ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Benchmarking Sets for Molecular Docking

View Author Information
Department of Pharmaceutical Chemistry, University of California San Francisco, QB3 Building, 1700 4th Street, Box 2550, San Francisco, California 94143-2550
Cite this: J. Med. Chem. 2006, 49, 23, 6789–6801
Publication Date (Web):October 26, 2006
https://doi.org/10.1021/jm0608356
Copyright © 2006 American Chemical Society

    Article Views

    13179

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (913 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Ligand enrichment among top-ranking hits is a key metric of molecular docking. To avoid bias, decoys should resemble ligands physically, so that enrichment is not simply a separation of gross features, yet be chemically distinct from them, so that they are unlikely to be binders. We have assembled a directory of useful decoys (DUD), with 2950 ligands for 40 different targets. Every ligand has 36 decoy molecules that are physically similar but topologically distinct, leading to a database of 98 266 compounds. For most targets, enrichment was at least half a log better with uncorrected databases such as the MDDR than with DUD, evidence of bias in the former. These calculations also allowed 40 × 40 cross-docking, where the enrichments of each ligand set could be compared for all 40 targets, enabling a specificity metric for the docking screens. DUD is freely available online as a benchmarking set for docking at http://blaster.docking.org/dud/.

    *

     To whom correspondence should be addressed. B.K.S:  phone, 415-514-4126; fax, 415-514-4260; E-mail, [email protected]. J.J.I:  phone, 415-514-4127; fax, 415-514-4260; e-mail, [email protected].

    Abbreviations:  DUD, directory of useful decoys; EF, enrichment factor; MDDR, MDL Drug Data Report; Tc, Tanimoto coefficient; ROC, receiver operating characteristic; ACE, angiotensin-converting enzyme; AChE, acetylcholinesterase; ADA, adenosine deaminase; ALR2, aldose reductase; AmpC, AmpC β-lactamase; AR, androgen receptor; CDK2, cyclin-dependent kinase 2; COMT, catechol O-methyltransferase; COX-1, cyclooxygenase-1; COX-2, cyclooxygenase-2; DHFR, dihydrofolate reductase; EGFr, epidermal growth factor receptor; ER, estrogen receptor; FGFr1, fibroblast growth factor receptor kinase; FXa, factor Xa; GART, glycinamide ribonucleotide transformylase; GPB, glycogen phosphorylase β; GR, glucocorticoid receptor; HIVPR, HIV protease; HIVRT, HIV reverse transcriptase; HMGR, hydroxymethylglutaryl-CoA reductase; HSP90, human heat shock protein 90; InhA, enoyl ACP reductase; MR, mineralocorticoid receptor; NA, neuraminidase; P38 MAP, P38 mitogen activated protein; PARP, poly(ADP-ribose) polymerase; PDE5, phosphodiesterase 5; PDGFrb, platelet derived growth factor receptor kinase; PNP, purine nucleoside phosphorylase; PPARg, peroxisome proliferator activated receptor γ; PR, progesterone receptor; RXRa, retinoic X receptor α; SAHH, S-adenosyl-homocysteine hydrolase; SRC, tyrosine kinase SRC; TK, thymidine kinase; VEGFr2, vascular endothelial growth factor receptor; ATP, adenosine-5‘-triphosphate; β-GAR, β-glycinamide ribonucleotide; NAD(P)-(H), nicotinamide adenine dinucleotide (phosphate)-(reduced); PLP, pyridoxal-5‘-phosphate.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Schematic description of the automated docking pipeline, selected property distribution historgrams and 2D depictions of typical molecules for annotated ligands and their decoys, property distribution histograms of Rognan's ligands and decoys, enrichment plots comparing the semiautomated with the fully automated docking procedure, and complete listings of the modified parameter files used. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 1039 publications.

