ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity

View Author Information
Iron Metabolism and Chelation Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia, Iron Metabolism and Chelation Program, Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, New South Wales 2031, Australia, and Centre for Metals in Biology, Department of Chemistry, University of Queensland, Brisbane 4072, Australia
Cite this: J. Med. Chem. 2006, 49, 22, 6510–6521
Publication Date (Web):September 29, 2006
https://doi.org/10.1021/jm0606342
Copyright © 2006 American Chemical Society

    Article Views

    3349

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    There has been much interest in the development of iron (Fe) chelators for the treatment of cancer. We developed a series of di-2-pyridyl ketone thiosemicarbazone (HDpT) ligands which show marked and selective antitumor activity in vitro and in vivo. In this study, we assessed chemical and biological properties of these ligands and their Fe complexes in order to understand their marked activity. This included examination of their solution chemistry, electrochemistry, ability to mediate redox reactions, and antiproliferative activity against tumor cells. The higher antiproliferative efficacy of the HDpT series of chelators relative to the related di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues can be ascribed, in part, to the redox potentials of their Fe complexes which lead to the generation of reactive oxygen species. The most effective HDpT ligands as antiproliferative agents possess considerable lipophilicity and were shown to be charge neutral at physiological pH, allowing access to intracellular Fe pools.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Authors for correspondence. D.R.R. (biology):  phone, +61-2-9036-6548; fax, +61-2-9036-6549; e-mail, [email protected]. P.V.B. (chemistry):  phone, +61-7-3365-4266; fax, +61-7-3365-4299; e-mail, [email protected].

     University of Sydney.

    §

     Children's Cancer Institute Australia for Medical Research.

     University of Queensland.

    Abbreviations:  3-AP, 3-aminopyridine-2-carboxaldehyde-thiosemicarbazone; DFO, desferrioxamine; DOX, doxorubicin; HDpT, di-2-pyridyl ketone thiosemicarbazone; HDp4aT, di-2-pyridyl ketone 4-allyl-3-thiosemicarbazone; HDp4eT, di-2-pyridyl ketone 4-ethyl-3-thiosemicarbazone; HDp4mT, di-2-pyridyl ketone 4-methyl-3-thiosemicarbazone; HDp44mT, di-2-pyridyl ketone 4,4-dimethyl-3-thiosemicarbazone; HDp4pT, di-2-pyridyl ketone 4-phenyl-3-thiosemicarbazone; H2NIH, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone; H2NT, 2-hydroxy-1-naphthylaldehyde thiosemicarbazone; HPKIH, di-2-pyridyl ketone isonicotinoyl hydrazone; H2PIH, pyridoxal isonicotinoyl hydrazone; IBE, iron-binding equivalent; OC, open-circular; ROS, reactive oxygen species; SC, supercoiled; Tf, transferrin; TfR1, transferrin receptor 1.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Crystallographic information and elemental analysis data in tabular format. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 315 publications.

    1. Tharushi P. Wijesinghe, Busra Kaya, Miguel A. Gonzálvez, Jeffrey R. Harmer, Mahan Gholam Azad, Paul V. Bernhardt, Mahendiran Dharmasivam, Des R. Richardson. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure–Activity Relationships of the Novel PPP4pT Series. Journal of Medicinal Chemistry 2023, 66 (22) , 15453-15476. https://doi.org/10.1021/acs.jmedchem.3c01612
    2. Zhenlei Zhang, Juzheng Zhang, Tongfu Yang, Shanhe Li, Gang Xu, Hong Liang, Feng Yang. Developing an Anticancer Platinum(II) Compound Based on the Uniqueness of Human Serum Albumin. Journal of Medicinal Chemistry 2023, 66 (8) , 5669-5684. https://doi.org/10.1021/acs.jmedchem.3c00001
    3. Mahendiran Dharmasivam, Busra Kaya, Tharushi Wijesinghe, Mahan Gholam Azad, Miguel A. Gonzálvez, Mohammad Hussaini, Jason Chekmarev, Paul V. Bernhardt, Des R. Richardson. Designing Tailored Thiosemicarbazones with Bespoke Properties: The Styrene Moiety Imparts Potent Activity, Inhibits Heme Center Oxidation, and Results in a Novel “Stealth Zinc(II) Complex”. Journal of Medicinal Chemistry 2023, 66 (2) , 1426-1453. https://doi.org/10.1021/acs.jmedchem.2c01600
    4. Julia H. Bormio Nunes, Sonja Hager, Marlene Mathuber, Vivien Pósa, Alexander Roller, Éva A. Enyedy, Alessia Stefanelli, Walter Berger, Bernhard K. Keppler, Petra Heffeter, Christian R. Kowol. Cancer Cell Resistance Against the Clinically Investigated Thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Complex Glutathione Adducts and ABCC1-Mediated Efflux. Journal of Medicinal Chemistry 2020, 63 (22) , 13719-13732. https://doi.org/10.1021/acs.jmedchem.0c01277
    5. Ana I. Matesanz, Ana B. Caballero, Carmen Lorenzo, Alba Espargaró, Raimon Sabaté, Adoración G. Quiroga, Patrick Gamez. Thiosemicarbazone Derivatives as Inhibitors of Amyloid-β Aggregation: Effect of Metal Coordination. Inorganic Chemistry 2020, 59 (10) , 6978-6987. https://doi.org/10.1021/acs.inorgchem.0c00467
    6. Rukhsana Anjum, Duraippandi Palanimuthu, Danuta S. Kalinowski, William Lewis, Kyung Chan Park, Zaklina Kovacevic, Irfan Ullah Khan, Des R. Richardson. Synthesis, Characterization, and in Vitro Anticancer Activity of Copper and Zinc Bis(Thiosemicarbazone) Complexes. Inorganic Chemistry 2019, 58 (20) , 13709-13723. https://doi.org/10.1021/acs.inorgchem.9b01281
    7. Iris Chiara Salaroglio, Carmen Abate, Barbara Rolando, Luigi Battaglia, Elena Gazzano, Elena Colombino, Costanzo Costamagna, Laura Annovazzi, Marta Mellai, Francesco Berardi, Maria Teresa Capucchio, Davide Schiffer, Chiara Riganti. Validation of Thiosemicarbazone Compounds as P-Glycoprotein Inhibitors in Human Primary Brain–Blood Barrier and Glioblastoma Stem Cells. Molecular Pharmaceutics 2019, 16 (8) , 3361-3373. https://doi.org/10.1021/acs.molpharmaceut.9b00018
    8. Jae Min Bak, Hyung-il Lee. Use of Core-Cross-Linked Polymeric Micelles Induced by the Selective Detection of Cu(II) Ions for the Sustained Release of a Model Drug. ACS Applied Materials & Interfaces 2019, 11 (15) , 14368-14375. https://doi.org/10.1021/acsami.9b02432
    9. Chuanlong Guo, Lijun Wang, Xiuxue Li, Shuaiyu Wang, Xuemin Yu, Kuo Xu, Yue Zhao, Jiao Luo, Xiangqian Li, Bo Jiang, Dayong Shi. Discovery of Novel Bromophenol–Thiosemicarbazone Hybrids as Potent Selective Inhibitors of Poly(ADP-ribose) Polymerase-1 (PARP-1) for Use in Cancer. Journal of Medicinal Chemistry 2019, 62 (6) , 3051-3067. https://doi.org/10.1021/acs.jmedchem.8b01946
    10. Hana Jansová, Jan Kubeš, Petra Reimerová, Petra Štěrbová-Kovaříková, Jaroslav Roh, Tomáš Šimůnek. 2,6-Dihydroxybenzaldehyde Analogues of the Iron Chelator Salicylaldehyde Isonicotinoyl Hydrazone: Increased Hydrolytic Stability and Cytoprotective Activity against Oxidative Stress. Chemical Research in Toxicology 2018, 31 (11) , 1151-1163. https://doi.org/10.1021/acs.chemrestox.8b00165
    11. Kateřina Hrušková, Eliška Potůčková, Lukáš Opálka, Tereza Hergeselová, Pavlína Hašková, Petra Kovaříková, Tomáš Šimůnek, Kateřina Vávrová. Structure–Activity Relationships of Nitro-Substituted Aroylhydrazone Iron Chelators with Antioxidant and Antiproliferative Activities. Chemical Research in Toxicology 2018, 31 (6) , 435-446. https://doi.org/10.1021/acs.chemrestox.7b00324
    12. Anna Gatti, Abraha Habtemariam, Isolda Romero-Canelón, Ji-Inn Song, Bindy Heer, Guy J. Clarkson, Dominga Rogolino, Peter J. Sadler, Mauro Carcelli. Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity. Organometallics 2018, 37 (6) , 891-899. https://doi.org/10.1021/acs.organomet.7b00875
    13. Paul V. Bernhardt, Miguel A. Gonzálvez, and Manuel Martínez . Kinetico-mechanistic Study on the Oxidation of Biologically Active Iron(II) Bis(thiosemicarbazone) Complexes by Air. Importance of NH···O2 Interactions As Established by Activation Volumes. Inorganic Chemistry 2017, 56 (22) , 14284-14290. https://doi.org/10.1021/acs.inorgchem.7b02381
    14. A. Paden King, Hendryck A. Gellineau, Jung-Eun Ahn, Samantha N. MacMillan, and Justin J. Wilson . Bis(thiosemicarbazone) Complexes of Cobalt(III). Synthesis, Characterization, and Anticancer Potential. Inorganic Chemistry 2017, 56 (11) , 6609-6623. https://doi.org/10.1021/acs.inorgchem.7b00710
    15. Arijit Basu, Yang-Sung Sohn, Mohamed Alyan, Rachel Nechushtai, Abraham J. Domb, and Amiram Goldblum . Discovering Novel and Diverse Iron-Chelators in Silico. Journal of Chemical Information and Modeling 2016, 56 (12) , 2476-2485. https://doi.org/10.1021/acs.jcim.6b00450
    16. Mingbing Zhong, Song Sun, Jiang Cheng, and Ying Shao . Iron-Catalyzed Cyclization of Nitrones with Geminal-Substituted Vinyl Acetates: A Direct [4 + 2] Assembly Strategy Leading to 2,4-Disubstituted Quinolines. The Journal of Organic Chemistry 2016, 81 (22) , 10825-10831. https://doi.org/10.1021/acs.joc.6b01910
    17. David E. Stephens, Vu T. Nguyen, Bhuwan Chhetri, Emily R. Clark, Hadi D. Arman, and Oleg V. Larionov . Organocatalytic Synthesis of Methylene-Bridged N-Heterobiaryls. Organic Letters 2016, 18 (22) , 5808-5811. https://doi.org/10.1021/acs.orglett.6b02719
    18. Alexandra E. Stacy, Duraippandi Palanimuthu, Paul V. Bernhardt, Danuta S. Kalinowski, Patric J. Jansson, and Des R. Richardson . Structure–Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. Journal of Medicinal Chemistry 2016, 59 (18) , 8601-8620. https://doi.org/10.1021/acs.jmedchem.6b01050
    19. Christian R. Kowol, Walter Miklos, Sarah Pfaff, Sonja Hager, Sebastian Kallus, Karla Pelivan, Mario Kubanik, Éva A. Enyedy, Walter Berger, Petra Heffeter, and Bernhard K. Keppler . Impact of Stepwise NH2-Methylation of Triapine on the Physicochemical Properties, Anticancer Activity, and Resistance Circumvention. Journal of Medicinal Chemistry 2016, 59 (14) , 6739-6752. https://doi.org/10.1021/acs.jmedchem.6b00342
    20. Alexandra E. Stacy, Duraippandi Palanimuthu, Paul V. Bernhardt, Danuta S. Kalinowski, Patric J. Jansson, and Des R. Richardson . Zinc(II)–Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity. Journal of Medicinal Chemistry 2016, 59 (10) , 4965-4984. https://doi.org/10.1021/acs.jmedchem.6b00238
    21. James T. Wilson, Xiaohua Jiang, Bradley C. McGill, Edward C. Lisic, and Joseph E. Deweese . Examination of the Impact of Copper(II) α-(N)-Heterocyclic Thiosemicarbazone Complexes on DNA Topoisomerase IIα. Chemical Research in Toxicology 2016, 29 (4) , 649-658. https://doi.org/10.1021/acs.chemrestox.5b00471
    22. Zaynab Al-Eisawi, Christian Stefani, Patric J. Jansson, Akanksha Arvind, Philip C. Sharpe, Maram T. Basha, George M. Iskander, Naresh Kumar, Zaklina Kovacevic, Darius J. R. Lane, Sumit Sahni, Paul V. Bernhardt, Des R. Richardson, and Danuta S. Kalinowski . Novel Mechanism of Cytotoxicity for the Selective Selenosemicarbazone, 2-Acetylpyridine 4,4-Dimethyl-3-selenosemicarbazone (Ap44mSe): Lysosomal Membrane Permeabilization. Journal of Medicinal Chemistry 2016, 59 (1) , 294-312. https://doi.org/10.1021/acs.jmedchem.5b01399
    23. Lukas K. Filak, Danuta S. Kalinowski, Theresa J. Bauer, Des R. Richardson, and Vladimir B. Arion . Effect of the Piperazine Unit and Metal-Binding Site Position on the Solubility and Anti-Proliferative Activity of Ruthenium(II)- and Osmium(II)- Arene Complexes of Isomeric Indolo[3,2-c]quinoline—Piperazine Hybrids. Inorganic Chemistry 2014, 53 (13) , 6934-6943. https://doi.org/10.1021/ic500825j
    24. Carlo Santini, Maura Pellei, Valentina Gandin, Marina Porchia, Francesco Tisato, and Cristina Marzano . Advances in Copper Complexes as Anticancer Agents. Chemical Reviews 2014, 114 (1) , 815-862. https://doi.org/10.1021/cr400135x
    25. Felix Bacher, Éva A. Enyedy, Nóra V. Nagy, Antal Rockenbauer, Gabriella M. Bognár, Robert Trondl, Maria S. Novak, Erik Klapproth, Tamás Kiss, and Vladimir B. Arion . Copper(II) Complexes with Highly Water-Soluble l- and d-Proline–Thiosemicarbazone Conjugates as Potential Inhibitors of Topoisomerase IIα. Inorganic Chemistry 2013, 52 (15) , 8895-8908. https://doi.org/10.1021/ic401079w
    26. Christian Stefani, Patric J. Jansson, Elaine Gutierrez, Paul V. Bernhardt, Des R. Richardson, and Danuta S. Kalinowski . Alkyl Substituted 2′-Benzoylpyridine Thiosemicarbazone Chelators with Potent and Selective Anti-Neoplastic Activity: Novel Ligands that Limit Methemoglobin Formation. Journal of Medicinal Chemistry 2013, 56 (1) , 357-370. https://doi.org/10.1021/jm301691s
    27. Miljan N. M. Milunovic, Éva A. Enyedy, Nóra V. Nagy, Tamás Kiss, Robert Trondl, Michael A. Jakupec, Bernhard K. Keppler, Regina Krachler, Ghenadie Novitchi, and Vladimir B. Arion . l- and d-Proline Thiosemicarbazone Conjugates: Coordination Behavior in Solution and the Effect of Copper(II) Coordination on Their Antiproliferative Activity. Inorganic Chemistry 2012, 51 (17) , 9309-9321. https://doi.org/10.1021/ic300967j
    28. David B. Lovejoy, Danae M. Sharp, Nicole Seebacher, Peyman Obeidy, Thomas Prichard, Christian Stefani, Maram T. Basha, Philip C. Sharpe, Patric J. Jansson, Danuta S. Kalinowski, Paul V. Bernhardt, and Des R. Richardson . Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo. Journal of Medicinal Chemistry 2012, 55 (16) , 7230-7244. https://doi.org/10.1021/jm300768u
    29. Christian Stefani, Gaya Punnia-Moorthy, David B. Lovejoy, Patric J. Jansson, Danuta S. Kalinowski, Philip C. Sharpe, Paul V. Bernhardt, and Des R. Richardson . Halogenated 2′-Benzoylpyridine Thiosemicarbazone (XBpT) Chelators with Potent and Selective Anti-Neoplastic Activity: Relationship to Intracellular Redox Activity. Journal of Medicinal Chemistry 2011, 54 (19) , 6936-6948. https://doi.org/10.1021/jm200924c
    30. Patric J. Jansson, Philip C. Sharpe, Paul V. Bernhardt and Des R. Richardson . Novel Thiosemicarbazones of the ApT and DpT Series and Their Copper Complexes: Identification of Pronounced Redox Activity and Characterization of Their Antitumor Activity. Journal of Medicinal Chemistry 2010, 53 (15) , 5759-5769. https://doi.org/10.1021/jm100561b
    31. Petra Bendova, Eliska Mackova, Pavlina Haskova, Anna Vavrova, Eduard Jirkovsky, Martin Sterba, Olga Popelova, Danuta S. Kalinowski, Petra Kovarikova, Katerina Vavrova, Des R. Richardson and Tomas Simunek . Comparison of Clinically Used and Experimental Iron Chelators for Protection against Oxidative Stress-Induced Cellular Injury. Chemical Research in Toxicology 2010, 23 (6) , 1105-1114. https://doi.org/10.1021/tx100125t
    32. He Huang, Qin Chen, Xin Ku, Linghua Meng, Liping Lin, Xiang Wang, Caihua Zhu, Yi Wang, Zhi Chen, Ming Li, Hualiang Jiang, Kaixian Chen, Jian Ding and Hong Liu . A Series of α-Heterocyclic Carboxaldehyde Thiosemicarbazones Inhibit Topoisomerase IIα Catalytic Activity. Journal of Medicinal Chemistry 2010, 53 (8) , 3048-3064. https://doi.org/10.1021/jm9014394
    33. Joe Liu, Daniel Obando, Liam G. Schipanski, Ludwig K. Groebler, Paul K. Witting, Danuta S. Kalinowski, Des R. Richardson and Rachel Codd . Conjugates of Desferrioxamine B (DFOB) with Derivatives of Adamantane or with Orally Available Chelators as Potential Agents for Treating Iron Overload. Journal of Medicinal Chemistry 2010, 53 (3) , 1370-1382. https://doi.org/10.1021/jm9016703
    34. Yu Yu, Danuta S. Kalinowski, Zaklina Kovacevic, Aritee R. Siafakas, Patric J. Jansson, Christian Stefani, David B. Lovejoy, Philip C. Sharpe, Paul V. Bernhardt and Des R. Richardson . Thiosemicarbazones from the Old to New: Iron Chelators That Are More Than Just Ribonucleotide Reductase Inhibitors. Journal of Medicinal Chemistry 2009, 52 (17) , 5271-5294. https://doi.org/10.1021/jm900552r
    35. Christian R. Kowol, Robert Trondl, Petra Heffeter, Vladimir B. Arion, Michael A. Jakupec, Alexander Roller, Mathea Sophia Galanski, Walter Berger, Bernhard K. Keppler. Impact of Metal Coordination on Cytotoxicity of 3-Aminopyridine-2-carboxaldehyde Thiosemicarbazone (Triapine) and Novel Insights into Terminal Dimethylation. Journal of Medicinal Chemistry 2009, 52 (16) , 5032-5043. https://doi.org/10.1021/jm900528d
    36. Des R. Richardson, Danuta S. Kalinowski, Vera Richardson, Philip C. Sharpe, David B. Lovejoy, Mohammad Islam and Paul V. Bernhardt . 2-Acetylpyridine Thiosemicarbazones are Potent Iron Chelators and Antiproliferative Agents: Redox Activity, Iron Complexation and Characterization of their Antitumor Activity. Journal of Medicinal Chemistry 2009, 52 (5) , 1459-1470. https://doi.org/10.1021/jm801585u
    37. Paul V. Bernhardt, Philip C. Sharpe, Mohammad Islam, David B. Lovejoy, Danuta S. Kalinowski and Des R. Richardson. Iron Chelators of the Dipyridylketone Thiosemicarbazone Class: Precomplexation and Transmetalation Effects on Anticancer Activity. Journal of Medicinal Chemistry 2009, 52 (2) , 407-415. https://doi.org/10.1021/jm801012z
    38. Pr̆emysl Mladĕnka, Danuta S. Kalinowski, Pavlína Hašková, Zuzana Bobrovová, Radomír Hrdina, Tomáš Šimůnek, Petr Nachtigal, Vladimír Semecký, Jaroslava Vávrová, Magdaléna Holečková, Vladimir Palicka, Yvona Mazurová, Patric J. Jansson and Des R. Richardson . The Novel Iron Chelator, 2-Pyridylcarboxaldehyde 2-Thiophenecarboxyl Hydrazone, Reduces Catecholamine-Mediated Myocardial Toxicity. Chemical Research in Toxicology 2009, 22 (1) , 208-217. https://doi.org/10.1021/tx800331j
    39. Christian R. Kowol, Erwin Reisner, Ion Chiorescu, Vladimir B. Arion, Mathea Sophia Galanski, Dirk V. Deubel, Bernhard K. Keppler. An Electrochemical Study of Antineoplastic Gallium, Iron and Ruthenium Complexes with Redox Noninnocent α-N-Heterocyclic Chalcogensemicarbazones. Inorganic Chemistry 2008, 47 (23) , 11032-11047. https://doi.org/10.1021/ic8013249
    40. Veronika Opletalová, Danuta S. Kalinowski, Marcela Vejsová, Jiří Kuneš, Milan Pour, Josef Jampílek, Vladimír Buchta and Des R. Richardson . Identification and Characterization of Thiosemicarbazones with Antifungal and Antitumor Effects: Cellular Iron Chelation Mediating Cytotoxic Activity. Chemical Research in Toxicology 2008, 21 (9) , 1878-1889. https://doi.org/10.1021/tx800182k
    41. Caterina Fattorusso, Giuseppe Campiani, Gagan Kukreja, Marco Persico, Stefania Butini, Maria Pia Romano, Maria Altarelli, Sindu Ros, Margherita Brindisi, Luisa Savini, Ettore Novellino, Vito Nacci, Ernesto Fattorusso, Silvia Parapini, Nicoletta Basilico, Donatella Taramelli, Vanessa Yardley, Simon Croft, Marianna Borriello and Sandra Gemma. Design, Synthesis, and Structure–Activity Relationship Studies of 4-Quinolinyl- and 9-Acrydinylhydrazones as Potent Antimalarial Agents. Journal of Medicinal Chemistry 2008, 51 (5) , 1333-1343. https://doi.org/10.1021/jm7012375
    42. Danuta S. Kalinowski, Philip C. Sharpe, Paul V. Bernhardt and Des R. Richardson . Structure–Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series. Journal of Medicinal Chemistry 2008, 51 (2) , 331-344. https://doi.org/10.1021/jm7012562
    43. Mahendiran Dharmasivam, Busra Kaya, Tharushi P. Wijesinghe, Vera Richardson, Jeffrey R. Harmer, Miguel A. Gonzalvez, William Lewis, Mahan Gholam Azad, Paul V. Bernhardt, Des R. Richardson. Differential transmetallation of complexes of the anti-cancer thiosemicarbazone, Dp4e4mT: effects on anti-proliferative efficacy, redox activity, oxy-myoglobin and oxy-hemoglobin oxidation. Chemical Science 2024, 15 (3) , 974-990. https://doi.org/10.1039/D3SC05723B
    44. Daniel J. Watson, Lizahn Laing, Jacobus P. Petzer, Ho Ning Wong, Christopher J. Parkinson, Lubbe Wiesner, Richard K. Haynes. Efficacies and ADME properties of redox active methylene blue and phenoxazine analogues for use in new antimalarial triple drug combinations with amino-artemisinins. Frontiers in Pharmacology 2024, 14 https://doi.org/10.3389/fphar.2023.1308400
    45. Iman K. Al-Salmi, Musa S. Shongwe. Ternary Phenolate-Based Thiosemicarbazone Complexes of Copper(II): Magnetostructural Properties, Spectroscopic Features and Marked Selective Antiproliferative Activity against Cancer Cells. Molecules 2024, 29 (2) , 431. https://doi.org/10.3390/molecules29020431
    46. Alondra Jiménez-Pérez, Sandra Fernández-Fariña, Rosa Pedrido, Javier García-Tojal. Desulfurization of thiosemicarbazones: the role of metal ions and biological implications. JBIC Journal of Biological Inorganic Chemistry 2023, 39 https://doi.org/10.1007/s00775-023-02037-7
    47. Arleta Sierakowska, Beata Jasiewicz, Łukasz Piosik, Lucyna Mrówczyńska. New C8-substituted caffeine derivatives as promising antioxidants and cytoprotective agents in human erythrocytes. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-022-27205-8
    48. Carmen E. Castillo, Miguel A. Gonzálvez, Andrés G. Algarra, M. Jesús Fernández-Trujillo, Montserrat Ferrer, Manuel Martínez, Manuel G. Basallote. Fe( ii ) complexes of pyridine-substituted thiosemicarbazone ligands as catalysts for oxidations with hydrogen peroxide. Dalton Transactions 2023, 52 (40) , 14606-14612. https://doi.org/10.1039/D3DT02442C
    49. Muhammad Hamza Ashfaq. Synthesis and Anticancer Activity of Bis-Thiosemicarbazone Complexes. Asian Journal of Pharmaceutical Research 2023, , 181-185. https://doi.org/10.52711/2231-5691.2023.00034
    50. Periyanayagam Arockia Doss, Jebiti Haribabu, Nithya Balakrishnan, Srividya Swaminathan, Jose A. Pino, Nattamai Bhuvanesh, Ramasamy Karvembu. Cytotoxicity of copper(I) complexes containing indole‐based thiosemicarbazones and triphenylphosphine. ChemistrySelect 2023, 8 (29) https://doi.org/10.1002/slct.202301277
    51. Serap Nigdelioglu Dolanbay, Zehra Kübra Yilmaz, Büşra Kaya, Belma Aslim, Bahri Ülküseven. In vitro biological and in silico screening of novel iron( iii ) complexes for DNA-targeted antitumor drug component. New Journal of Chemistry 2023, 47 (30) , 14225-14241. https://doi.org/10.1039/D3NJ00016H
    52. Faten Shehadeh-Tout, Heloisa H. Milioli, Suraya Roslan, Patric J. Jansson, Mahendiran Dharmasivam, Dinny Graham, Robin Anderson, Tharushi Wijesinghe, Mahan Gholam Azad, Des R. Richardson, Zaklina Kovacevic. Innovative thiosemicarbazones that induce multi-modal mechanisms to down-regulate estrogen-, progesterone-, androgen- and prolactin-receptors in breast cancer. Pharmacological Research 2023, 193 , 106806. https://doi.org/10.1016/j.phrs.2023.106806
    53. Ruizhuo Ouyang, Shen Wang, Kai Feng, Conghao Liu, Dionisio Zaldivar Silva, Ying Chen, Yuefeng Zhao, Baolin Liu, Yuqing Miao, Shuang Zhou. Potent saccharinate-containing palladium(II) complexes for sensitization to cancer therapy. Journal of Inorganic Biochemistry 2023, 244 , 112205. https://doi.org/10.1016/j.jinorgbio.2023.112205
    54. Sujan Sk, Avishek Majumder, Priyanka Sow, Asmita Samadder, Manindranath Bera. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. Journal of Inorganic Biochemistry 2023, 243 , 112182. https://doi.org/10.1016/j.jinorgbio.2023.112182
    55. Narjala Rama Jyothi, Snehalatha Pulivarthi. Cytotoxic Activity of Schiff Bases and Their Complexes. 2023https://doi.org/10.5772/intechopen.108570
    56. Alina Climova, Ekaterina Pivovarova, Małgorzata Szczesio, Katarzyna Gobis, Dagmara Ziembicka, Agnieszka Korga-Plewko, Joanna Kubik, Magdalena Iwan, Małgorzata Antos-Bielska, Małgorzata Krzyżowska, Agnieszka Czylkowska. Anticancer and antimicrobial activity of new copper (II) complexes. Journal of Inorganic Biochemistry 2023, 240 , 112108. https://doi.org/10.1016/j.jinorgbio.2022.112108
    57. Yunyun Zheng, Kai Wei, Yingying Gao, Ziyan Zhou, Xinhua Zheng, Jiuling Li, Jinxu Qi. Comparative evaluation of the structure and antitumor mechanism of mononuclear and trinucleated thiosemicarbazone Cu(II) complexes. Journal of Inorganic Biochemistry 2023, 240 , 112116. https://doi.org/10.1016/j.jinorgbio.2022.112116
    58. Artadokht Aghaeipour Dehkaei, Kimia Khalatbari, Alireza Emamifar, Somayeh Maghsoomi Taramsari, Sahar Balkhi, Somayeh Mikaeili Ghezeljeh, Selena Gorji, Sevda Gholipoor, Mahboubeh Jahani Sayyad Noveiri, Mohammad Hedayati, Ali Salehzadeh. Cytotoxicity effect of nickel hydroxide nanoparticles functionalized by glutamine and conjugated by thiosemicarbazide on human lung cancer cell line (A549) and evaluation of bax and bcl-2 genes expression. Gene Reports 2022, 29 , 101700. https://doi.org/10.1016/j.genrep.2022.101700
    59. Tirtha Bhattacharjee, Suman Adhikari, Sharmila Bhattacharjee, Sourav Debnath, Arijit Das, Constantin Gabriel Daniliuc, Krishnan Thirumoorthy, Sarubala Malayaperumal, Antara Banerjee, Surajit Pathak, Antonio Frontera. Exploring dithiolate-amine binary ligand systems for the supramolecular assemblies of Ni(II) coordination compounds: Crystal structures, theoretical studies, cytotoxicity studies, and molecular docking studies. Inorganica Chimica Acta 2022, 543 , 121157. https://doi.org/10.1016/j.ica.2022.121157
    60. María Isabel Murillo, Christian Gaiddon, Ronan Le Lagadec. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.967337
    61. Mahendiran Dharmasivam, Mahan Gholam Azad, Rizwana Afroz, Vera Richardson, Patric J. Jansson, Des R. Richardson. The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochimica et Biophysica Acta (BBA) - General Subjects 2022, 1866 (8) , 130152. https://doi.org/10.1016/j.bbagen.2022.130152
    62. DR Richardson, M Gholam Azad, R Afroz, V Richardson, M Dharmasivam. Thiosemicarbazones reprogram pancreatic cancer bidirectional oncogenic signaling between cancer cells and stellate cells to suppress desmoplasia. Future Medicinal Chemistry 2022, 14 (13) , 1005-1017. https://doi.org/10.4155/fmc-2022-0050
    63. Elżbieta U. Stolarczyk, Weronika Strzempek, Marta Łaszcz, Andrzej Leś, Elżbieta Menaszek, Krzysztof Stolarczyk. Thiogenistein—Antioxidant Chemistry, Antitumor Activity, and Structure Elucidation of New Oxidation Products. International Journal of Molecular Sciences 2022, 23 (14) , 7816. https://doi.org/10.3390/ijms23147816
    64. Jaehee Kim, Areum Park, Jieon Hwang, Xianghua Zhao, Jaesung Kwak, Hyun Woo Kim, Minhee Ku, Jaemoon Yang, Tae Il Kim, Kyu-Sung Jeong, Uyeong Choi, Hyuk Lee, Sang Joon Shin. KS10076, a chelator for redox-active metal ions, induces ROS-mediated STAT3 degradation in autophagic cell death and eliminates ALDH1+ stem cells. Cell Reports 2022, 40 (3) , 111077. https://doi.org/10.1016/j.celrep.2022.111077
    65. Yunyun Zheng, Bin Li, Yu Ai, Mengyao Chen, Xinhua Zheng, Jinxu Qi. Synthesis, crystal structures and anti-cancer mechanism of Cu(II) complex derived from 2-acetylpyrazine thiosemicarbazone. Journal of Coordination Chemistry 2022, 75 (9-10) , 1325-1340. https://doi.org/10.1080/00958972.2022.2111660
    66. O.Yu. Selyutina, P.A. Kononova, V.E. Koshman, E.A. Shelepova, M. Gholam Azad, R. Afroz, M. Dharmasivam, Paul V. Bernhardt, N.E. Polyakov, D.R. Richardson. Ascorbate-and iron-driven redox activity of Dp44mT and Emodin facilitates peroxidation of micelles and bicelles. Biochimica et Biophysica Acta (BBA) - General Subjects 2022, 1866 (4) , 130078. https://doi.org/10.1016/j.bbagen.2021.130078
    67. Ming Jiang, Tongfu Yang, Yong Chu, Zhenlei Zhang, Hongbin Sun, Hong Liang, Feng Yang. Design of a novel Pt( ii ) complex to reverse cisplatin-induced resistance in lung cancer via a multi-mechanism. Dalton Transactions 2022, 51 (13) , 5257-5270. https://doi.org/10.1039/D1DT03964D
    68. Bekesho Geleta, Faten S. Tout, Syer Choon Lim, Sumit Sahni, Patric J. Jansson, Minoti V. Apte, Des R. Richardson, Žaklina Kovačević. Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation of the metastasis suppressor NDRG1. Journal of Biological Chemistry 2022, 298 (3) , 101608. https://doi.org/10.1016/j.jbc.2022.101608
    69. Viktor A. Timoshnikov, Olga Yu. Selyutina, Nikolay E. Polyakov, Victoria Didichenko, George J. Kontoghiorghes. Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. International Journal of Molecular Sciences 2022, 23 (3) , 1247. https://doi.org/10.3390/ijms23031247
    70. Touba Eslaminejad, Yaghoub Pourshojaei, Mahmood Naghizadeh, Hoda Eslami, Mohammad Daneshpajouh, Abdolreza Hassanzadeh. Synthesis of some benzylidene thiosemicarbazide derivatives and evaluation of their cytotoxicity on U87, MCF-7, A549, 3T3 and HUVEC cell lines. Journal of the Serbian Chemical Society 2022, 87 (10) , 1125-1142. https://doi.org/10.2298/JSC210630016E
    71. Tharushi P. Wijesinghe, Mahendiran Dharmasivam, Charles C. Dai, Des R. Richardson. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacological Research 2021, 173 , 105889. https://doi.org/10.1016/j.phrs.2021.105889
    72. Jia Shao, Qiang Zhang, Jing Wei, Zhiguang Yuchi, Peng Cao, Shao-Qing Li, Shan Wang, Jing-Yuan Xu, Shuang Yang, Yi Zhang, Jin-Xia Wei, Jin-Lei Tian. Synthesis, crystal structures, anticancer activities and molecular docking studies of novel thiazolidinone Cu( ii ) and Fe( iii ) complexes targeting lysosomes: special emphasis on their binding to DNA/BSA. Dalton Transactions 2021, 50 (38) , 13387-13398. https://doi.org/10.1039/D1DT02180J
    73. Burcu Saygıdeğer Demir, Ghodrat Mahmoudi, Aycan Sezan, Ezgi Derinöz, Eylem Nas, Yasemin Saygideger, Fedor I. Zubkov, Ennio Zangrando, Damir A. Safin. Evaluation of the antitumor activity of a series of the pincer-type metallocomplexes produced from isonicotinohydrazide derivative. Journal of Inorganic Biochemistry 2021, 223 , 111525. https://doi.org/10.1016/j.jinorgbio.2021.111525
    74. , Qianqian Fu. Di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone effectively induces human colorectal carcinoma cell apoptosis via mTOR pathway. Aging Pathobiology and Therapeutics 2021, 3 (3) , 56-62. https://doi.org/10.31491/APT.2021.09.063
    75. Yu‐Shien Sung, Wangbin Wu, Megan A. Ewbank, Rachel D. Utterback, Michael T. Marty, Elisa Tomat. Albumin Conjugates of Thiosemicarbazone and Imidazole‐2‐thione Prochelators: Iron Coordination and Antiproliferative Activity. ChemMedChem 2021, 16 (18) , 2764-2768. https://doi.org/10.1002/cmdc.202100278
    76. Jason Chekmarev, Mahan Gholam Azad, Des R. Richardson. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells 2021, 10 (9) , 2382. https://doi.org/10.3390/cells10092382
    77. Marcelo Melotti, Matheus S. S. Paqui, André L. Amorim, Carla P. de Paula, Marina C. Rocha, Iran Malavazi, Anderson Cunha, Francielli S. Santana, Ronny R. Ribeiro, Rogério A. Gariani, Samuel R. Mendes, Fernando R. Xavier. Polypyridyl iron( iii ) complexes containing long alkyl chains: synthesis, characterization, DFT calculations and biological activity. New Journal of Chemistry 2021, 45 (29) , 12902-12914. https://doi.org/10.1039/D0NJ00895H
    78. Maryam Hosseinkhah, Reza Ghasemian, Faezeh Shokrollahi, Samira Rezaei Mojdehi, Mahboubeh Jahani Sayyad Noveiri, Mohammad Hedayati, Marjan Rezaei, Ali Salehzadeh. Cytotoxic Potential of Nickel Oxide Nanoparticles Functionalized with Glutamic Acid and Conjugated with Thiosemicarbazide (NiO@Glu/TSC) Against Human Gastric Cancer Cells. Journal of Cluster Science 2021, 47 https://doi.org/10.1007/s10876-021-02124-2
    79. Jia-Qi Li, Han Gao, Le Zhai, Le-Yun Sun, Cheng Chen, Jia-Zhu Chigan, Huan-Huan Ding, Ke-Wu Yang. Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases. Bioorganic & Medicinal Chemistry 2021, 38 , 116128. https://doi.org/10.1016/j.bmc.2021.116128
    80. Erendra Manandhar, Ashley D. G. Johnson, William M. Watson, Shelby D. Dickerson, Gyan S. Sahukhal, Mohamed O. Elasri, Frank R. Fronczek, Peter J. Cragg, Karl J. Wallace. Detection of ferric ions in a gram-positive bacterial cell: Staphylococcus aureus. Journal of Coordination Chemistry 2021, 74 (1-3) , 380-401. https://doi.org/10.1080/00958972.2020.1868042
    81. Zhang-Xu He, Jin-Ling Huo, Yun-Peng Gong, Qi An, Xin Zhang, Hui Qiao, Fei-Fei Yang, Xin-Hui Zhang, Le-Min Jiao, Hong-Min Liu, Li-Ying Ma, Wen Zhao. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. European Journal of Medicinal Chemistry 2021, 210 , 112970. https://doi.org/10.1016/j.ejmech.2020.112970
    82. Hai-Yan Wang, Li Weng, Hong-Yan Yang, Xi Yang, Xiao-Ling Dong, Xiao-Mei Tan, Yan Wang. Heterometallic coordination polymers: Treatment activity on diabetic foot by reducing the excess inflammatory response in the plantar tissue. Journal of Chemical Research 2021, 45 (1-2) , 49-55. https://doi.org/10.1177/1747519820923277
    83. Junmiao Wu, Tongfu Yang, Xiaojun Wang, Wenjuan Li, Min Pang, Hongbin Sun, Hong Liang, Feng Yang. Development of a multi-target anticancer Sn( ii ) pyridine-2-carboxaldehyde thiosemicarbazone complex. Dalton Transactions 2021, 88 https://doi.org/10.1039/D1DT01272J
    84. Éva A. Enyedy, Nóra V. May, Veronika F. S. Pape, Petra Heffeter, Gergely Szakács, Bernhard K. Keppler, Christian R. Kowol. Complex formation and cytotoxicity of Triapine derivatives: a comparative solution study on the effect of the chalcogen atom and NH-methylation. Dalton Transactions 2020, 49 (46) , 16887-16902. https://doi.org/10.1039/D0DT03465G
    85. Silvia Paukovcekova, Jan Skoda, Jakub Neradil, Erika Mikulenkova, Petr Chlapek, Jaroslav Sterba, Des R. Richardson, Renata Veselska. Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers 2020, 12 (12) , 3781. https://doi.org/10.3390/cancers12123781
    86. S. Krishan, S. Sahni, D.R. Richardson. The anti-tumor agent, Dp44mT, promotes nuclear translocation of TFEB via inhibition of the AMPK-mTORC1 axis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020, 1866 (12) , 165970. https://doi.org/10.1016/j.bbadis.2020.165970
    87. Kyung Chan Park, Des R. Richardson. The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents. Biochimica et Biophysica Acta (BBA) - General Subjects 2020, 1864 (10) , 129650. https://doi.org/10.1016/j.bbagen.2020.129650
    88. Waleska R. P. Costa, Rafael A. C. Souza, Victor M. Deflon, Carolina G. Oliveira. Preparation, structural characterization, voltammetry and Hirshfeld surface analysis of homoleptic iron(III) thiosemicarbazone complexes. Transition Metal Chemistry 2020, 45 (7) , 511-521. https://doi.org/10.1007/s11243-020-00404-w
    89. A.M. Sólimo, M.C. Soraires Santacruz, S. Vanzulli, O. Coggiola, E. Bal de Kier Joffé, L. Finkielsztein, M.A. Callero. Anti-metastatic action of an N4-aryl substituted thiosemicarbazone on advanced triple negative breast cancer.. Heliyon 2020, 6 (10) , e05161. https://doi.org/10.1016/j.heliyon.2020.e05161
    90. Kyung Chan Park, Jasmina Paluncic, Zaklina Kovacevic, Des R. Richardson. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radical Biology and Medicine 2020, 157 , 154-175. https://doi.org/10.1016/j.freeradbiomed.2019.05.020
    91. S. Chiang, M.L.H. Huang, D.R. Richardson. Treatment of dilated cardiomyopathy in a mouse model of Friedreich’s ataxia using N-acetylcysteine and identification of alterations in microRNA expression that could be involved in its pathogenesis. Pharmacological Research 2020, 159 , 104994. https://doi.org/10.1016/j.phrs.2020.104994
    92. Miljan N. M. Milunović, Oleg Palamarciuc, Angela Sirbu, Sergiu Shova, Dan Dumitrescu, Dana Dvoranová, Peter Rapta, Tatsiana V. Petrasheuskaya, Eva A. Enyedy, Gabriella Spengler, Marija Ilic, Harald H. Sitte, Gert Lubec, Vladimir B. Arion. Insight into the Anticancer Activity of Copper(II) 5-Methylenetrimethylammonium-Thiosemicarbazonates and Their Interaction with Organic Cation Transporters. Biomolecules 2020, 10 (9) , 1213. https://doi.org/10.3390/biom10091213
    93. Kateryna Ohui, Iryna Stepanenko, Iuliana Besleaga, Maria V. Babak, Radu Stafi, Denisa Darvasiova, Gerald Giester, Vivien Pósa, Eva A. Enyedy, Daniel Vegh, Peter Rapta, Wee Han Ang, Ana Popović-Bijelić, Vladimir B. Arion. Triapine Derivatives Act as Copper Delivery Vehicles to Induce Deadly Metal Overload in Cancer Cells. Biomolecules 2020, 10 (9) , 1336. https://doi.org/10.3390/biom10091336
    94. Mathilde Bouché, Cécilia Hognon, Stéphanie Grandemange, Antonio Monari, Philippe C. Gros. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Transactions 2020, 49 (33) , 11451-11466. https://doi.org/10.1039/D0DT02135K
    95. Sumit Sahni, Josef Gillson, Kyung Chan Park, Shannon Chiang, Lionel Yi Wen Leck, Patric J. Jansson, Des R. Richardson. NDRG1 suppresses basal and hypoxia-induced autophagy at both the initiation and degradation stages and sensitizes pancreatic cancer cells to lysosomal membrane permeabilization. Biochimica et Biophysica Acta (BBA) - General Subjects 2020, 1864 (8) , 129625. https://doi.org/10.1016/j.bbagen.2020.129625
    96. C.K. Holley, S. Majd. Examining the Anti-Tumor Activity of Dp44mT-Loaded Nanoparticles In Vitro. 2020, 5029-5032. https://doi.org/10.1109/EMBC44109.2020.9176197
    97. Bhushan Shakya, Paras Nath Yadav. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini-Reviews in Medicinal Chemistry 2020, 20 (8) , 638-661. https://doi.org/10.2174/1389557519666191029130310
    98. Bi-Qun Zou, Xiao-Ling Huang, Qi-Pin Qin, Zhen-Feng Wang, Xue-Yu Wu, Ming-Xiong Tan, Hong Liang. Transition metal complexes with 6,7-dichloro-5,8-quinolinedione as mitochondria-targeted anticancer agents. Polyhedron 2020, 181 , 114482. https://doi.org/10.1016/j.poly.2020.114482
    99. S. Krishan, S. Sahni, L.Y.W. Leck, P.J. Jansson, D.R. Richardson. Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020, 1866 (5) , 165657. https://doi.org/10.1016/j.bbadis.2019.165657
    100. Zhixuan Wu, Duraippandi Palanimuthu, Nady Braidy, Nor Hawani Salikin, Suhelen Egan, Michael L.H. Huang, Des R. Richardson. Novel multifunctional iron chelators of the aroyl nicotinoyl hydrazone class that markedly enhance cellular NAD + /NADH ratios. British Journal of Pharmacology 2020, 177 (9) , 1967-1987. https://doi.org/10.1111/bph.14963
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect