ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Computational Prediction of Oral Drug Absorption Based on Absorption Rate Constants in Humans

View Author Information
Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland, Drug Discovery and Development Technology Center, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland, and Orion Pharma, Drug Discovery and Development, Physical Chemistry & Pharmacokinetic Simulations, P.O. Box 65, FIN-02101 Espoo, Finland
Cite this: J. Med. Chem. 2006, 49, 12, 3674–3681
Publication Date (Web):May 13, 2006
https://doi.org/10.1021/jm051231p
Copyright © 2006 American Chemical Society

    Article Views

    2080

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Models for predicting oral drug absorption kinetics were developed by correlating absorption rate constants in humans (Ka) with computational molecular descriptors. The Ka values of a set of 22 passively absorbed drugs were derived from human plasma time−concentration profiles using a deconvolution approach. The Ka values correlated well with experimental values of fraction of dose absorbed in humans (FA), better than the values of human jejunal permeability (Peff) which have previously been used to assess the in vivo absorption kinetics of drugs. The relationships between the Ka values of the 22 structurally diverse drugs and computational molecular descriptors were established with PLS analysis. The analysis showed that the most important parameters describing log Ka were polar surface area (PSA), number of hydrogen bond donors (HBD), and log D at a physiologically relevant pH. Combining log D at pH 6.0 with PSA or HBD resulted in models with Q2 and R2 values ranging from 0.74 to 0.76. An external data set of 169 compounds demonstrated that the models were able to predict Ka values that correlated well with experimental FA values. Thus, it was shown that, using a combination of only two computational molecular descriptors, it is possible to predict with good accuracy the Ka value for a new drug candidate.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     University of Kuopio.

     Current address:  Orion Pharma, Clinical Pharmacokinetics, P.O. Box 1780, FIN-70701 Kuopio, Finland.

    *

     To whom correspondence should be addressed. Telephone:  +358 9 191 59636. Fax:  +358 9 191 59138. E-mail:  [email protected].

    §

     Current address:  Drug Discovery and Development Technology Center, University of Helsinki.

     Orion Pharma, Espoo.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Table of molecular descriptors and FA values for the compounds in data set 2. This material is available free of charge via the Internet at:  http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 63 publications.