    1. Furyal Ahmed, Charles L. Brooks, III. FASTDock: A Pipeline for Allosteric Drug Discovery. Journal of Chemical Information and Modeling 2023, 63 (22) , 7219-7227. https://doi.org/10.1021/acs.jcim.3c00895
    2. Joseph C. R. Thacker, David J. Bray, Patrick B. Warren, Richard L. Anderson. Can Machine Learning Predict the Phase Behavior of Surfactants?. The Journal of Physical Chemistry B 2023, 127 (16) , 3711-3727. https://doi.org/10.1021/acs.jpcb.2c08232
    3. Izaz Monir Kamal, Saikat Chakrabarti. MetaDOCK: A Combinatorial Molecular Docking Approach. ACS Omega 2023, 8 (6) , 5850-5860. https://doi.org/10.1021/acsomega.2c07619
    4. Deng Pan, Lijun Quan, Zhi Jin, Taoning Chen, Xuejiao Wang, Jingxin Xie, Tingfang Wu, Qiang Lyu. Multisource Attention-Mechanism-Based Encoder–Decoder Model for Predicting Drug–Drug Interaction Events. Journal of Chemical Information and Modeling 2022, 62 (23) , 6258-6270. https://doi.org/10.1021/acs.jcim.2c01112
    5. Connor J. Morris, Jacob A. Stern, Brenden Stark, Max Christopherson, Dennis Della Corte. MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery. Journal of Chemical Information and Modeling 2022, 62 (22) , 5342-5350. https://doi.org/10.1021/acs.jcim.2c00705
    6. Rit Pratik Mishra, Surbhi Gupta, Anurag Singh Rathore, Gaurav Goel. Multi-Level High-Throughput Screening for Discovery of Ligands That Inhibit Insulin Aggregation. Molecular Pharmaceutics 2022, 19 (11) , 3770-3783. https://doi.org/10.1021/acs.molpharmaceut.2c00219
    7. Min Xu, Cheng Shen, Jincai Yang, Qing Wang, Niu Huang. Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening. ACS Omega 2022, 7 (43) , 39417-39428. https://doi.org/10.1021/acsomega.2c05826
    8. Stefanie Kampen, David Rodríguez, Morten Jørgensen, Monika Kruszyk-Kujawa, Xinyan Huang, Michael Collins, Jr, Noel Boyle, Damien Maurel, Axel Rudling, Guillaume Lebon, Jens Carlsson. Structure-Based Discovery of Negative Allosteric Modulators of the Metabotropic Glutamate Receptor 5. ACS Chemical Biology 2022, 17 (10) , 2744-2752. https://doi.org/10.1021/acschembio.2c00234
    9. Elisabeth Kallert, Tim R. Fischer, Simon Schneider, Maike Grimm, Mark Helm, Christian Kersten. Protein-Based Virtual Screening Tools Applied for RNA–Ligand Docking Identify New Binders of the preQ1-Riboswitch. Journal of Chemical Information and Modeling 2022, 62 (17) , 4134-4148. https://doi.org/10.1021/acs.jcim.2c00751
    10. Chao Shen, Xujun Zhang, Yafeng Deng, Junbo Gao, Dong Wang, Lei Xu, Peichen Pan, Tingjun Hou, Yu Kang. Boosting Protein–Ligand Binding Pose Prediction and Virtual Screening Based on Residue–Atom Distance Likelihood Potential and Graph Transformer. Journal of Medicinal Chemistry 2022, 65 (15) , 10691-10706. https://doi.org/10.1021/acs.jmedchem.2c00991
    11. Haoxi Li, Rosa Mirabel, Joseph Zimmerman, Ion Ghiviriga, Darian K. Phidd, Nicole Horenstein, Nikhil M. Urs. Structure–Functional Selectivity Relationship Studies on A-86929 Analogs and Small Aryl Fragments toward the Discovery of Biased Dopamine D1 Receptor Agonists. ACS Chemical Neuroscience 2022, 13 (12) , 1818-1831. https://doi.org/10.1021/acschemneuro.2c00235
    12. Chao Yang, Yingkai Zhang. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein–Ligand Scoring Functions. Journal of Chemical Information and Modeling 2022, 62 (11) , 2696-2712. https://doi.org/10.1021/acs.jcim.2c00485
    13. Xujun Zhang, Chao Shen, Ben Liao, Dejun Jiang, Jike Wang, Zhenxing Wu, Hongyan Du, Tianyue Wang, Wenbo Huo, Lei Xu, Dongsheng Cao, Chang-Yu Hsieh, Tingjun Hou. TocoDecoy: A New Approach to Design Unbiased Datasets for Training and Benchmarking Machine-Learning Scoring Functions. Journal of Medicinal Chemistry 2022, 65 (11) , 7918-7932. https://doi.org/10.1021/acs.jmedchem.2c00460
    14. Valery R. Polyakov, Vadim Alexandrov, Andreas Maderna, Krishna Bajjuri, Xiaofan Li, Sihong Zhou. Indexing Ultrafast Shape-Based Descriptors in MongoDB to Identify TLR4 Pathway Agonists. Journal of Chemical Information and Modeling 2022, 62 (10) , 2446-2455. https://doi.org/10.1021/acs.jcim.2c00156
    15. Zhixiang Zhao, Qingbo Xu, Wei Chen, Siming Wang, Qing Yang, Yanhong Dong, Jianjun Zhang. Rational Design, Synthesis, and Biological Investigations of N-Methylcarbamoylguanidinyl Azamacrolides as a Novel Chitinase Inhibitor. Journal of Agricultural and Food Chemistry 2022, 70 (16) , 4889-4898. https://doi.org/10.1021/acs.jafc.2c00016
    16. Tomomi Shimazaki, Masanori Tachikawa. Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2. ACS Omega 2022, 7 (12) , 10372-10381. https://doi.org/10.1021/acsomega.1c06976
    17. Teresa Maria Creanza, Giuseppe Lamanna, Pietro Delre, Marialessandra Contino, Nicola Corriero, Michele Saviano, Giuseppe Felice Mangiatordi, Nicola Ancona. DeLA-Drug: A Deep Learning Algorithm for Automated Design of Druglike Analogues. Journal of Chemical Information and Modeling 2022, 62 (6) , 1411-1424. https://doi.org/10.1021/acs.jcim.2c00205
    18. Sami T. Kurkinen, Jukka V. Lehtonen, Olli T. Pentikäinen, Pekka A. Postila. Optimization of Cavity-Based Negative Images to Boost Docking Enrichment in Virtual Screening. Journal of Chemical Information and Modeling 2022, 62 (4) , 1100-1112. https://doi.org/10.1021/acs.jcim.1c01145
    19. Joel Ricci-Lopez, Sergio A. Aguila, Michael K. Gilson, Carlos A. Brizuela. Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning. Journal of Chemical Information and Modeling 2021, 61 (11) , 5362-5376. https://doi.org/10.1021/acs.jcim.1c00511
    20. Yujin Wu, Charles L. Brooks III. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy. Journal of Chemical Information and Modeling 2021, 61 (11) , 5535-5549. https://doi.org/10.1021/acs.jcim.1c01078
    21. Dong Chen, Jiaxin Zheng, Guo-Wei Wei, Feng Pan. Extracting Predictive Representations from Hundreds of Millions of Molecules. The Journal of Physical Chemistry Letters 2021, 12 (44) , 10793-10801. https://doi.org/10.1021/acs.jpclett.1c03058
    22. Manuel A. Llanos, Melisa E. Gantner, Santiago Rodriguez, Lucas N. Alberca, Carolina L. Bellera, Alan Talevi, Luciana Gavernet. Strengths and Weaknesses of Docking Simulations in the SARS-CoV-2 Era: the Main Protease (Mpro) Case Study. Journal of Chemical Information and Modeling 2021, 61 (8) , 3758-3770. https://doi.org/10.1021/acs.jcim.1c00404
    23. Omar Casanova-Alvarez, Aliuska Morales-Helguera, Miguel Ángel Cabrera-Pérez, Reinaldo Molina-Ruiz, Christophe Molina. A Novel Automated Framework for QSAR Modeling of Highly Imbalanced Leishmania High-Throughput Screening Data. Journal of Chemical Information and Modeling 2021, 61 (7) , 3213-3231. https://doi.org/10.1021/acs.jcim.0c01439
    24. Hongyi Zhou, Hongnan Cao, Jeffrey Skolnick. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening. Journal of Chemical Information and Modeling 2021, 61 (4) , 2074-2089. https://doi.org/10.1021/acs.jcim.0c01160
    25. Roy González-Alemán, Nicolas Chevrollier, Manuel Simoes, Luis Montero-Cabrera, Fabrice Leclerc. MCSS-Based Predictions of Binding Mode and Selectivity of Nucleotide Ligands. Journal of Chemical Theory and Computation 2021, 17 (4) , 2599-2618. https://doi.org/10.1021/acs.jctc.0c01339
    26. Reed M. Stein, Ying Yang, Trent E. Balius, Matt J. O’Meara, Jiankun Lyu, Jennifer Young, Khanh Tang, Brian K. Shoichet, John J. Irwin. Property-Unmatched Decoys in Docking Benchmarks. Journal of Chemical Information and Modeling 2021, 61 (2) , 699-714. https://doi.org/10.1021/acs.jcim.0c00598
    27. Gergely M. Makara, László Kovács, István Szabó, Gábor Pőcze. Derivatization Design of Synthetically Accessible Space for Optimization: In Silico Synthesis vs Deep Generative Design. ACS Medicinal Chemistry Letters 2021, 12 (2) , 185-194. https://doi.org/10.1021/acsmedchemlett.0c00540
    28. Minsup Kim, Kichul Park, Wonsang Kim, Sangwon Jung, Art E. Cho. Target-Specific Drug Design Method Combining Deep Learning and Water Pharmacophore. Journal of Chemical Information and Modeling 2021, 61 (1) , 36-45. https://doi.org/10.1021/acs.jcim.0c00757
    29. Hugo Guterres, Sang-Jun Park, Wei Jiang, Wonpil Im. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures. Journal of Chemical Information and Modeling 2021, 61 (1) , 535-546. https://doi.org/10.1021/acs.jcim.0c01354
    30. Jacques Boitreaud, Vincent Mallet, Carlos Oliver, Jérôme Waldispühl. OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery. Journal of Chemical Information and Modeling 2020, 60 (12) , 5658-5666. https://doi.org/10.1021/acs.jcim.0c00833
    31. A. Acharya, R. Agarwal, M. B. Baker, J. Baudry, D. Bhowmik, S. Boehm, K. G. Byler, S. Y. Chen, L. Coates, C. J. Cooper, O. Demerdash, I. Daidone, J. D. Eblen, S. Ellingson, S. Forli, J. Glaser, J. C. Gumbart, J. Gunnels, O. Hernandez, S. Irle, D. W. Kneller, A. Kovalevsky, J. Larkin, T. J. Lawrence, S. LeGrand, S.-H. Liu, J.C. Mitchell, G. Park, J.M. Parks, A. Pavlova, L. Petridis, D. Poole, L. Pouchard, A. Ramanathan, D. M. Rogers, D. Santos-Martins, A. Scheinberg, A. Sedova, Y. Shen, J. C. Smith, M. D. Smith, C. Soto, A. Tsaris, M. Thavappiragasam, A. F. Tillack, J. V. Vermaas, V. Q. Vuong, J. Yin, S. Yoo, M. Zahran, L. Zanetti-Polzi. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. Journal of Chemical Information and Modeling 2020, 60 (12) , 5832-5852. https://doi.org/10.1021/acs.jcim.0c01010
    32. Ya Gao, Yichi Zhang, Fengshou Wu, Jianfeng Pei, Xiaogang Luo, Xiulian Ju, Chunqing Zhao, Genyan Liu. Exploring the Interaction Mechanism of Desmethyl-broflanilide in Insect GABA Receptors and Screening Potential Antagonists by In Silico Simulations. Journal of Agricultural and Food Chemistry 2020, 68 (50) , 14768-14780. https://doi.org/10.1021/acs.jafc.0c05728
    33. Ann E. Cleves, Ajay N. Jain. Structure- and Ligand-Based Virtual Screening on DUD-E+: Performance Dependence on Approximations to the Binding Pocket. Journal of Chemical Information and Modeling 2020, 60 (9) , 4296-4310. https://doi.org/10.1021/acs.jcim.0c00115
    34. Jonathan Fine, Matthew Muhoberac, Guillaume Fraux, Gaurav Chopra. DUBS: A Framework for Developing Directory of Useful Benchmarking Sets for Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4137-4143. https://doi.org/10.1021/acs.jcim.0c00122
    35. Viet-Khoa Tran-Nguyen, Célien Jacquemard, Didier Rognan. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4263-4273. https://doi.org/10.1021/acs.jcim.0c00155
    36. W. Patrick Walters, (Guest Editor)Renxiao Wang (Associate Editor). New Trends in Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4109-4111. https://doi.org/10.1021/acs.jcim.0c01009
    37. Joseph A. Morrone, Jeffrey K. Weber, Tien Huynh, Heng Luo, Wendy D. Cornell. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein–Ligand Binding Mode Prediction over a Baseline Docking Approach. Journal of Chemical Information and Modeling 2020, 60 (9) , 4170-4179. https://doi.org/10.1021/acs.jcim.9b00927
    38. Wen-Ling Ye, Chao Shen, Guo-Li Xiong, Jun-Jie Ding, Ai-Ping Lu, Ting-Jun Hou, Dong-Sheng Cao. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring. Journal of Chemical Information and Modeling 2020, 60 (9) , 4216-4230. https://doi.org/10.1021/acs.jcim.9b00977
    39. Javier Vazquez, Alessandro Deplano, Albert Herrero, Enric Gibert, Enric Herrero, F. Javier Luque. Assessing the Performance of Mixed Strategies To Combine Lipophilic Molecular Similarity and Docking in Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4231-4245. https://doi.org/10.1021/acs.jcim.9b01191
    40. Oya Wahl, Thomas Sander. Tautobase: An Open Tautomer Database. Journal of Chemical Information and Modeling 2020, 60 (3) , 1085-1089. https://doi.org/10.1021/acs.jcim.0c00035
    41. Jonathan Fine, Janez Konc, Ram Samudrala, Gaurav Chopra. CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible Docking Algorithm Using Generalized Statistical Potentials. Journal of Chemical Information and Modeling 2020, 60 (3) , 1509-1527. https://doi.org/10.1021/acs.jcim.9b00686
    42. Minyi Su, Guoqin Feng, Zhihai Liu, Yan Li, Renxiao Wang. Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set?. Journal of Chemical Information and Modeling 2020, 60 (3) , 1122-1136. https://doi.org/10.1021/acs.jcim.9b00714
    43. Maritza Hernandez, Guo Liang Gan, Kirby Linvill, Carl Dukatz, Jun Feng, Govinda Bhisetti. A Quantum-Inspired Method for Three-Dimensional Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling 2019, 59 (10) , 4475-4485. https://doi.org/10.1021/acs.jcim.9b00195
    44. Gudong Li, Wei Li, Yuting Xie, Xiaobo Wan, Guojun Zheng, Niu Huang, Yu Zhou. Discovery of Novel Pim-1 Kinase Inhibitors with a Flexible-Receptor Docking Protocol. Journal of Chemical Information and Modeling 2019, 59 (10) , 4116-4119. https://doi.org/10.1021/acs.jcim.9b00494
    45. Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider, Shengyong Yang. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews 2019, 119 (18) , 10520-10594. https://doi.org/10.1021/acs.chemrev.8b00728
    46. Yunierkis Perez-Castillo, Stellamaris Sotomayor-Burneo, Karina Jimenes-Vargas, Mario Gonzalez-Rodriguez, Maykel Cruz-Monteagudo, Vinicio Armijos-Jaramillo, M. Natália D. S. Cordeiro, Fernanda Borges, Aminael Sánchez-Rodríguez, Eduardo Tejera. CompScore: Boosting Structure-Based Virtual Screening Performance by Incorporating Docking Scoring Function Components into Consensus Scoring. Journal of Chemical Information and Modeling 2019, 59 (9) , 3655-3666. https://doi.org/10.1021/acs.jcim.9b00343
    47. Süleyman Selim Çınaroğlu, Emel Timuçin. Comparative Assessment of Seven Docking Programs on a Nonredundant Metalloprotein Subset of the PDBbind Refined. Journal of Chemical Information and Modeling 2019, 59 (9) , 3846-3859. https://doi.org/10.1021/acs.jcim.9b00346
    48. Juan Pablo Arcon, Lucas A. Defelipe, Elias D. Lopez, Osvaldo Burastero, Carlos P. Modenutti, Xavier Barril, Marcelo A. Marti, Adrian G. Turjanski. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening. Journal of Chemical Information and Modeling 2019, 59 (8) , 3572-3583. https://doi.org/10.1021/acs.jcim.9b00371
    49. Zijian Qin, Yao Xi, Shengde Zhang, Guiping Tu, Aixia Yan. Classification of Cyclooxygenase-2 Inhibitors Using Support Vector Machine and Random Forest Methods. Journal of Chemical Information and Modeling 2019, 59 (5) , 1988-2008. https://doi.org/10.1021/acs.jcim.8b00876
    50. Kelly L. Damm-Ganamet, Nidhi Arora, Stephane Becart, James P. Edwards, Alec D. Lebsack, Heather M. McAllister, Marina I. Nelen, Navin L. Rao, Lori Westover, John J. M. Wiener, Taraneh Mirzadegan. Accelerating Lead Identification by High Throughput Virtual Screening: Prospective Case Studies from the Pharmaceutical Industry. Journal of Chemical Information and Modeling 2019, 59 (5) , 2046-2062. https://doi.org/10.1021/acs.jcim.8b00941
    51. Angela Lopez-del Rio, Alfons Nonell-Canals, David Vidal, Alexandre Perera-Lluna. Evaluation of Cross-Validation Strategies in Sequence-Based Binding Prediction Using Deep Learning. Journal of Chemical Information and Modeling 2019, 59 (4) , 1645-1657. https://doi.org/10.1021/acs.jcim.8b00663
    52. Jochen Sieg, Florian Flachsenberg, Matthias Rarey. In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2019, 59 (3) , 947-961. https://doi.org/10.1021/acs.jcim.8b00712
    53. Benjamin P. Brown, Jeffrey Mendenhall, Jens Meiler. BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Pharmacophore Mapping. Journal of Chemical Information and Modeling 2019, 59 (2) , 689-701. https://doi.org/10.1021/acs.jcim.9b00020
    54. Ting Ran, Wenjuan Li, Bingling Peng, Binglan Xie, Tao Lu, Shuai Lu, Wen Liu. Virtual Screening with a Structure-Based Pharmacophore Model to Identify Small-Molecule Inhibitors of CARM1. Journal of Chemical Information and Modeling 2019, 59 (1) , 522-534. https://doi.org/10.1021/acs.jcim.8b00610
    55. Iuri Casciuc, Yuliana Zabolotna, Dragos Horvath, Gilles Marcou, Jürgen Bajorath, Alexandre Varnek. Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?. Journal of Chemical Information and Modeling 2019, 59 (1) , 564-572. https://doi.org/10.1021/acs.jcim.8b00650
    56. Aman Chandra Kaushik, Ajay Kumar, Ashfaq Ur Rehman, Muhammad Junaid, Abbas Khan, Shiv Bharadwaj, Shakti Sahi, Dong-Qing Wei. Deciphering G-Protein-Coupled Receptor 119 Agonists as Promising Strategy against Type 2 Diabetes Using Systems Biology Approach. ACS Omega 2018, 3 (12) , 18214-18226. https://doi.org/10.1021/acsomega.8b01941
    57. Hongyi Zhou, Hongnan Cao, Jeffrey Skolnick. FINDSITEcomb2.0: A New Approach for Virtual Ligand Screening of Proteins and Virtual Target Screening of Biomolecules. Journal of Chemical Information and Modeling 2018, 58 (11) , 2343-2354. https://doi.org/10.1021/acs.jcim.8b00309
    58. Tamir Dingjan, Émilie Gillon, Anne Imberty, Serge Pérez, Alexander Titz, Paul A. Ramsland, Elizabeth Yuriev. Virtual Screening Against Carbohydrate-Binding Proteins: Evaluation and Application to Bacterial Burkholderia ambifaria Lectin. Journal of Chemical Information and Modeling 2018, 58 (9) , 1976-1989. https://doi.org/10.1021/acs.jcim.8b00185
    59. Jie Xia, Terry-Elinor Reid, Song Wu, Liangren Zhang, Xiang Simon Wang. Maximal Unbiased Benchmarking Data Sets for Human Chemokine Receptors and Comparative Analysis. Journal of Chemical Information and Modeling 2018, 58 (5) , 1104-1120. https://doi.org/10.1021/acs.jcim.8b00004
    60. Niamh M. O’Boyle, Irene Barrett, Lisa M. Greene, Miriam Carr, Darren Fayne, Brendan Twamley, Andrew J. S. Knox, Niall O. Keely, Daniela M. Zisterer, and Mary J. Meegan . Lead Optimization of Benzoxepin-Type Selective Estrogen Receptor (ER) Modulators and Downregulators with Subtype-Specific ERα and ERβ Activity. Journal of Medicinal Chemistry 2018, 61 (2) , 514-534. https://doi.org/10.1021/acs.jmedchem.6b01917
    61. Francesca Spyrakis, Giuseppe Celenza, Francesca Marcoccia, Matteo Santucci, Simon Cross, Pierangelo Bellio, Laura Cendron, Mariagrazia Perilli, and Donatella Tondi . Structure-Based Virtual Screening for the Discovery of Novel Inhibitors of New Delhi Metallo-β-lactamase-1. ACS Medicinal Chemistry Letters 2018, 9 (1) , 45-50. https://doi.org/10.1021/acsmedchemlett.7b00428
    62. Axel Rudling, Robert Gustafsson, Ingrid Almlöf, Evert Homan, Martin Scobie, Ulrika Warpman Berglund, Thomas Helleday, Pål Stenmark, and Jens Carlsson . Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Journal of Medicinal Chemistry 2017, 60 (19) , 8160-8169. https://doi.org/10.1021/acs.jmedchem.7b01006
    63. Melisa E. Gantner, Roxana N. Peroni, Juan F. Morales, María L. Villalba, María E. Ruiz, and Alan Talevi . Development and Validation of a Computational Model Ensemble for the Early Detection of BCRP/ABCG2 Substrates during the Drug Design Stage. Journal of Chemical Information and Modeling 2017, 57 (8) , 1868-1880. https://doi.org/10.1021/acs.jcim.7b00016
    64. Yuna Yan, Weijun Wang, Zhaoxi Sun, John Z. H. Zhang, and Changge Ji . Protein–Ligand Empirical Interaction Components for Virtual Screening. Journal of Chemical Information and Modeling 2017, 57 (8) , 1793-1806. https://doi.org/10.1021/acs.jcim.7b00017
    65. Paul C. D. Hawkins . Conformation Generation: The State of the Art. Journal of Chemical Information and Modeling 2017, 57 (8) , 1747-1756. https://doi.org/10.1021/acs.jcim.7b00221
    66. Leandro Radusky, Sergio Ruiz-Carmona, Carlos Modenutti, Xavier Barril, Adrian G. Turjanski, and Marcelo A. Martí . LigQ: A Webserver to Select and Prepare Ligands for Virtual Screening. Journal of Chemical Information and Modeling 2017, 57 (8) , 1741-1746. https://doi.org/10.1021/acs.jcim.7b00241
    67. Natalia Khuri, Arik A. Zur, Matthias B. Wittwer, Lawrence Lin, Sook Wah Yee, Andrej Sali, and Kathleen M. Giacomini . Computational Discovery and Experimental Validation of Inhibitors of the Human Intestinal Transporter OATP2B1. Journal of Chemical Information and Modeling 2017, 57 (6) , 1402-1413. https://doi.org/10.1021/acs.jcim.6b00720
    68. Ting-Ting Yao, Shao-Wei Fang, Zhong-Shan Li, Dou-Xin Xiao, Jing-Li Cheng, Hua-Zhou Ying, Yong-Jun Du, Jin-Hao Zhao, and Xiao-Wu Dong . Discovery of Novel Succinate Dehydrogenase Inhibitors by the Integration of in Silico Library Design and Pharmacophore Mapping. Journal of Agricultural and Food Chemistry 2017, 65 (15) , 3204-3211. https://doi.org/10.1021/acs.jafc.7b00249
    69. Eugene C. Chen, Natalia Khuri, Xiaomin Liang, Adrian Stecula, Huan-Chieh Chien, Sook Wah Yee, Yong Huang, Andrej Sali, and Kathleen M. Giacomini . Discovery of Competitive and Noncompetitive Ligands of the Organic Cation Transporter 1 (OCT1; SLC22A1). Journal of Medicinal Chemistry 2017, 60 (7) , 2685-2696. https://doi.org/10.1021/acs.jmedchem.6b01317
    70. Fredrik Svensson, Ulf Norinder, and Andreas Bender . Improving Screening Efficiency through Iterative Screening Using Docking and Conformal Prediction. Journal of Chemical Information and Modeling 2017, 57 (3) , 439-444. https://doi.org/10.1021/acs.jcim.6b00532
    71. Dawid Warszycki, Manuel Rueda, Stefan Mordalski, Kurt Kristiansen, Grzegorz Satała, Krzysztof Rataj, Zdzisław Chilmonczyk, Ingebrigt Sylte, Ruben Abagyan, and Andrzej J. Bojarski . From Homology Models to a Set of Predictive Binding Pockets–a 5-HT1A Receptor Case Study. Journal of Chemical Information and Modeling 2017, 57 (2) , 311-321. https://doi.org/10.1021/acs.jcim.6b00263
    72. Charly Empereur-Mot, Jean-François Zagury, and Matthieu Montes . Screening Explorer–An Interactive Tool for the Analysis of Screening Results. Journal of Chemical Information and Modeling 2016, 56 (12) , 2281-2286. https://doi.org/10.1021/acs.jcim.6b00283
    73. Janaina Cruz Pereira, Ernesto Raúl Caffarena, and Cicero Nogueira dos Santos . Boosting Docking-Based Virtual Screening with Deep Learning. Journal of Chemical Information and Modeling 2016, 56 (12) , 2495-2506. https://doi.org/10.1021/acs.jcim.6b00355
    74. Phani Ghanakota and Heather A. Carlson . Driving Structure-Based Drug Discovery through Cosolvent Molecular Dynamics. Journal of Medicinal Chemistry 2016, 59 (23) , 10383-10399. https://doi.org/10.1021/acs.jmedchem.6b00399
    75. Yu-Chen Chen, Robert Tolbert, Alex M. Aronov, Georgia McGaughey, W. Patrick Walters, and Lidio Meireles . Prediction of Protein Pairs Sharing Common Active Ligands Using Protein Sequence, Structure, and Ligand Similarity. Journal of Chemical Information and Modeling 2016, 56 (9) , 1734-1745. https://doi.org/10.1021/acs.jcim.6b00118
    76. Woong-Hee Shin, Charles W. Christoffer, Jibo Wang, and Daisuke Kihara . PL-PatchSurfer2: Improved Local Surface Matching-Based Virtual Screening Method That Is Tolerant to Target and Ligand Structure Variation. Journal of Chemical Information and Modeling 2016, 56 (9) , 1676-1691. https://doi.org/10.1021/acs.jcim.6b00163
    77. András Váradi, Gina F. Marrone, Travis C. Palmer, Ankita Narayan, Márton R. Szabó, Valerie Le Rouzic, Steven G. Grinnell, Joan J. Subrath, Evelyn Warner, Sanjay Kalra, Amanda Hunkele, Jeremy Pagirsky, Shainnel O. Eans, Jessica M. Medina, Jin Xu, Ying-Xian Pan, Attila Borics, Gavril W. Pasternak, Jay P. McLaughlin, and Susruta Majumdar . Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. Journal of Medicinal Chemistry 2016, 59 (18) , 8381-8397. https://doi.org/10.1021/acs.jmedchem.6b00748
    78. Yu-Chen Lo, Silvia Senese, Robert Damoiseaux, and Jorge Z. Torres . 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping. ACS Chemical Biology 2016, 11 (8) , 2244-2253. https://doi.org/10.1021/acschembio.6b00253
    79. Marcel L. Verdonk, R. Frederick Ludlow, Ilenia Giangreco, and Prakash Chandra Rathi . Protein–Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven “Force Field” for Biomolecular Interactions. Journal of Medicinal Chemistry 2016, 59 (14) , 6891-6902. https://doi.org/10.1021/acs.jmedchem.6b00716
    80. Peng Lu, Xiaoxin Liu, Xinrui Yuan, Minfang He, Yubin Wang, Qi Zhang, and Ping-kai Ouyang . Discovery of a novel NEDD8 Activating Enzyme Inhibitor with Piperidin-4-amine Scaffold by Structure-Based Virtual Screening. ACS Chemical Biology 2016, 11 (7) , 1901-1907. https://doi.org/10.1021/acschembio.6b00159
    81. Praveen Nedumpully-Govindan, Domen B. Jemec, and Feng Ding . CSAR Benchmark of Flexible MedusaDock in Affinity Prediction and Nativelike Binding Pose Selection. Journal of Chemical Information and Modeling 2016, 56 (6) , 1042-1052. https://doi.org/10.1021/acs.jcim.5b00303
    82. Regina Politi, Marino Convertino, Konstantin Popov, Nikolay V. Dokholyan, and Alexander Tropsha . Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise. Journal of Chemical Information and Modeling 2016, 56 (6) , 1032-1041. https://doi.org/10.1021/acs.jcim.5b00751
    83. Birgit J. Waldner, Julian E. Fuchs, Michael Schauperl, Christian Kramer, and Klaus R. Liedl . Protease Inhibitors in View of Peptide Substrate Databases. Journal of Chemical Information and Modeling 2016, 56 (6) , 1228-1235. https://doi.org/10.1021/acs.jcim.6b00064
    84. Kelly L. Damm-Ganamet, Scott D. Bembenek, Jennifer W. Venable, Glenda G. Castro, Lieve Mangelschots, Daniëlle C. G. Peeters, Heather M. Mcallister, James P. Edwards, Daniel Disepio, and Taraneh Mirzadegan . A Prospective Virtual Screening Study: Enriching Hit Rates and Designing Focus Libraries To Find Inhibitors of PI3Kδ and PI3Kγ. Journal of Medicinal Chemistry 2016, 59 (9) , 4302-4313. https://doi.org/10.1021/acs.jmedchem.5b01974
    85. Dahlia R. Weiss, Andrea Bortolato, Benjamin Tehan, and Jonathan S. Mason . GPCR-Bench: A Benchmarking Set and Practitioners’ Guide for G Protein-Coupled Receptor Docking. Journal of Chemical Information and Modeling 2016, 56 (4) , 642-651. https://doi.org/10.1021/acs.jcim.5b00660
    86. Shijie Chen, Linjuan Li, Yantao Chen, Junchi Hu, Jingqiu Liu, Yu-Chih Liu, Rongfeng Liu, Yuanyuan Zhang, Fanwang Meng, Kongkai Zhu, Junyan Lu, Mingyue Zheng, Kaixian Chen, Jin Zhang, Hualiang Jiang, Zhiyi Yao, and Cheng Luo . Identification of Novel Disruptor of Telomeric Silencing 1-like (DOT1L) Inhibitors through Structure-Based Virtual Screening and Biological Assays. Journal of Chemical Information and Modeling 2016, 56 (3) , 527-534. https://doi.org/10.1021/acs.jcim.5b00738
    87. Joonhyeok Choi, Kwang-Eun Choi, Sung Jean Park, Sun Yeou Kim, and Jun-Goo Jee . Ensemble-Based Virtual Screening Led to the Discovery of New Classes of Potent Tyrosinase Inhibitors. Journal of Chemical Information and Modeling 2016, 56 (2) , 354-367. https://doi.org/10.1021/acs.jcim.5b00484
    88. Yu Zhou, Jing Ma, Xingyu Lin, Xi-Ping Huang, Kaichun Wu, and Niu Huang . Structure-Based Discovery of Novel and Selective 5-Hydroxytryptamine 2B Receptor Antagonists for the Treatment of Irritable Bowel Syndrome. Journal of Medicinal Chemistry 2016, 59 (2) , 707-720. https://doi.org/10.1021/acs.jmedchem.5b01631
    89. Alexander Sebastian Hauser and Björn Windshügel . LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking Performance. Journal of Chemical Information and Modeling 2016, 56 (1) , 188-200. https://doi.org/10.1021/acs.jcim.5b00234
    90. Tobias Lang, Florian Flachsenberg, Ulrike von Luxburg, and Matthias Rarey . Feasibility of Active Machine Learning for Multiclass Compound Classification. Journal of Chemical Information and Modeling 2016, 56 (1) , 12-20. https://doi.org/10.1021/acs.jcim.5b00332
    91. Dávid Bajusz, György G. Ferenczy, and György M. Keserű . Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2016, 56 (1) , 234-247. https://doi.org/10.1021/acs.jcim.5b00634
    92. Héléna A. Gaspar Pavel Sidorov Dragos Horvath Igor I. Baskin Gilles Marcou Alexandre Varnek . Generative Topographic Mapping Approach to Chemical Space Analysis. 2016, 211-241. https://doi.org/10.1021/bk-2016-1222.ch011
    93. Héléna A. Gaspar Igor I. Baskin Alexandre Varnek . Visualization of a Multidimensional Descriptor Space. 2016, 243-267. https://doi.org/10.1021/bk-2016-1222.ch012
    94. Tamer M. Ibrahim, Matthias R. Bauer, Alexander Dörr, Erdem Veyisoglu, and Frank M. Boeckler . pROC-Chemotype Plots Enhance the Interpretability of Benchmarking Results in Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2015, 55 (11) , 2297-2307. https://doi.org/10.1021/acs.jcim.5b00475
    95. Francesca Spyrakis, Paolo Benedetti, Sergio Decherchi, Walter Rocchia, Andrea Cavalli, Stefano Alcaro, Francesco Ortuso, Massimo Baroni, and Gabriele Cruciani . A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins. Journal of Chemical Information and Modeling 2015, 55 (10) , 2256-2274. https://doi.org/10.1021/acs.jcim.5b00169
    96. Agata Kurczyk, Dawid Warszycki, Robert Musiol, Rafał Kafel, Andrzej J. Bojarski, and Jaroslaw Polanski . Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes. Journal of Chemical Information and Modeling 2015, 55 (10) , 2168-2177. https://doi.org/10.1021/acs.jcim.5b00295
    97. Daimel Castillo-González, Jean-Louis Mergny, Aurore De Rache, Gisselle Pérez-Machado, Miguel Angel Cabrera-Pérez, Orazio Nicolotti, Antonellina Introcaso, Giuseppe Felice Mangiatordi, Aurore Guédin, Anne Bourdoncle, Teresa Garrigues, Federico Pallardó, M. Natália D. S. Cordeiro, Cesar Paz-y-Miño, Eduardo Tejera, Fernanda Borges, and Maykel Cruz-Monteagudo . Harmonization of QSAR Best Practices and Molecular Docking Provides an Efficient Virtual Screening Tool for Discovering New G-Quadruplex Ligands. Journal of Chemical Information and Modeling 2015, 55 (10) , 2094-2110. https://doi.org/10.1021/acs.jcim.5b00415
    98. Ionut Onila, Tim ten Brink, Kai Fredriksson, Luca Codutti, Adam Mazur, Christian Griesinger, Teresa Carlomagno, and Thomas E. Exner . On-the-Fly Integration of Data from a Spin-Diffusion-Based NMR Experiment into Protein–Ligand Docking. Journal of Chemical Information and Modeling 2015, 55 (9) , 1962-1972. https://doi.org/10.1021/acs.jcim.5b00235
    99. Jacob D. Durrant, Kathryn E. Carlson, Teresa A. Martin, Tavina L. Offutt, Christopher G. Mayne, John A. Katzenellenbogen, and Rommie E. Amaro . Neural-Network Scoring Functions Identify Structurally Novel Estrogen-Receptor Ligands. Journal of Chemical Information and Modeling 2015, 55 (9) , 1953-1961. https://doi.org/10.1021/acs.jcim.5b00241
    100. Samo Lešnik, Tanja Štular, Boris Brus, Damijan Knez, Stanislav Gobec, Dušanka Janežič, and Janez Konc . LiSiCA: A Software for Ligand-Based Virtual Screening and Its Application for the Discovery of Butyrylcholinesterase Inhibitors. Journal of Chemical Information and Modeling 2015, 55 (8) , 1521-1528. https://doi.org/10.1021/acs.jcim.5b00136
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect