ACS Publications. Most Trusted. Most Cited. Most Read
Iron Binding Dendrimers:  A Novel Approach for the Treatment of Haemochromatosis
My Activity
    Article

    Iron Binding Dendrimers:  A Novel Approach for the Treatment of Haemochromatosis
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmacy and Drug Control Centre, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
    Other Access OptionsSupporting Information (1)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2006, 49, 14, 4171–4182
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm0600949
    Published June 21, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A range of iron binding dendrimers terminated with hexadentate ligands formed from hydroxypyridinone, hydroxypyranone, and catechol moieties have been synthesized in order to investigate their potential as clinically useful iron(III)-selective chelators capable of removing dietary iron from the gastrointestinal tract and preventing the development of iron overload typical of haemochromatosis and thalassaemia intermedia. The iron chelating abilities of these molecules have been characterized by MALDI-TOF mass spectrometry and UV spectrometry. Hydroxypyridinone-terminated dendrimers were found to possess a high affinity and selectivity for iron(III). A hydroxypyridinone-based dendrimer was demonstrated to be highly efficient at reducing the absorption of iron(III) in rat intestine. This family of dendrimers may find an application in the treatment of iron overload.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Pharmacy.

     Drug Control Center.

    *

     Corresponding author. Tel.:  (+)44 207 848 6979. Fax:  (+)44 207 848 6394. E-mail:  [email protected].

    Abbreviations:  MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-light mass spectrometry; DCCI, 1,3-dicyclohexylcarbodiimide; HOBt, 1-hydroxybenzotriazole; DMF, N,N-dimethylformamide; MBT, 2-mercaptobenzothiazole; DCTB, trans-2-[3-{4-tert-butylphenyl}-2-methyl-2- propenylidene]malononitrile; ICP-MS, inductively coupled plasma mass spectrometry; TMS, tetramethylsilane; ESI MS, electrospray ionization mass spectrometry; CHCA, 4-hydroxy-alpha-cyano-cinnamic acid; THAP, trihydroxyacetophenone; NTA, nitrilotriacetic acid; MOPS, 3-(N-morpholino)propane sulphonic acid.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Routine spectroscopic data and ICP-MS operating parameters for the analysis of 58Fe in the perfusion samples. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 88 publications.

    1. Xiaoying Jiang, Tao Zhou, Renren Bai, Yuanyuan Xie. Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities. Journal of Medicinal Chemistry 2020, 63 (23) , 14470-14501. https://doi.org/10.1021/acs.jmedchem.0c01480
    2. Thomas I. Kostelnik, Chris Orvig. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chemical Reviews 2019, 119 (2) , 902-956. https://doi.org/10.1021/acs.chemrev.8b00294
    3. Agostino Cilibrizzi, Vincenzo Abbate, Yu-Lin Chen, Yongmin Ma, Tao Zhou, Robert C. Hider. Hydroxypyridinone Journey into Metal Chelation. Chemical Reviews 2018, 118 (16) , 7657-7701. https://doi.org/10.1021/acs.chemrev.8b00254
    4. Jian Qian, Bradley P. Sullivan, Samuel J. Peterson, and Cory Berkland . Nonabsorbable Iron Binding Polymers Prevent Dietary Iron Absorption for the Treatment of Iron Overload. ACS Macro Letters 2017, 6 (4) , 350-353. https://doi.org/10.1021/acsmacrolett.6b00945