    1. Edward Price, J. Cory Kalvass, David DeGoey, Balakrishna Hosmane, Stella Doktor, Kelly Desino. Global Analysis of Models for Predicting Human Absorption: QSAR, In Vitro, and Preclinical Models. Journal of Medicinal Chemistry 2021, 64 (13) , 9389-9403. https://doi.org/10.1021/acs.jmedchem.1c00669
    2. Matthew R. Naylor, Andrew M. Ly, Mason J. Handford, Daniel P. Ramos, Cameron R. Pye, Akihiro Furukawa, Victoria G. Klein, Ryan P. Noland, Quinn Edmondson, Alexandra C. Turmon, William M. Hewitt, Joshua Schwochert, Chad E. Townsend, Colin N. Kelly, Maria-Jesus Blanco, R. Scott Lokey. Lipophilic Permeability Efficiency Reconciles the Opposing Roles of Lipophilicity in Membrane Permeability and Aqueous Solubility. Journal of Medicinal Chemistry 2018, 61 (24) , 11169-11182. https://doi.org/10.1021/acs.jmedchem.8b01259
    3. Matthew M. Weiss, Thomas A. Dineen, Isaac E. Marx, Steven Altmann, Alessandro Boezio, Howard Bregman, Margaret Chu-Moyer, Erin F. DiMauro, Elma Feric Bojic, Robert S. Foti, Hua Gao, Russell Graceffa, Hakan Gunaydin, Angel Guzman-Perez, Hongbing Huang, Liyue Huang, Michael Jarosh, Thomas Kornecook, Charles R. Kreiman, Joseph Ligutti, Daniel S. La, Min-Hwa Jasmine Lin, Dong Liu, Bryan D. Moyer, Hanh N. Nguyen, Emily A. Peterson, Paul E. Rose, Kristin Taborn, Beth D. Youngblood, Violeta Yu, and Robert T. Fremeau, Jr. . Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities. Journal of Medicinal Chemistry 2017, 60 (14) , 5969-5989. https://doi.org/10.1021/acs.jmedchem.6b01851
    4. Michael D. Aleo, Falgun Shah, Kan He, Paul D. Bonin, and A. David Rodrigues . Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals. Chemical Research in Toxicology 2017, 30 (5) , 1219-1229. https://doi.org/10.1021/acs.chemrestox.7b00048
    5. Sophia Y. K. Fong, Mary Liu, Hai Wei, Raimar Löbenberg, Isadore Kanfer, Vincent H. L. Lee, Gordon L. Amidon, and Zhong Zuo . Establishing the Pharmaceutical Quality of Chinese Herbal Medicine: A Provisional BCS Classification. Molecular Pharmaceutics 2013, 10 (5) , 1623-1643. https://doi.org/10.1021/mp300502m
    6. Sara Carlert, Pernilla Åkesson, Gunilla Jerndal, Lennart Lindfors, Hans Lennernäs, and Bertil Abrahamsson . In Vivo Dog Intestinal Precipitation of Mebendazole: A Basic BCS Class II Drug. Molecular Pharmaceutics 2012, 9 (10) , 2903-2911. https://doi.org/10.1021/mp300224h
    7. Margaret R. McLellan, M. Dominic Ryan, and Curt M. Breneman . Rank Order Entropy: Why One Metric Is Not Enough. Journal of Chemical Information and Modeling 2011, 51 (9) , 2302-2319. https://doi.org/10.1021/ci200170k
    8. Claudia Suenderhauf, Felix Hammann, Andreas Maunz, Christoph Helma, and Jörg Huwyler . Combinatorial QSAR Modeling of Human Intestinal Absorption. Molecular Pharmaceutics 2011, 8 (1) , 213-224. https://doi.org/10.1021/mp100279d
    9. Manthena V. S. Varma, R. Scott Obach, Charles Rotter, Howard R. Miller, George Chang, Stefanus J. Steyn, Ayman El-Kattan and Matthew D. Troutman. Physicochemical Space for Optimum Oral Bioavailability: Contribution of Human Intestinal Absorption and First-Pass Elimination. Journal of Medicinal Chemistry 2010, 53 (3) , 1098-1108. https://doi.org/10.1021/jm901371v
    10. Liping Wang, Xiaoyan Li, Mengdi Ying, Ming Hu, Zhongqiu Liu. Amino Acid Transporters. 2023, 361-392. https://doi.org/10.1002/9781119660699.ch19
