ACS Publications. Most Trusted. Most Cited. Most Read
Skin Permeation Rate as a Function of Chemical Structure
My Activity
    Article

    Skin Permeation Rate as a Function of Chemical Structure
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, Faculty of Pharmacy, University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu, Timisoara 1900, Romania, Department of Chemistry, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia, Faculté de Chimie, 4, rue B. Pascal, Strasbourg 67000, France, Institute of Physical Chemistry, Russian Academy of Sciences, Leninskii Prosp 31, 119991, Moscow, Russia, and Department of Chemistry, University of Tartu, 2 Jakobi Street, Tartu 51014, Estonia
    Other Access OptionsSupporting Information (1)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2006, 49, 11, 3305–3314
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm051031d
    Published April 29, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Multilinear and nonlinear QSAR models were built for the skin permeation rate (Log Kp) of a set of 143 diverse compounds. Satisfactory models were obtained by three approaches applied:  (i) CODESSA PRO, (ii) Neural Network modeling using large pools of theoretical molecular descriptors, and (iii) ISIDA modeling based on fragment descriptors. The predictive abilities of the models were assessed by internal and external validations. The descriptors involved in the equations are discussed from the physicochemical point of view to illuminate the factors that influence skin permeation.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author:  Phone:  (352) 392-0554, Fax:  (352) 392-9199, e-mail:[email protected].

     University of Florida.

     University of Tartu.

    §

     University of Medicine and Pharmacy Timisoara.

     Tallinn University of Technology.

     Faculté de Chimie.

