoria Barba, Nives Hribernik, Katja-Emilia Lillsunde, Eero Mäki-Lohiluoma, Tobias Rüffer, Heinrich Lang, Jari Yli-Kauhaluoma, Paula Kiuru, Päivi Tammela. Synthesis and Antiproliferative Activity of Marine Bromotyrosine Purpurealidin I and Its Derivatives. Marine Drugs 2018, 16
(12)
, 481. https://doi.org/10.3390/md16120481
- Julie Dunys, Audrey Valverde, Frédéric Checler. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?. Journal of Biological Chemistry 2018, 293
(40)
, 15419-15428. https://doi.org/10.1074/jbc.R118.003999
- Van T.H. Ngo, Van-Hai Hoang, Phuong-Thao Tran, Nguyen Van Manh, Jihyae Ann, Eunhye Kim, Minghua Cui, Sun Choi, Jiyoun Lee, Hee Kim, Hee-Jin Ha, Kwanghyun Choi, Young-Ho Kim, Jeewoo Lee. Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors. Bioorganic & Medicinal Chemistry 2018, 26
(12)
, 3133-3144. https://doi.org/10.1016/j.bmc.2018.04.040
- Yaqiong Kong, Feng Chen, Zhi Su, Yong Qian, Fang-xin Wang, Xiuxiu Wang, Jing Zhao, Zong-Wan Mao, Hong-Ke Liu. Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands. Journal of Inorganic Biochemistry 2018, 182 , 194-199. https://doi.org/10.1016/j.jinorgbio.2018.02.004
- Maike Hartlage-Rübsamen, Alexandra Bluhm, Anke Piechotta, Miriam Linnert, Jens-Ulrich Rahfeld, Hans-Ulrich Demuth, Inge Lues, Peer-Hendrik Kuhn, Stefan F. Lichtenthaler, Steffen Roßner, Corinna Höfling. Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation. Molecules 2018, 23
(4)
, 924. https://doi.org/10.3390/molecules23040924
- Van T.H. Ngo, Van-Hai Hoang, Phuong-Thao Tran, Jihyae Ann, Minghua Cui, Gyungseo Park, Sun Choi, Jiyoun Lee, Hee Kim, Hee-Jin Ha, Kwanghyun Choi, Young-Ho Kim, Jeewoo Lee. Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer’s agents: Structure-activity relationship study of Arg-mimetic region. Bioorganic & Medicinal Chemistry 2018, 26
(5)
, 1035-1049. https://doi.org/10.1016/j.bmc.2018.01.015
- Haiqiang Wu. Can Small Molecule Inhibitors of Glutaminyl Cyclase Be Used as a Therapeutic for Alzheimer'S Disease?. Future Medicinal Chemistry 2017, 9
(17)
, 1979-1981. https://doi.org/10.4155/fmc-2017-0190
- Torsten Hoffmann, Antje Meyer, Ulrich Heiser, Stephan Kurat, Livia Böhme, Martin Kleinschmidt, Karl-Ulrich Bühring, Birgit Hutter-Paier, Martina Farcher, Hans-Ulrich Demuth, Inge Lues, Stephan Schilling. Glutaminyl Cyclase Inhibitor PQ912 Improves Cognition in Mouse Models of Alzheimer’s Disease—Studies on Relation to Effective Target Occupancy. The Journal of Pharmacology and Experimental Therapeutics 2017, 362
(1)
, 119-130. https://doi.org/10.1124/jpet.117.240614
- Mária Szaszkó, István Hajdú, Beáta Flachner, Krisztina Dobi, Csaba Magyar, István Simon, Zsolt Lőrincz, Zoltán Kapui, Tamás Pázmány, Sándor Cseh, György Dormán. Identification of potential glutaminyl cyclase inhibitors from lead-like libraries by in silico and in vitro fragment-based screening. Molecular Diversity 2017, 21
(1)
, 175-186. https://doi.org/10.1007/s11030-016-9717-4
- G. Malik, R. A. Swyka, V. K. Tiwari, X. Fei, G. A. Applegate, D. B. Berkowitz. A thiocyanopalladation/carbocyclization transformation identified through enzymatic screening: stereocontrolled tandem C–SCN and C–C bond formation. Chemical Science 2017, 8
(12)
, 8050-8060. https://doi.org/10.1039/C7SC04083K
- Stephanie Hielscher-Michael, Carola Griehl, Mirko Buchholz, Hans-Ulrich Demuth, Norbert Arnold, Ludger Wessjohann. Natural Products from Microalgae with Potential against Alzheimer’s Disease: Sulfolipids Are Potent Glutaminyl Cyclase Inhibitors. Marine Drugs 2016, 14
(11)
, 203. https://doi.org/10.3390/md14110203
- Manman Li, Yao Dong, Xi Yu, Yongdong Zou, Yizhi Zheng, Xianzhang Bu, Junmin Quan, Zhendan He, Haiqiang Wu. Inhibitory effect of flavonoids on human glutaminyl cyclase. Bioorganic & Medicinal Chemistry 2016, 24
(10)
, 2280-2286. https://doi.org/10.1016/j.bmc.2016.03.064
- Allen F. Brooks, Isaac M. Jackson, Xia Shao, George W. Kropog, Phillip Sherman, Carole A. Quesada, Peter J. H. Scott. Synthesis and evaluation of [
11
C]PBD150, a radiolabeled glutaminyl cyclase inhibitor for the potential detection of Alzheimer's disease prior to amyloid β aggregation. MedChemComm 2015, 6
(6)
, 1065-1068. https://doi.org/10.1039/C5MD00148J
- Maria Jimenez-Sanchez, Wun Lam, Michael Hannus, Birte Sönnichsen, Sara Imarisio, Angeleen Fleming, Alessia Tarditi, Fiona Menzies, Teresa Ed Dami, Catherine Xu, Eduardo Gonzalez-Couto, Giulia Lazzeroni, Freddy Heitz, Daniela Diamanti, Luisa Massai, Venkata P Satagopam, Guido Marconi, Chiara Caramelli, Arianna Nencini, Matteo Andreini, Gian Luca Sardone, Nicola P Caradonna, Valentina Porcari, Carla Scali, Reinhard Schneider, Giuseppe Pollio, Cahir J O'Kane, Andrea Caricasole, David C Rubinsztein. siRNA screen identifies QPCT as a druggable target for Huntington's disease. Nature Chemical Biology 2015, 11
(5)
, 347-354. https://doi.org/10.1038/nchembio.1790
- Corinna Höfling, Henrike Indrischek, Theodor Höpcke, Alexander Waniek, Holger Cynis, Birgit Koch, Stephan Schilling, Markus Morawski, Hans‐Ulrich Demuth, Steffen Roßner, Maike Hartlage‐Rübsamen. Mouse strain and brain region‐specific expression of the glutaminyl cyclases QC and isoQC. International Journal of Developmental Neuroscience 2014, 36
(1)
, 64-73. https://doi.org/10.1016/j.ijdevneu.2014.05.008
- Kai-Fa Huang, Hui-Ling Hsu, Shahid Karim, Andrew H.-J. Wang. Structural and functional analyses of a glutaminyl cyclase from
Ixodes scapularis
reveal metal-independent catalysis and inhibitor binding. Acta Crystallographica Section D Biological Crystallography 2014, 70
(3)
, 789-801. https://doi.org/10.1107/S1399004713033488
- Cristiana Castaldo, Silvia Ciambellotti, Raquel de Pablo-Latorre, Daniela Lalli, Valentina Porcari, Paola Turano, . Soluble Variants of Human Recombinant Glutaminyl Cyclase. PLoS ONE 2013, 8
(8)
, e71657. https://doi.org/10.1371/journal.pone.0071657
- Phuong-Thao Tran, Van-Hai Hoang, Shivaji A. Thorat, Sung Eun Kim, Jihyae Ann, Yu Jin Chang, Dong Woo Nam, Hyundong Song, Inhee Mook-Jung, Jiyoun Lee, Jeewoo Lee. Structure–activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl)propyl thiourea template. Bioorganic & Medicinal Chemistry 2013, 21
(13)
, 3821-3830. https://doi.org/10.1016/j.bmc.2013.04.005
- Petr Kolenko, Birgit Koch, Jens-Ulrich Rahfeld, Stephan Schilling, Hans-Ulrich Demuth, Milton T. Stubbs. Structure of glutaminyl cyclase from
Drosophila melanogaster
in space group
I
4. Acta Crystallographica Section F Structural Biology and Crystallization Communications 2013, 69
(4)
, 358-361. https://doi.org/10.1107/S1744309113005575
- Sandeep Chhabra, Olan Dolezal, Meghan Hattarki, Thomas S. Peat, Jamie S. Simpson, James D. Swarbrick. Fragment Screening on Staphylococcus aureus HPPK – a Folate Pathway Target. Australian Journal of Chemistry 2013, 66
(12)
, 1537. https://doi.org/10.1071/CH13298
- Birgit Koch, Mirko Buchholz, Michael Wermann, Ulrich Heiser, Stephan Schilling, Hans‐Ulrich Demuth. Probing Secondary Glutaminyl Cyclase (QC) Inhibitor Interactions Applying an in silico‐Modeling/Site‐Directed Mutagenesis Approach: Implications for Drug Development. Chemical Biology & Drug Design 2012, 80
(6)
, 937-946. https://doi.org/10.1111/cbdd.12046
- Yi-Ling Chen, Kai-Fa Huang, Wen-Chih Kuo, Yan-Chung Lo, Yu-May Lee, Andrew H.-J. Wang. Inhibition of glutaminyl cyclase attenuates cell migration modulated by monocyte chemoattractant proteins. Biochemical Journal 2012, 442
(2)
, 403-412. https://doi.org/10.1042/BJ20110535
- Graham S. Baldwin. Post-translational Processing of Gastrointestinal Peptides. 2012, 43-63. https://doi.org/10.1016/B978-0-12-382026-6.00002-6
- Jie Zhou, Yun Dai, Shuye Wang, Enwei Zhu, Jiefeng Hai, Yun Liu, Jian Tang, Weihua Tang. Monosubstituted dually cationic cyclodextrins for stronger chiral recognition. RSC Advances 2012, 2
(12)
, 5088. https://doi.org/10.1039/c2ra20086d
- Holger Cynis, Torsten Hoffmann, Daniel Friedrich, Astrid Kehlen, Kathrin Gans, Martin Kleinschmidt, Jens‐Ulrich Rahfeld, Raik Wolf, Michael Wermann, Anett Stephan, Monique Haegele, Reinhard Sedlmeier, Sigrid Graubner, Wolfgang Jagla, Anke Müller, Rico Eichentopf, Ulrich Heiser, Franziska Seifert, Paul H. A. Quax, Margreet R. de Vries, Isabel Hesse, Daniela Trautwein, Ulrich Wollert, Sabine Berg, Ernst‐Joachim Freyse, Stephan Schilling, Hans‐Ulrich Demuth. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Molecular Medicine 2011, 3
(9)
, 545-558. https://doi.org/10.1002/emmm.201100158
- Kai-Fa Huang, Su-Sen Liaw, Wei-Lin Huang, Cho-Yun Chia, Yan-Chung Lo, Yi-Ling Chen, Andrew H.-J. Wang. Structures of Human Golgi-resident Glutaminyl Cyclase and Its Complexes with Inhibitors Reveal a Large Loop Movement upon Inhibitor Binding. Journal of Biological Chemistry 2011, 286
(14)
, 12439-12449. https://doi.org/10.1074/jbc.M110.208595
- Matteo Calvaresi, Marco Garavelli, Andrea Bottoni. Computational evidence for the catalytic mechanism of glutaminyl cyclase. A DFT investigation. Proteins: Structure, Function, and Bioinformatics 2008, 73
(3)
, 527-538. https://doi.org/10.1002/prot.22061
- Stephan Schilling, Ulrike Zeitschel, Torsten Hoffmann, Ulrich Heiser, Mike Francke, Astrid Kehlen, Max Holzer, Birgit Hutter-Paier, Manuela Prokesch, Manfred Windisch, Wolfgang Jagla, Dagmar Schlenzig, Christiane Lindner, Thomas Rudolph, Gunter Reuter, Holger Cynis, Dirk Montag, Hans-Ulrich Demuth, Steffen Rossner. Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer's disease–like pathology. Nature Medicine 2008, 14
(10)
, 1106-1111. https://doi.org/10.1038/nm.1872
- Stephan Schilling, Thomas Appl, Torsten Hoffmann, Holger Cynis, Katrin Schulz, Wolfgang Jagla, Daniel Friedrich, Michael Wermann, Mirko Buchholz, Ulrich Heiser, Stephan Von Hörsten, Hans‐Ulrich Demuth. Inhibition of glutaminyl cyclase prevents pGlu‐Aβ formation after intracortical/hippocampal microinjection
in vivo
/
in situ. Journal of Neurochemistry 2008, 106
(3)
, 1225-1236. https://doi.org/10.1111/j.1471-4159.2008.05471.x
- Holger Cynis, Jens-Ulrich Rahfeld, Anett Stephan, Astrid Kehlen, Birgit Koch, Michael Wermann, Hans-Ulrich Demuth, Stephan Schilling. Isolation of an Isoenzyme of Human Glutaminyl Cyclase: Retention in the Golgi Complex Suggests Involvement in the Protein Maturation Machinery. Journal of Molecular Biology 2008, 379
(5)
, 966-980. https://doi.org/10.1016/j.jmb.2008.03.078
- Matjaz Humar, Hannah Dohrmann, Philipp Stein, Nikolaos Andriopoulos, Ulrich Goebel, Martin Roesslein, Rene Schmidt, Christian I. Schwer, Torsten Loop, Klaus K. Geiger, Heike L. Pahl, Benedikt H.J. Pannen. Thionamides Inhibit the Transcription Factor Nuclear Factor-κB by Suppression of Rac1 and Inhibitor of κB Kinase α. The Journal of Pharmacology and Experimental Therapeutics 2008, 324
(3)
, 1037-1044. https://doi.org/10.1124/jpet.107.132407
- Johanna L. Hellström, Markus Vehniäinen, Merja Mustonen, Timo Lövgren, Urpo Lamminmäki, Jukka Hellman. Unfolding of the immunoglobulin light and heavy chains is required for the enzymatic removal of N-terminal pyroglutamyl residues. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2006, 1764
(11)
, 1735-1740. https://doi.org/10.1016/j.bbapap.2006.08.018
- Holger Cynis, Stephan Schilling, Mandy Bodnár, Torsten Hoffmann, Ulrich Heiser, Takaomi C. Saido, Hans-Ulrich Demuth. Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2006, 1764
(10)
, 1618-1625. https://doi.org/10.1016/j.bbapap.2006.08.003
- John Stuart Gillis. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy. Journal of Translational Medicine 2006, 4
(1)
https://doi.org/10.1186/1479-5876-4-27
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.