    11. Heidi F. Hubbard, Caroline L. Ring, Tao Hong, Cara C. Henning, Daniel A. Vallero, Peter P. Egeghy, Michael-Rock Goldsmith. Exposure Prioritization (Ex Priori): A Screening-Level High-Throughput Chemical Prioritization Tool. Toxics 2022, 10 (10) , 569. https://doi.org/10.3390/toxics10100569
    12. Natalia Czub, Adam Pacławski, Jakub Szlęk, Aleksander Mendyk. Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT1A Receptor Case. Pharmaceutics 2022, 14 (7) , 1415. https://doi.org/10.3390/pharmaceutics14071415
    13. Emily J. Cox, Dan-Dan Tian, John D. Clarke, Allan E. Rettie, Jashvant D. Unadkat, Kenneth E. Thummel, Jeannine S. McCune, Mary F. Paine, . Modeling Pharmacokinetic Natural Product–Drug Interactions for Decision-Making: A NaPDI Center Recommended Approach. Pharmacological Reviews 2021, 73 (2) , 847-859. https://doi.org/10.1124/pharmrev.120.000106
    14. Li Di, Per Artursson, Alex Avdeef, Leslie Z. Benet, J. Brian Houston, Manfred Kansy, Edward H. Kerns, Hans Lennernäs, Dennis A. Smith, Kiyohiko Sugano. The Critical Role of Passive Permeability in Designing Successful Drugs. ChemMedChem 2020, 15 (20) , 1862-1874. https://doi.org/10.1002/cmdc.202000419
    15. Adam J. Lucas, Joanne L. Sproston, Patrick Barton, Robert J. Riley. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opinion on Drug Discovery 2019, 14 (12) , 1313-1327. https://doi.org/10.1080/17460441.2019.1660642
    16. Jeremy A. Leonard, Yu-Mei Tan. Tiered approaches for screening and prioritizing chemicals through integration of pharmacokinetics and exposure information with in vitro dose-response data. Computational Toxicology 2019, 12 , 100101. https://doi.org/10.1016/j.comtox.2019.100101
    17. Dina S. Shokry, Laura J. Waters, Gareth M. B. Parkes, John C. Mitchell. Incorporating physiologically relevant mobile phases in micellar liquid chromatography for the prediction of human intestinal absorption. Biomedical Chromatography 2018, 32 (12) https://doi.org/10.1002/bmc.4351
    18. Isabel Lozoya-Agullo, Isabel González-Álvarez, Matilde Merino-Sanjuán, Marival Bermejo, Marta González-Álvarez. Preclinical models for colonic absorption, application to controlled release formulation development. European Journal of Pharmaceutics and Biopharmaceutics 2018, 130 , 247-259. https://doi.org/10.1016/j.ejpb.2018.07.008
    19. Eva Ramsay, Eva M. del Amo, Elisa Toropainen, Unni Tengvall-Unadike, Veli-Pekka Ranta, Arto Urtti, Marika Ruponen. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye. European Journal of Pharmaceutical Sciences 2018, 119 , 83-89. https://doi.org/10.1016/j.ejps.2018.03.034
    20. Eva Ramsay, Marika Ruponen, Théo Picardat, Unni Tengvall, Marjo Tuomainen, Seppo Auriola, Elisa Toropainen, Arto Urtti, Eva M. del Amo. Impact of Chemical Structure on Conjunctival Drug Permeability: Adopting Porcine Conjunctiva and Cassette Dosing for Construction of In Silico Model. Journal of Pharmaceutical Sciences 2017, 106 (9) , 2463-2471. https://doi.org/10.1016/j.xphs.2017.04.061
    21. Elena Lomonosova, Jil Daw, Aswin K. Garimallaprabhakaran, Nana B. Agyemang, Yashkumar Ashani, Ryan P. Murelli, John E. Tavis. Efficacy and cytotoxicity in cell culture of novel α-hydroxytropolone inhibitors of hepatitis B virus ribonuclease H. Antiviral Research 2017, 144 , 164-172. https://doi.org/10.1016/j.antiviral.2017.06.014
    22. Laura J. Waters, Dina S. Shokry, Gareth M.B. Parkes, John C. Mitchell. The Use of Bile Salt Micelles for the Prediction of Human Intestinal Absorption. Journal of Pharmaceutical Sciences 2016, 105 (12) , 3611-3614. https://doi.org/10.1016/j.xphs.2016.09.007
    23. Sulav Duwal, Max von Kleist. Top-down and bottom-up modeling in system pharmacology to understand clinical efficacy: An example with NRTIs of HIV-1. European Journal of Pharmaceutical Sciences 2016, 94 , 72-83. https://doi.org/10.1016/j.ejps.2016.01.016
    24. Jia He, Michael H. Abraham, William E. Acree, Yuan H. Zhao. A linear free energy analysis of PAMPA models for biological systems. International Journal of Pharmaceutics 2015, 496 (2) , 717-722. https://doi.org/10.1016/j.ijpharm.2015.10.064
    25. David Dahlgren, Carl Roos, Erik Sjögren, Hans Lennernäs. Direct In Vivo Human Intestinal Permeability (Peff) Determined with Different Clinical Perfusion and Intubation Methods. Journal of Pharmaceutical Sciences 2015, 104 (9) , 2702-2726. https://doi.org/10.1002/jps.24258
    26. Eva M. del Amo, Arto Urtti. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data. Experimental Eye Research 2015, 137 , 111-124. https://doi.org/10.1016/j.exer.2015.05.003
    27. Robert W. Foster, Laure Benhamou, Michael J. Porter, Dejan‐Krešimir Bučar, Helen C. Hailes, Christopher J. Tame, Tom D. Sheppard. Irreversible endo ‐Selective Diels–Alder Reactions of Substituted Alkoxyfurans: A General Synthesis of endo ‐Cantharimides. Chemistry – A European Journal 2015, 21 (16) , 6107-6114. https://doi.org/10.1002/chem.201406286
    28. Praew Thansandote, Robert M. Harris, Hannah L. Dexter, Graham L. Simpson, Sandeep Pal, Richard J. Upton, Klara Valko. Improving the passive permeability of macrocyclic peptides: Balancing permeability with other physicochemical properties. Bioorganic & Medicinal Chemistry 2015, 23 (2) , 322-327. https://doi.org/10.1016/j.bmc.2014.11.034
    29. H. Kortejärvi, J. Malkki, R. Shawahna, J.-M. Scherrmann, A. Urtti, M. Yliperttula. Pharmacokinetic simulations to explore dissolution criteria of BCS I and III biowaivers with and without MDR-1 efflux transporter. European Journal of Pharmaceutical Sciences 2014, 61 , 18-26. https://doi.org/10.1016/j.ejps.2014.02.004
    30. James J. Bao, Xiaojing Liu, Yong Zhang, Youxin Li. The development of a high-throughput measurement method of octanol/water distribution coefficient based on hollow fiber membrane solvent microextraction technique. Journal of Chromatography B 2014, 967 , 183-189. https://doi.org/10.1016/j.jchromb.2014.07.020
    31. Michael H. Abraham. Human Intestinal Absorption—Neutral Molecules and Ionic Species. Journal of Pharmaceutical Sciences 2014, 103 (7) , 1956-1966. https://doi.org/10.1002/jps.24024
    32. Martin Puskarjov, Kristopher T. Kahle, Eva Ruusuvuori, Kai Kaila. Pharmacotherapeutic targeting of cation‐chloride cotransporters in neonatal seizures. Epilepsia 2014, 55 (6) , 806-818. https://doi.org/10.1111/epi.12620
    33. Noora Sjöstedt, Hanna Kortejärvi, Heidi Kidron, Kati-Sisko Vellonen, Arto Urtti, Marjo Yliperttula. Challenges of Using In Vitro Data for Modeling P-Glycoprotein Efflux in the Blood-Brain Barrier. Pharmaceutical Research 2014, 31 (1) , 1-19. https://doi.org/10.1007/s11095-013-1124-2
    34. Aaron Smalter Hall, Jun Huan. KUChemBio: A repository of computational chemical biology data sets. 2013, 37-42. https://doi.org/10.1109/BigData.2013.6691756
    35. Isabel A. O'Connor, Mark A.J. Huijbregts, Ad M.J. Ragas, A. Jan Hendriks. Predicting the oral uptake efficiency of chemicals in mammals: Combining the hydrophilic and lipophilic range. Toxicology and Applied Pharmacology 2013, 266 (1) , 150-156. https://doi.org/10.1016/j.taap.2012.10.015