     Russian Academy of Sciences.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Log P calculated by three software programs. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Beatrice Pecoraro, Marco Tutone, Ewelina Hoffman, Victoria Hutter, Anna Maria Almerico, Matthew Traynor. Predicting Skin Permeability by Means of Computational Approaches: Reliability and Caveats in Pharmaceutical Studies. Journal of Chemical Information and Modeling 2019, 59 (5) , 1759-1771. https://doi.org/10.1021/acs.jcim.8b00934
    2. Martin Lindh, Anders Karlén, and Ulf Norinder . Predicting the Rate of Skin Penetration Using an Aggregated Conformal Prediction Framework. Molecular Pharmaceutics 2017, 14 (5) , 1571-1576. https://doi.org/10.1021/acs.molpharmaceut.7b00007
    3. Rakesh Gupta, D. B. Sridhar, and Beena Rai . Molecular Dynamics Simulation Study of Permeation of Molecules through Skin Lipid Bilayer. The Journal of Physical Chemistry B 2016, 120 (34) , 8987-8996. https://doi.org/10.1021/acs.jpcb.6b05451
    4. Giorgio Ottaviani,, Sophie Martel, and, Pierre-Alain Carrupt. In Silico and In Vitro Filters for the Fast Estimation of Skin Permeation and Distribution of New Chemical Entities. Journal of Medicinal Chemistry 2007, 50 (4) , 742-748. https://doi.org/10.1021/jm0611105
    5. Karunya Jenin Ravindranath, Hemalatha Srinivasan. Regulating the expression of matrix metalloproteinases to inhibit ovarian carcinoma using isoquinoline alkaloid from Allium ascalonicum. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-025-94111-0
    6. Yee Shan Sim, Li Ching Wong, Soo Chin Yeoh, Abdulsalam Almashhadani, Bilal Harieth Alrimawi, Choon Fu Goh. Skin penetration enhancers: Mechanistic understanding and their selection for formulation and design. Drug Delivery and Translational Research 2025, 224 https://doi.org/10.1007/s13346-025-01809-9
    7. Małgorzata Janicka, Małgorzata Sztanke, Krzysztof Sztanke. Biomimetic Chromatography/QSAR Investigations in Modeling Properties Influencing the Biological Efficacy of Phenoxyacetic Acid-Derived Congeners. Molecules 2025, 30 (3) , 688. https://doi.org/10.3390/molecules30030688
    8. Laura J. Waters, David J. Cooke, Xin Ling Quah. Fragment contribution models for predicting skin permeability using HuskinDB. Scientific Data 2023, 10 (1) https://doi.org/10.1038/s41597-023-02711-0
    9. Audrey Damiens, Mohammad Taghi Alebrahim, Estelle Léonard, Antoine Fayeulle, Christophe Furman, Jean‐Louis Hilbert, Ali Siah, Muriel Billamboz. Sesamol‐based terpenoids as promising bio‐sourced crop protection compounds against the wheat pathogen Zymoseptoria tritici. Pest Management Science 2021, 77 (5) , 2403-2414. https://doi.org/10.1002/ps.6269
    10. Paulo C.S. Costa, Mario R.O. Barsottini, Maria L.L. Vieira, Bárbara A. Pires, Joel S. Evangelista, Ana C.M. Zeri, Andrey F.Z. Nascimento, Jaqueline S. Silva, Marcelo F. Carazzolle, Gonçalo A.G. Pereira, Maurício L. Sforça, Paulo C.M.L. Miranda, Silvana A. Rocco. N-Phenylbenzamide derivatives as alternative oxidase inhibitors: Synthesis, molecular properties, 1H-STD NMR, and QSAR. Journal of Molecular Structure 2020, 1208 , 127903. https://doi.org/10.1016/j.molstruc.2020.127903
    11. Larisa Ivanova, Mati Karelson, Dimitar A. Dobchev. Identification of Natural Compounds against Neurodegenerative Diseases Using In Silico Techniques. Molecules 2018, 23 (8) , 1847. https://doi.org/10.3390/molecules23081847
    12. Chen-Peng Chen, Chan-Cheng Chen, Chia-Wen Huang, Yen-Ching Chang. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability. Molecules 2018, 23 (4) , 911. https://doi.org/10.3390/molecules23040911
    13. Jakub Kostal. Quantum Mechanics Approaches in Computational Toxicology. 2018, 31-68. https://doi.org/10.1002/9781119282594.ch2
    14. Alessandro Guido Cavalieri Manasse, Antonio De Bitonto. Skin and Air Pollution: State of the Art and New Frontiers. 2018, 353-359. https://doi.org/10.1007/978-3-319-62731-1_20
    15. Silvia Senese, Yu-Chen Lo, Ankur A. Gholkar, Chien-Ming Li, Yong Huang, Jack Mottahedeh, Harley I. Kornblum, Robert Damoiseaux, Jorge Z. Torres. Microtubins: a novel class of small synthetic microtubule targeting drugs that inhibit cancer cell proliferation. Oncotarget 2017, 8 (61) , 104007-104021. https://doi.org/10.18632/oncotarget.21945
    16. Neha Goyal, Purva Thatai, Bharti Sapra. Surging footprints of mathematical modeling for prediction of transdermal permeability. Asian Journal of Pharmaceutical Sciences 2017, 12 (4) , 299-325. https://doi.org/10.1016/j.ajps.2017.01.005
    17. Ivanka Tsakovska, Ilza Pajeva, Merilin Al Sharif, Petko Alov, Elena Fioravanzo, Simona Kovarich, Andrew P. Worth, Andrea-Nicole Richarz, Chihae Yang, Aleksandra Mostrag-Szlichtyng, Mark T.D. Cronin. Quantitative structure-skin permeability relationships. Toxicology 2017, 387 , 27-42. https://doi.org/10.1016/j.tox.2017.06.008
    18. Hiromi Baba, Jun-ichi Takahara, Fumiyoshi Yamashita. In Silico Approach. 2017, 363-376. https://doi.org/10.1007/978-4-431-56526-0_32
    19. Maryam Hamzeh-Mivehroud, Babak Sokouti, Siavoush Dastmalchi. An Introduction to the Basic Concepts in QSAR-Aided Drug Design. 2017, 20-66. https://doi.org/10.4018/978-1-5225-0549-5.ch002
    20. Dimitar Dobchev, Mati Karelson. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?. Expert Opinion on Drug Discovery 2016, 11 (7) , 627-639. https://doi.org/10.1080/17460441.2016.1186876
    21. J. Kostal. Computational Chemistry in Predictive Toxicology. 2016, 139-186. https://doi.org/10.1016/B978-0-12-804700-2.00004-0
    22. Nan An, John-Hanson Machado, Yuechuan Tang, Jakub Kostal, Adelina Voutchkova-Kostal. Predicting skin permeation rate from nuclear magnetic resonance spectra. Green Chemistry 2016, 18 (16) , 4468-4474. https://doi.org/10.1039/C6GC00945J
    23. Hiromi Baba, Jun-ichi Takahara, Fumiyoshi Yamashita, Mitsuru Hashida. Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest. Pharmaceutical Research 2015, 32 (11) , 3604-3617. https://doi.org/10.1007/s11095-015-1720-4
    24. Ryoko Sawamura, Hidetaka Sakurai, Naoya Wada, Yumi Nishiya, Tomoyo Honda, Miho Kazui, Atsushi Kurihara, Akira Shinagawa, Takashi Izumi. Bioactivation of loxoprofen to a pharmacologically active metabolite and its disposition kinetics in human skin. Biopharmaceutics & Drug Disposition 2015, 36 (6) , 352-363. https://doi.org/10.1002/bdd.1945
    25. Hiromi Baba, Jun-ichi Takahara, Hiroshi Mamitsuka. In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models. Pharmaceutical Research 2015, 32 (7) , 2360-2371. https://doi.org/10.1007/s11095-015-1629-y
    26. Josef Jampílek. Azone® and Its Analogues as Penetration Enhancers. 2015, 69-105. https://doi.org/10.1007/978-3-662-47039-8_6
    27. Maryam Hamzeh-Mivehroud, Babak Sokouti, Siavoush Dastmalchi. An Introduction to the Basic Concepts in QSAR-Aided Drug Design. 2015, 1-47. https://doi.org/10.4018/978-1-4666-8136-1.ch001
    28. Daniela Morais Leme, Gisele Augusto Rodrigues de Oliveira, Gabriela Meireles, Tuane Cristina dos Santos, Maria Valnice Boldrin Zanoni, Danielle Palma de Oliveira. Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicology in Vitro 2014, 28 (1) , 31-38. https://doi.org/10.1016/j.tiv.2013.06.005
    29. A. Khajeh, H. Modarress. Linear and nonlinear quantitative structure-property relationship modelling of skin permeability. SAR and QSAR in Environmental Research 2014, 25 (1) , 35-50. https://doi.org/10.1080/1062936X.2013.826275
    30. V. P. Solov’ev, N. Kireeva, A. Yu. Tsivadze, A. Varnek. QSPR ensemble modelling of alkaline-earth metal complexation. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2013, 76 (1-2) , 159-171. https://doi.org/10.1007/s10847-012-0185-x
    31. Ronald Bartzatt, Suat L. G. Cirillo, Jeffrey D. Cirillo. Antibacterial Derivatives of Ciprofloxacin to Inhibit Growth of Necrotizing Fasciitis Associated Penicillin Resistant Escherichia coli. Journal of Pharmaceutics 2013, 2013 , 1-7. https://doi.org/10.1155/2013/517638
    32. Josef Jampilek, Katerina Brychtova. Azone analogues: classification, design, and transdermal penetration principles. Medicinal Research Reviews 2012, 32 (5) , 907-947. https://doi.org/10.1002/med.20227
    33. Workalemahu M. Berhanu, Girinath G. Pillai, Alexander A. Oliferenko, Alan R. Katritzky. Quantitative Structure–Activity/Property Relationships: The Ubiquitous Links between Cause and Effect. ChemPlusChem 2012, 77 (7) , 507-517. https://doi.org/10.1002/cplu.201200038
    34. Gary P. Moss, Simon C. Wilkinson, Yi Sun. Mathematical modelling of percutaneous absorption. Current Opinion in Colloid & Interface Science 2012, 17 (3) , 166-172. https://doi.org/10.1016/j.cocis.2012.01.002
    35. Samir Mitragotri, Yuri G. Anissimov, Annette L. Bunge, H. Frederick Frasch, Richard H. Guy, Jonathan Hadgraft, Gerald B. Kasting, Majella E. Lane, Michael S. Roberts. Mathematical models of skin permeability: An overview. International Journal of Pharmaceutics 2011, 418 (1) , 115-129. https://doi.org/10.1016/j.ijpharm.2011.02.023
    36. Richard P. Moody, Julie Joncas, Mark Richardson, Sanya Petrovic, Ih Chu. Contaminated Soils (III): In Vitro Dermal Absorption of Ethylene Glycol and Nonylphenol in Human Skin. Journal of Toxicology and Environmental Health, Part A 2010, 73 (15) , 1021-1031. https://doi.org/10.1080/15287394.2010.481617
    37. Lun Tak Lam, Yi Sun, Neil Davey, Rod Adams, Maria Prapopoulou, Marc B Brown, Gary P Moss. The application of feature selection to the development of Gaussian process models for percutaneous absorption. Journal of Pharmacy and Pharmacology 2010, 62 (6) , 738-749. https://doi.org/10.1211/jpp.62.06.0010
    38. Alexandre Varnek. Fragment Descriptors in Structure–Property Modeling and Virtual Screening. 2010, 213-243. https://doi.org/10.1007/978-1-60761-839-3_9
    39. Hans Christian Korting, Monika Schäfer-Korting. Carriers in the Topical Treatment of Skin Disease. 2010, 435-468. https://doi.org/10.1007/978-3-642-00477-3_15
    40. Igor Baskin, . Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening. 2008, 1-43. https://doi.org/10.1039/9781847558879-00001
    41. Alan R. Katritzky, Dimitar A. Dobchev, Iva B. Stoyanova-Slavova, Minati Kuanar, Maxim M. Bespalov, Mati Karelson, Mart Saarma. Novel computational models for predicting dopamine interactions. Experimental Neurology 2008, 211 (1) , 150-171. https://doi.org/10.1016/j.expneurol.2008.01.018
    42. Bharti Sapra, Subheet Jain, A. K. Tiwary. Percutaneous Permeation Enhancement by Terpenes: Mechanistic View. The AAPS Journal 2008, 10 (1) https://doi.org/10.1208/s12248-008-9012-0
    43. Patrick Bazzini, Camille G. Wermuth. Substituent Groups. 2008, 429-463. https://doi.org/10.1016/B978-0-12-374194-3.00020-2
    44. Patrick Bazzini, Camille G. Wermuth. Substituent Groups. 2008, 319-357. https://doi.org/10.1016/B978-0-12-417205-0.00013-4
    45. Alan R. Katritzky, Iva B. Stoyanova-Slavova, Dimitar A. Dobchev, Mati Karelson. QSPR modeling of flash points: An update. Journal of Molecular Graphics and Modelling 2007, 26 (2) , 529-536. https://doi.org/10.1016/j.jmgm.2007.03.006
    46. L. Kang, C.W. Yap, P.F.C. Lim, Y.Z. Chen, P.C. Ho, Y.W. Chan, G.P. Wong, S.Y. Chan. Formulation development of transdermal dosage forms: Quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin. Journal of Controlled Release 2007, 120 (3) , 211-219. https://doi.org/10.1016/j.jconrel.2007.05.006

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2006, 49, 11, 3305–3314
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm051031d
    Published April 29, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1285

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.