    5. Cinzia Imberti, Samantha Y. A. Terry, Carleen Cullinane, Fiona Clarke, Georgina H. Cornish, Nisha K. Ramakrishnan, Peter Roselt, Andrew P. Cope, Rodney J. Hicks, Philip J. Blower, and Michelle T. Ma . Enhancing PET Signal at Target Tissue in Vivo: Dendritic and Multimeric Tris(hydroxypyridinone) Conjugates for Molecular Imaging of αvβ3 Integrin Expression with Gallium-68. Bioconjugate Chemistry 2017, 28 (2) , 481-495. https://doi.org/10.1021/acs.bioconjchem.6b00621
    6. Keting Xin, Man Li, Di Lu, Xuan Meng, Jun Deng, Deling Kong, Dan Ding, Zheng Wang, and Yanjun Zhao . Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging. ACS Applied Materials & Interfaces 2017, 9 (1) , 80-91. https://doi.org/10.1021/acsami.6b09425
    7. Farhana Barmare, Marie-Caline Z. Abadjian, Erik C. Wiener, and Douglas B. Grotjahn . Azide Tripodal Dendrons from Behera’s Amine and Their Clicked Dendrimers. The Journal of Organic Chemistry 2016, 81 (15) , 6779-6782. https://doi.org/10.1021/acs.joc.6b00859
    8. Michelle T. Ma, Carleen Cullinane, Cinzia Imberti, Julia Baguña Torres, Samantha Y. A. Terry, Peter Roselt, Rodney J. Hicks, and Philip J. Blower . New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+. Bioconjugate Chemistry 2016, 27 (2) , 309-318. https://doi.org/10.1021/acs.bioconjchem.5b00335
    9. Nashwa El-Gendy, Jian Qian, Kate Eshelman, Mario Rivera, and Cory Berkland . Antibiotic Activity of Iron-Sequestering Polymers. Biomacromolecules 2015, 16 (5) , 1480-1488. https://doi.org/10.1021/bm5016392
    10. Jaroslav Šebestík, Martin Šafařík, and Petr Bouř . Ferric Complexes of 3-Hydroxy-4-pyridinones Characterized by Density Functional Theory and Raman and UV–vis Spectroscopies. Inorganic Chemistry 2012, 51 (8) , 4473-4481. https://doi.org/10.1021/ic202004d
    11. Tomohiko Inomata, Hiroshi Eguchi, Yasuhiro Funahashi, Tomohiro Ozawa, and Hideki Masuda . Adsorption Behavior of Microbes on a QCM Chip Modified with an Artificial Siderophore–Fe3+ Complex. Langmuir 2012, 28 (2) , 1611-1617. https://doi.org/10.1021/la203250n
    12. Didier Astruc, Elodie Boisselier and Cátia Ornelas. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chemical Reviews 2010, 110 (4) , 1857-1959. https://doi.org/10.1021/cr900327d
    13. Tony Frost and Lawrence D. Margerum. Effect of PAMAM Dendrimers on *Ru(bpy)32+ Emission Quenching by Ferrocyanide and on ANS Fluorescence: Quantitative Binding Parameters as a Function of Dendrimer Size, pH, and Buffer Composition. Macromolecules 2010, 43 (3) , 1218-1226. https://doi.org/10.1021/ma9024043
    14. Sarah Fakih, Maria Podinovskaia, Xiaole Kong, Helen L. Collins, Ulrich E. Schaible and Robert C. Hider. Targeting the Lysosome: Fluorescent Iron(III) Chelators To Selectively Monitor Endosomal/Lysosomal Labile Iron Pools. Journal of Medicinal Chemistry 2008, 51 (15) , 4539-4552. https://doi.org/10.1021/jm8001247
    15. Sílvia Vinhas, Baltazar de Castro, Maria Rangel. Synthesis of 3-hydroxy-4-pyridinone hexadentate chelators, and biophysical evaluation of their affinity towards lipid bilayers. Bioorganic Chemistry 2024, 153 , 107806. https://doi.org/10.1016/j.bioorg.2024.107806
    16. Shalini Singh, Neha Kumari, B. K. Kanungo, Minati Baral. Hydroxypyridinone based chelators: a molecular tool for fluorescence sensing and sensitization. Sensors & Diagnostics 2024, 3 (6) , 968-986. https://doi.org/10.1039/D3SD00346A
    17. K. N. Lokesh, Ashok M. Raichur. Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Critical Reviews in Food Science and Nutrition 2024, 64 (2) , 517-543. https://doi.org/10.1080/10408398.2022.2106936
    18. Mariacristina Failla, Giuseppe Floresta, Vincenzo Abbate. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Medicinal Chemistry 2023, 14 (4) , 592-623. https://doi.org/10.1039/D2MD00397J
    19. Giuseppe Floresta, Siham Memdouh, Truc Pham, Michelle T. Ma, Philip J. Blower, Robert C. Hider, Vincenzo Abbate, Agostino Cilibrizzi. Targeting integrin αvβ6 with gallium-68 tris (hydroxypyridinone) based PET probes. Dalton Transactions 2022, 51 (34) , 12796-12803. https://doi.org/10.1039/D2DT00980C
    20. Stefania Racovita, Marcel Popa, Leonard Ionut Atanase, Silvia Vasiliu. Synthetic macromolecules with biological activity. 2022, 305-335. https://doi.org/10.1016/B978-0-323-85759-8.00014-2
    21. Martin Hruby, Irma Ivette Santana Martínez, Holger Stephan, Pavla Pouckova, Jiri Benes, Petr Stepanek. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers 2021, 13 (22) , 3969. https://doi.org/10.3390/polym13223969
    22. Xu Zhou, Linlin Dong, Langtao Shen. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021, 26 (22) , 6997. https://doi.org/10.3390/molecules26226997
    23. Giuseppe Floresta, George P. Keeling, Siham Memdouh, Levente K. Meszaros, Rafael T. M. de Rosales, Vincenzo Abbate. NHS-Functionalized THP Derivative for Efficient Synthesis of Kit-Based Precursors for 68Ga Labeled PET Probes. Biomedicines 2021, 9 (4) , 367. https://doi.org/10.3390/biomedicines9040367
    24. Bruce E. Holbein, M. Trisha C. Ang, David S. Allan, Wangxue Chen, Christian Lehmann. Exploiting the Achilles’ Heel of Iron Dependence in Antibiotic Resistant Bacteria with New Antimicrobial Iron Withdrawal Agents. 2021, 251-311. https://doi.org/10.1007/978-3-030-58259-3_8
    25. Ondřej Groborz, Lenka Poláková, Kristýna Kolouchová, Pavel Švec, Lenka Loukotová, Vijay Madhav Miriyala, Pavla Francová, Jan Kučka, Jan Krijt, Petr Páral, Martin Báječný, Tomáš Heizer, Radek Pohl, David Dunlop, Jiří Czernek, Luděk Šefc, Jiří Beneš, Petr Štěpánek, Pavel Hobza, Martin Hrubý. Chelating Polymers for Hereditary Hemochromatosis Treatment. Macromolecular Bioscience 2020, 20 (12) https://doi.org/10.1002/mabi.202000254
    26. Roger Gumbau-Brisa, M. Trisha C. Ang, Bruce E. Holbein, Matthias Bierenstiel. Enhanced Fe3+ binding through cooperativity of 3-hydroxypyridin-4-one groups within a linear co-polymer: wrapping effect leading to superior antimicrobial activity. BioMetals 2020, 33 (6) , 339-351. https://doi.org/10.1007/s10534-020-00253-1
    27. Veyis KARAKOÇ. Designing of alternative polymeric nano-chelator for treatment in acute iron poisoning by molecular imprinting approach. Hacettepe Journal of Biology and Chemistry 2020, 48 (4) , 319-331. https://doi.org/10.15671/hjbc.723455
    28. Gregory Jones, Sumanta Kumar Goswami, Homan Kang, Hak Soo Choi, Jonghan Kim. Combating Iron Overload: A Case for Deferoxamine-Based Nanochelators. Nanomedicine 2020, 15 (13) , 1341-1356. https://doi.org/10.2217/nnm-2020-0038
    29. Homan Kang, Murui Han, Jie Xue, Yoonji Baek, JuOae Chang, Shuang Hu, HaYoung Nam, Min Joo Jo, Georges El Fakhri, Michael P. Hutchens, Hak Soo Choi, Jonghan Kim. Renal clearable nanochelators for iron overload therapy. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13143-z
    30. Jian Qian, Cory Berkland. Conformational Stability Effect of Polymeric Iron Chelators. iScience 2019, 21 , 124-134. https://doi.org/10.1016/j.isci.2019.10.022
    31. Cinzia Imberti, Yu-Lin Chen, Calum A. Foley, Michelle T. Ma, Brett M. Paterson, Yifu Wang, Jennifer D. Young, Robert C. Hider, Philip J. Blower. Tuning the properties of tris(hydroxypyridinone) ligands: efficient 68 Ga chelators for PET imaging. Dalton Transactions 2019, 48 (13) , 4299-4313. https://doi.org/10.1039/C8DT04454F
    32. Xiaoli Huang, Di Lu, Yongmin Ma, Limei Zhang, Lina Wang, Jian Deng, Zheng Wang, Yanjun Zhao. From small deferiprone to macromolecular micelles: Self-assembly enhances iron chelation. Journal of Colloid and Interface Science 2019, 533 , 375-384. https://doi.org/10.1016/j.jcis.2018.08.086
    33. Jie Fang, Yongcan Guo, Yujun Yang, Wen Yu, Yiyi Tao, Tao Dai, Changjing Yuan, Guoming Xie. Portable and sensitive detection of DNA based on personal glucose meters and nanogold-functionalized PAMAM dendrimer. Sensors and Actuators B: Chemical 2018, 272 , 118-126. https://doi.org/10.1016/j.snb.2018.05.086
    34. Devaraj Anandkumar, Perumal Rajakumar. Synthesis, photophysical and electrochemical properties and DSSC application of triphenylaminochalcone cored dendrimers with anthracene and pyrene as surface groups and triazolylcholanoate as the bridging unit. New Journal of Chemistry 2018, 42 (20) , 16542-16554. https://doi.org/10.1039/C8NJ01412D
    35. Tao Zhou, Kai Chen, Li-Min Kong, Mu-Song Liu, Yong-Min Ma, Yuan-Yuan Xie, Robert C. Hider. Synthesis, iron binding and antimicrobial properties of hexadentate 3-hydroxypyridinones-terminated dendrimers. Bioorganic & Medicinal Chemistry Letters 2018, 28 (14) , 2504-2512. https://doi.org/10.1016/j.bmcl.2018.05.058
    36. Andrea Ruiu, Mireille Vonlanthen, Pasquale Porcu, Israel Gonzalez-Méndez, Ernesto Rivera. Highly Sensitive Sensors for the Detection of Nitro Compounds Based on Pyrene Labeled Dendrons. Journal of Inorganic and Organometallic Polymers and Materials 2018, 28 (2) , 448-456. https://doi.org/10.1007/s10904-017-0686-6
    37. Rong Ye, Franco F. Faucher, Gabor A. Somorjai. Supported iron catalysts for Michael addition reactions. Molecular Catalysis 2018, 447 , 65-71. https://doi.org/10.1016/j.mcat.2017.12.029
    38. Jonathan R. Dilworth, Sofia I. Pascu. The chemistry of PET imaging with zirconium-89. Chemical Society Reviews 2018, 47 (8) , 2554-2571. https://doi.org/10.1039/C7CS00014F
    39. M. Trisha C. Ang, Roger Gumbau-Brisa, David S. Allan, Robert McDonald, Michael J. Ferguson, Bruce E. Holbein, Matthias Bierenstiel. DIBI, a 3-hydroxypyridin-4-one chelator iron-binding polymer with enhanced antimicrobial activity. MedChemComm 2018, 9 (7) , 1206-1212. https://doi.org/10.1039/C8MD00192H
    40. Devaraj Anandkumar, Perumal Rajakumar. Synthesis and anticancer activity of bile acid dendrimers with triazole as bridging unit through click chemistry. Steroids 2017, 125 , 37-46. https://doi.org/10.1016/j.steroids.2017.06.007
    41. Jennifer D. Young, Vincenzo Abbate, Cinzia Imberti, Levente K. Meszaros, Michelle T. Ma, Samantha Y.A. Terry, Robert C. Hider, Greg E. Mullen, Philip J. Blower. 68 Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling. Journal of Nuclear Medicine 2017, 58 (8) , 1270-1277. https://doi.org/10.2967/jnumed.117.191882
    42. Christian Buchwalder, Cristina Rodríguez-Rodríguez, Paul Schaffer, Stoyan K. Karagiozov, Katayoun Saatchi, Urs O. Häfeli. A new tetrapodal 3-hydroxy-4-pyridinone ligand for complexation of 89 zirconium for positron emission tomography (PET) imaging. Dalton Transactions 2017, 46 (29) , 9654-9663. https://doi.org/10.1039/C7DT02196H
    43. Devaraj Anandkumar, Shanmugam Ganesan, Perumal Rajakumar, Pichai Maruthamuthu. Synthesis, photophysical and electrochemical properties and DSSC applications of triphenylamine chalcone dendrimers via click chemistry. New Journal of Chemistry 2017, 41 (19) , 11238-11249. https://doi.org/10.1039/C7NJ01059A
    44. Maria Iris Tsionou, Caroline E. Knapp, Calum A. Foley, Catherine R. Munteanu, Andrew Cakebread, Cinzia Imberti, Thomas R. Eykyn, Jennifer D. Young, Brett M. Paterson, Philip J. Blower, Michelle T. Ma. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017, 7 (78) , 49586-49599. https://doi.org/10.1039/C7RA09076E
    45. Ruslan Cusnir, Cinzia Imberti, Robert Hider, Philip Blower, Michelle Ma. Hydroxypyridinone Chelators: From Iron Scavenging to Radiopharmaceuticals for PET Imaging with Gallium-68. International Journal of Molecular Sciences 2017, 18 (1) , 116. https://doi.org/10.3390/ijms18010116
    46. Philipp Spang, Christian Herrmann, Frank Roesch. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Seminars in Nuclear Medicine 2016, 46 (5) , 373-394. https://doi.org/10.1053/j.semnuclmed.2016.04.003
    47. MARTHA-SPYRIDOULA KATSAROU, ROSANA LATSI, MARIA PAPASAVVA, NIKOLAOS DEMERTZIS, THODORIS KALOGRIDIS, ARISTIDES M. TSATSAKIS, DEMETRIOS A. SPANDIDOS, NIKOLAOS DRAKOULIS. Population-based analysis of the frequency of HFE gene polymorphisms: Correlation with the susceptibility to develop hereditary hemochromatosis. Molecular Medicine Reports 2016, 14 (1) , 630-636. https://doi.org/10.3892/mmr.2016.5317
    48. Bo Jin, Rongzong Zheng, Rufang Peng, Shijin Chu. Synthesis of New Bis(3-hydroxy-4-pyridinone) Ligands as Chelating Agents for Uranyl Complexation. Molecules 2016, 21 (3) , 299. https://doi.org/10.3390/molecules21030299
    49. Robert van Lith, Guillermo A. Ameer. Antioxidant Polymers as Biomaterial. 2016, 251-296. https://doi.org/10.1016/B978-0-12-803269-5.00010-3
    50. Devaraj Anandkumar, Rathinam Raja, Perumal Rajakumar. Synthesis, photophysical properties and anticancer activity of micro-environment sensitive amphiphilic bile acid dendrimers. RSC Advances 2016, 6 (31) , 25808-25818. https://doi.org/10.1039/C5RA20147K
    51. Eva Rivero-Buceta, Elisa G. Doyagüez, Ignacio Colomer, Ernesto Quesada, Leen Mathys, Sam Noppen, Sandra Liekens, María-José Camarasa, María-Jesús Pérez-Pérez, Jan Balzarini, Ana San-Félix. Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41. European Journal of Medicinal Chemistry 2015, 106 , 34-43. https://doi.org/10.1016/j.ejmech.2015.10.031
    52. Jing Li, Fei Yu, Yi Chen, David Oupický. Polymeric drugs: Advances in the development of pharmacologically active polymers. Journal of Controlled Release 2015, 219 , 369-382. https://doi.org/10.1016/j.jconrel.2015.09.043
    53. Jasmine L Hamilton, Jayachandran N Kizhakkedathu. Polymeric nanocarriers for the treatment of systemic iron overload. Molecular and Cellular Therapies 2015, 3 (1) https://doi.org/10.1186/s40591-015-0039-1
    54. Adam Weisman, Beverly Chou, Jeffrey O'Brien, Kenneth J. Shea. Polymer antidotes for toxin sequestration. Advanced Drug Delivery Reviews 2015, 90 , 81-100. https://doi.org/10.1016/j.addr.2015.05.011
    55. M Amélia Santos, Sílvia Chaves. 3-Hydroxypyridinone Derivatives as Metal-Sequestering Agents for Therapeutic Use. Future Medicinal Chemistry 2015, 7 (3) , 383-410. https://doi.org/10.4155/fmc.14.162
    56. Carla Queirós, Andreia Leite, Ana M.G. Silva, Paula Gameiro, Baltazar de Castro, Maria Rangel. Synthesis and spectroscopic characterization of a new tripodal hexadentate iron chelator incorporating catechol units. Polyhedron 2015, 87 , 1-7. https://doi.org/10.1016/j.poly.2014.10.003
    57. D.J. Raines, T.J. Sanderson, E.J. Wilde, A.-K. Duhme-Klair. Siderophores. 2015https://doi.org/10.1016/B978-0-12-409547-2.11040-6
    58. Michelle T. Ma, Levente K. Meszaros, Brett M. Paterson, David J. Berry, Maggie S. Cooper, Yongmin Ma, Robert C. Hider, Philip J. Blower. Tripodal tris(hydroxypyridinone) ligands for immunoconjugate PET imaging with 89 Zr 4+ : comparison with desferrioxamine-B. Dalton Transactions 2015, 44 (11) , 4884-4900. https://doi.org/10.1039/C4DT02978J
    59. Yongmin Ma, Tao Zhou, Robert C. Hider. pFe 3+ determination of multidentate ligands by a fluorescence assay. The Analyst 2015, 140 (10) , 3603-3606. https://doi.org/10.1039/C5AN00123D
    60. Ying-Jun Zhou, Xiao-Le Kong, Jun-Pei Li, Yong-Min Ma, Robert C Hider, Tao Zhou. Novel 3-hydroxypyridin-4-one hexadentate ligand-based polymeric iron chelator: synthesis, characterization and antimicrobial evaluation. MedChemComm 2015, 6 (9) , 1620-1625. https://doi.org/10.1039/C5MD00264H
    61. Yongmin Ma, Maria Podinovskaia, Patricia J. Evans, Giovanni Emma, Ulrich E. Schaible, John Porter, Robert C. Hider. A novel method for non-transferrin-bound iron quantification by chelatable fluorescent beads based on flow cytometry. Biochemical Journal 2014, 463 (3) , 351-362. https://doi.org/10.1042/BJ20140795
    62. Tomohiko Inomata, Takanori Murase, Hiroki Ido, Tomohiro Ozawa, Hideki Masuda. Gold Nanoparticles Modified with Artificial Siderophore–Iron(III) Ion Complexes: Selective Adsorption and Aggregation of Microbes Using “Coordination Programming”. Chemistry Letters 2014, 43 (7) , 1146-1148. https://doi.org/10.1246/cl.140270
    63. Ying-Jun Zhou, Ming-Xia Zhang, Robert C. Hider, Tao Zhou. In vitro antimicrobial activity of hydroxypyridinone hexadentate-based dendrimeric chelators alone and in combination with norfloxacin. FEMS Microbiology Letters 2014, 355 (2) , 124-130. https://doi.org/10.1111/1574-6968.12465
    64. F. Rösch. Past, present and future of 68Ge/68Ga generators. Applied Radiation and Isotopes 2013, 76 , 24-30. https://doi.org/10.1016/j.apradiso.2012.10.012
    65. Frank Rösch. 68Ge/68Ga Generators and 68Ga Radiopharmaceutical Chemistry on Their Way into a New Century. Journal of Postgraduate Medicine, Education and Research 2013, 47 (1) , 18-25. https://doi.org/10.5005/jp-journals-10028-1052
    66. Gloria Martinez, Jayanthi Arumugam, Hollie K. Jacobs, Aravamudan S. Gopalan. 3,2-Hydroxypyridinone (3,2-HOPO) vinyl sulfonamide and acrylamide linkers: aza-Michael addition reactions and the preparation of poly-HOPO chelators. Tetrahedron Letters 2013, 54 (7) , 630-634. https://doi.org/10.1016/j.tetlet.2012.11.136
    67. Yongmin Ma, Yuanyuan Xie, Robert C. Hider. A novel fluorescence method for determination of pFe 3 +. The Analyst 2013, 138 (1) , 96-99. https://doi.org/10.1039/C2AN36186H
    68. Tomohiko Inomata, Hirohito Tanabashi, Yasuhiro Funahashi, Tomohiro Ozawa, Hideki Masuda. Adsorption and detection of Escherichia coli using an Au substrate modified with a catecholate-type artificial siderophore–Fe3+ complex. Dalton Transactions 2013, 42 (45) , 16043. https://doi.org/10.1039/c3dt51448j
    69. Perumal Rajakumar, Chinnadurai Satheeshkumar, Mahalingam Ravivarma, Shanmugam Ganesan, Pichai Maruthamuthu. Enhanced performance of dye-sensitized solar cell using triazole based phenothiazine dendrimers as additives. Journal of Materials Chemistry A 2013, 1 (44) , 13941. https://doi.org/10.1039/c3ta13159a
    70. Seda Cantekin, Tom F. A. de Greef, Anja R. A. Palmans. Benzene-1,3,5-tricarboxamide: a versatile ordering moiety for supramolecular chemistry. Chemical Society Reviews 2012, 41 (18) , 6125. https://doi.org/10.1039/c2cs35156k
    71. Bo Xu, Xiao-Le Kong, Tao Zhou, Di-Hong Qiu, Yu-Lin Chen, Mu-Song Liu, Rong-Hua Yang, Robert C. Hider. Synthesis, iron(III)-binding affinity and in vitro evaluation of 3-hydroxypyridin-4-one hexadentate ligands as potential antimicrobial agents. Bioorganic & Medicinal Chemistry Letters 2011, 21 (21) , 6376-6380. https://doi.org/10.1016/j.bmcl.2011.08.097
    72. Zahra Mohammadi, Sheng-Xue Xie, Edward Peltier, Masoumeh Veisi, Cory Berkland. Enhancing the selectivity of an iron binding hydrogel. European Polymer Journal 2011, 47 (7) , 1485-1488. https://doi.org/10.1016/j.eurpolymj.2011.04.007
    73. Tao Zhou, Günther Winkelmann, Zhi-Yuan Dai, Robert C Hider. Design of clinically useful macromolecular iron chelators. Journal of Pharmacy and Pharmacology 2011, 63 (7) , 893-903. https://doi.org/10.1111/j.2042-7158.2011.01291.x
    74. David J. Berry, Yongmin Ma, James R. Ballinger, Richard Tavaré, Alexander Koers, Kavitha Sunassee, Tao Zhou, Saima Nawaz, Gregory E. D. Mullen, Robert C. Hider, Philip J. Blower. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chemical Communications 2011, 47 (25) , 7068. https://doi.org/10.1039/c1cc12123e
    75. Ana M.G. Silva, Andreia Leite, Mariana Andrade, Paula Gameiro, Paula Brandão, Vítor Felix, Baltazar de Castro, Maria Rangel. Microwave-assisted synthesis of 3-hydroxy-4-pyridinone/naphthalene conjugates. Structural characterization and selection of a fluorescent ion sensor. Tetrahedron 2010, 66 (44) , 8544-8550. https://doi.org/10.1016/j.tet.2010.08.065
    76. Ana Nunes, Maria Podinovskaia, Andreia Leite, Paula Gameiro, Tao Zhou, Yongmin Ma, Xiaole Kong, Ulrich E. Schaible, Robert C. Hider, Maria Rangel. Fluorescent 3-hydroxy-4-pyridinone hexadentate iron chelators: intracellular distribution and the relevance to antimycobacterial properties. JBIC Journal of Biological Inorganic Chemistry 2010, 15 (6) , 861-877. https://doi.org/10.1007/s00775-010-0650-1
    77. Sofia Sousa Fernandes, Ana Nunes, Ana Rita Gomes, Baltazar de Castro, Robert C. Hider, Maria Rangel, Rui Appelberg, Maria Salomé Gomes. Identification of a new hexadentate iron chelator capable of restricting the intramacrophagic growth of Mycobacterium avium. Microbes and Infection 2010, 12 (4) , 287-294. https://doi.org/10.1016/j.micinf.2010.01.003
    78. Takahiro Hamada. Deposition Diseases. 2010, 487-495. https://doi.org/10.1007/978-3-540-78814-0_43
    79. Ketil Thorstensen, Mona A. Kvitland, Wenche Ø. Irgens, Kristian Hveem, Arne Åsberg. Screening for C282Y homozygosity in a Norwegian population (HUNT2): The sensitivity and specificity of transferrin saturation. Scandinavian Journal of Clinical and Laboratory Investigation 2010, 70 (2) , 92-97. https://doi.org/10.3109/00365510903527838
    80. Pradeep K. Dhal, Steven C. Polomoscanik, Louis Z. Avila, S. Randall Holmes-Farley, Robert J. Miller. Functional polymers as therapeutic agents: Concept to market place. Advanced Drug Delivery Reviews 2009, 61 (13) , 1121-1130. https://doi.org/10.1016/j.addr.2009.05.004
    81. Virendra Gajbhiye, Vijayaraj K Palanirajan, Rakesh K Tekade, Narendra K Jain. Dendrimers as therapeutic agents: a systematic review. Journal of Pharmacy and Pharmacology 2009, 61 (8) , 989-1003. https://doi.org/10.1211/jpp.61.08.0002
    82. Sarah Fakih, Maria Podinovskaia, Xiaole Kong, Ulrich E. Schaible, Helen L. Collins, Robert C. Hider. Monitoring intracellular labile iron pools: A novel fluorescent iron(iii) sensor as a potential non-invasive diagnosis tool. Journal of Pharmaceutical Sciences 2009, 98 (6) , 2212-2226. https://doi.org/10.1002/jps.21583
    83. Raquel Grazina, Lurdes Gano, Jaroslav Šebestík, M. Amelia Santos. New tripodal hydroxypyridinone based chelating agents for Fe(III), Al(III) and Ga(III): Synthesis, physico-chemical properties and bioevaluation. Journal of Inorganic Biochemistry 2009, 103 (2) , 262-273. https://doi.org/10.1016/j.jinorgbio.2008.10.014
    84. Nicholas A.A. Rossi, Ibrahim Mustafa, John K. Jackson, Helen M. Burt, Sonja A. Horte, Mark D. Scott, Jayachandran N. Kizhakkedathu. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials 2009, 30 (4) , 638-648. https://doi.org/10.1016/j.biomaterials.2008.09.057
    85. Xiaole Kong, Hendrik Neubert, Tao Zhou, ZuDong Liu, Robert C. Hider. MALDI mass spectrometric determination of dendritic iron chelation stoichiometries and conditional affinity constants. Journal of Mass Spectrometry 2008, 43 (5) , 617-622. https://doi.org/10.1002/jms.1357
    86. John Burgess, Maria Rangel. Hydroxypyranones, hydroxypyridinones, and their complexes. 2008, 167-243. https://doi.org/10.1016/S0898-8838(08)00005-6
    87. Tomohiko Inomata, Hiroshi Eguchi, Kenji Matsumoto, Yasuhiro Funahashi, Tomohiro Ozawa, Hideki Masuda. Adsorption of microorganisms onto an artificial siderophore-modified Au substrate. Biosensors and Bioelectronics 2007, 23 (5) , 751-755. https://doi.org/10.1016/j.bios.2007.08.015
    88. Pradeep K. Dhal, Chad C. Huval, S. Randall Holmes-Farley. Biologically active polymeric sequestrants: Design, synthesis, and therapeutic applications. Pure and Applied Chemistry 2007, 79 (9) , 1521-1530. https://doi.org/10.1351/pac200779091521

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2006, 49, 14, 4171–4182
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm0600949
    Published June 21, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1888

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.