    36. Deanna M. Mudie, Yi Shi, Haili Ping, Ping Gao, Gordon L. Amidon, Gregory E. Amidon. Mechanistic analysis of solute transport in an in vitro physiological two‐phase dissolution apparatus. Biopharmaceutics & Drug Disposition 2012, 33 (7) , 378-402. https://doi.org/10.1002/bdd.1803
    37. . Lead Optimization. 2012, 13-32. https://doi.org/10.1002/9783527645640.ch2
    38. Edward C. Sherer, Andreas Verras, Maria Madeira, William K. Hagmann, Robert P. Sheridan, Drew Roberts, Kelly Bleasby, Wendy D. Cornell. QSAR Prediction of Passive Permeability in the LLC‐PK1 Cell Line: Trends in Molecular Properties and Cross‐Prediction of Caco‐2 Permeabilities. Molecular Informatics 2012, 31 (3-4) , 231-245. https://doi.org/10.1002/minf.201100157
    39. A. K. Madan, Harish Dureja. Prediction of Pharmacokinetic Parameters. 2012, 337-357. https://doi.org/10.1007/978-1-62703-050-2_14
    40. Zhong Qiu, Ming Hu. Amino Acid Drug Transporters. 2011, 267-289. https://doi.org/10.1002/9781118067598.ch17
    41. Elizabeth E. Hills, Michael H. Abraham, Anne Hersey, Chris D. Bevan. Diffusion coefficients in ethanol and in water at 298K: Linear free energy relationships. Fluid Phase Equilibria 2011, 303 (1) , 45-55. https://doi.org/10.1016/j.fluid.2011.01.002
    42. G. Valsami, P. Macheras. Computational‐Regulatory Developments in the Prediction of Oral Drug Absorption. Molecular Informatics 2011, 30 (2-3) , 112-121. https://doi.org/10.1002/minf.201000171
    43. Chao Xu, Donald E Mager. Quantitative structure–pharmacokinetic relationships. Expert Opinion on Drug Metabolism & Toxicology 2011, 7 (1) , 63-77. https://doi.org/10.1517/17425255.2011.537257
    44. Pilar Prieto, Sebastian Hoffmann, Valentina Tirelli, Francesco Tancredi, Isabel González, Marival Bermejo, Isabella De Angelis. An Exploratory Study of Two Caco-2 Cell Models for Oral Absorption: A Report on Their Within-laboratory and Between-laboratory Variability, and Their Predictive Capacity. Alternatives to Laboratory Animals 2010, 38 (5) , 367-386. https://doi.org/10.1177/026119291003800510
    45. Paulo Paixão, Luís F. Gouveia, José A.G. Morais. Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. European Journal of Pharmaceutical Sciences 2010, 41 (1) , 107-117. https://doi.org/10.1016/j.ejps.2010.05.014
    46. Heidi Kidron, Kati-Sisko Vellonen, Eva M. del Amo, Anita Tissari, Arto Urtti. Prediction of the Corneal Permeability of Drug-Like Compounds. Pharmaceutical Research 2010, 27 (7) , 1398-1407. https://doi.org/10.1007/s11095-010-0132-8
    47. Alma Kartal, Janne Marvola, Jenni Matheka, Marikki Peltoniemi, Mia Sivén. Computational prediction of local drug effect on carcinogenic acetaldehyde in the mouth based on in vitro/in vivo results of freely soluble l -cysteine. Drug Development and Industrial Pharmacy 2010, 36 (6) , 715-723. https://doi.org/10.3109/03639040903456519
    48. A. Guerra, N.E. Campillo, J.A. Páez. Neural computational prediction of oral drug absorption based on CODES 2D descriptors. European Journal of Medicinal Chemistry 2010, 45 (3) , 930-940. https://doi.org/10.1016/j.ejmech.2009.11.034
    49. Paulo Paixão, Luís F. Gouveia, José A.G. Morais. Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks. European Journal of Pharmaceutical Sciences 2010, 39 (5) , 310-321. https://doi.org/10.1016/j.ejps.2009.12.007
    50. H. Kortejärvi, R. Shawahna, A. Koski, J. Malkki, K. Ojala, M. Yliperttula. Very rapid dissolution is not needed to guarantee bioequivalence for biopharmaceutics classification system (BCS) I drugs. Journal of Pharmaceutical Sciences 2010, 99 (2) , 621-625. https://doi.org/10.1002/jps.21879
    51. Derek P. Reynolds, Kiril Lanevskij, Pranas Japertas, Remigijus Didziapetris, Alanas Petrauskas. Ionization-specific analysis of human intestinal absorption. Journal of Pharmaceutical Sciences 2009, 98 (11) , 4039-4054. https://doi.org/10.1002/jps.21730
    52. Amit Kokate, Xiaoling Li, Paul J. Williams, Parminder Singh, Bhaskara R. Jasti. In Silico Prediction of Drug Permeability Across Buccal Mucosa. Pharmaceutical Research 2009, 26 (5) , 1130-1139. https://doi.org/10.1007/s11095-009-9831-4
    53. Thorsten Meyer, Jörg Schröder, Manfred Uphoff, Sandra Noack, Anja R. Heckeroth, Michael Gassel, Petra Rohrwild, Thomas Ilg. Chemical Optimization of Anthelmintic Compounds – A Case Study. 2009, 357-371. https://doi.org/10.1002/9783527626816.ch19
    54. Guanghua Gao, Francis C. P. Law. Physiologically Based Pharmacokinetics of Matrine in the Rat after Oral Administration of Pure Chemical and ACAPHA. Drug Metabolism and Disposition 2009, 37 (4) , 884-891. https://doi.org/10.1124/dmd.108.023788
    55. Ovidiu Ivanciuc. Drug Design with Artificial Intelligence Methods. 2009, 2113-2139. https://doi.org/10.1007/978-0-387-30440-3_133
    56. Eva M. del Amo, Arto Urtti, Marjo Yliperttula. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. European Journal of Pharmaceutical Sciences 2008, 35 (3) , 161-174. https://doi.org/10.1016/j.ejps.2008.06.015
    57. Vasiliki Papadopoulou, Georgia Valsami, Aristides Dokoumetzidis, Panos Macheras. Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): Theoretical basis and practical examples. International Journal of Pharmaceutics 2008, 361 (1-2) , 70-77. https://doi.org/10.1016/j.ijpharm.2008.05.021
    58. Johanna Linnankoski, Veli-Pekka Ranta, Marjo Yliperttula, Arto Urtti. Passive oral drug absorption can be predicted more reliably by experimental than computational models—Fact or myth. European Journal of Pharmaceutical Sciences 2008, 34 (2-3) , 129-139. https://doi.org/10.1016/j.ejps.2008.03.001
    59. Ian Bytheway, Michael G. Darley, Paul L. A. Popelier. The Calculation of Polar Surface Area from First Principles: An Application of Quantum Chemical Topology to Drug Design. ChemMedChem 2008, 3 (3) , 445-453. https://doi.org/10.1002/cmdc.200700262
    60. Bram Baert, Eric Deconinck, Mireille Van Gele, Marian Slodicka, Paul Stoppie, Samuel Bodé, Guido Slegers, Yvan Vander Heyden, Jo Lambert, Johan Beetens, Bart De Spiegeleer. Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds. Bioorganic & Medicinal Chemistry 2007, 15 (22) , 6943-6955. https://doi.org/10.1016/j.bmc.2007.07.050
    61. Paul D. Leeson, Brian Springthorpe. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery 2007, 6 (11) , 881-890. https://doi.org/10.1038/nrd2445
    62. A. Dokoumetzidis, G. Valsami, P. Macheras. Modelling and simulation in drug absorption processes. Xenobiotica 2007, 37 (10-11) , 1052-1065. https://doi.org/10.1080/00498250701502114
    63. Tingjun Hou, Junmei Wang, Youyong Li. ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine. Journal of Chemical Information and Modeling 2007, 47 (6) , 2408-2415. https://doi.org/10.1021/ci7002076

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect