Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Design, Synthesis, and Functionalization of Dimeric Peptides Targeting Chemokine Receptor CXCR4
My Activity
    Article

    Design, Synthesis, and Functionalization of Dimeric Peptides Targeting Chemokine Receptor CXCR4
    Click to copy article linkArticle link copied!

    View Author Information
    Institute for Advanced Study and Center of Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85748 Garching, Germany
    Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
    § Institute for Anatomy II: Experimental Morphology, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
    Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49-80131 Napoli, Italy
    Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
    Phone: ++49 + 89/289-13300. Fax: ++49 + 89/289-13210. E-mail: [email protected]. Address: Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, D-85748 Garching, Germany.
    Other Access OptionsSupporting Information (1)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2011, 54, 21, 7648–7662
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm2009716
    Published September 12, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The chemokine receptor CXCR4 is a critical regulator of inflammation and immune surveillance, and it is specifically implicated in cancer metastasis and HIV-1 infection. On the basis of the observation that several of the known antagonists remarkably share a C2 symmetry element, we constructed symmetric dimers with excellent antagonistic activity using a derivative of a cyclic pentapeptide as monomer. To optimize the binding affinity, we investigated the influence of the distance between the monomers and the pharmacophoric sites in the synthesized constructs. The affinity studies in combination with docking computations support a two-site binding model. In a final step, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was introduced as chelator for (radio-)metals, thus allowing to exploit these compounds as a new group of CXCR4-binding peptidic probes for molecular imaging and endoradiotherapeutic purposes. Both the DOTA conjugates and some of their corresponding metal complexes retain good CXCR4 affinity, and one 68Ga labeled compound was studied as PET tracer.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details and characterization data of synthesized compounds and bioconjugates. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Raghuvir Haridas Gaonkar, Yannik Tim Schmidt, Rosalba Mansi, Yasser Almeida-Hernandez, Elsa Sanchez-Garcia, Mirja Harms, Jan Münch, Melpomeni Fani. Development of a New Class of CXCR4-Targeting Radioligands Based on the Endogenous Antagonist EPI-X4 for Oncological Applications. Journal of Medicinal Chemistry 2023, 66 (13) , 8484-8497. https://doi.org/10.1021/acs.jmedchem.3c00131
    2. Mirja Harms, Rikke Fabech Hansson, Sheiliza Carmali, Yasser Almeida-Hernández, Elsa Sanchez-Garcia, Jan Münch, Alexander N. Zelikin. Dimerization of the Peptide CXCR4-Antagonist on Macromolecular and Supramolecular Protraction Arms Affords Increased Potency and Enhanced Plasma Stability. Bioconjugate Chemistry 2022, 33 (4) , 594-607. https://doi.org/10.1021/acs.bioconjchem.2c00034
    3. Anna Maria Trotta, Michela Aurilio, Crescenzo D’Alterio, Caterina Ieranò, Daria Di Martino, Antonio Barbieri, Antonio Luciano, Paolo Gaballo, Sara Santagata, Luigi Portella, Stefano Tomassi, Luciana Marinelli, Deborah Sementa, Ettore Novellino, Secondo Lastoria, Stefania Scala, Margret Schottelius, Salvatore Di Maro. Novel Peptide-Based PET Probe for Non-invasive Imaging of C-X-C Chemokine Receptor Type 4 (CXCR4) in Tumors. Journal of Medicinal Chemistry 2021, 64 (6) , 3449-3461. https://doi.org/10.1021/acs.jmedchem.1c00066
    4. Francesco Merlino, Simona Daniele, Valeria La Pietra, Salvatore Di Maro, Francesco Saverio Di Leva, Diego Brancaccio, Stefano Tomassi, Stefano Giuntini, Linda Cerofolini, Marco Fragai, Claudio Luchinat, Florian Reichart, Chiara Cavallini, Barbara Costa, Rebecca Piccarducci, Sabrina Taliani, Federico Da Settimo, Claudia Martini, Horst Kessler, Ettore Novellino, Luciana Marinelli. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. Journal of Medicinal Chemistry 2018, 61 (11) , 4791-4809. https://doi.org/10.1021/acs.jmedchem.8b00004
    5. Salvatore Di Maro, Francesco Saverio Di Leva, Anna Maria Trotta, Diego Brancaccio, Luigi Portella, Michela Aurilio, Stefano Tomassi, Anna Messere, Deborah Sementa, Secondo Lastoria, Alfonso Carotenuto, Ettore Novellino, Stefania Scala, and Luciana Marinelli . Structure–Activity Relationships and Biological Characterization of a Novel, Potent, and Serum Stable C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonist. Journal of Medicinal Chemistry 2017, 60 (23) , 9641-9652. https://doi.org/10.1021/acs.jmedchem.7b01062
    6. Salvatore Di Maro, Anna Maria Trotta, Diego Brancaccio, Francesco Saverio Di Leva, Valeria La Pietra, Caterina Ieranò, Maria Napolitano, Luigi Portella, Crescenzo D’Alterio, Rosa Anna Siciliano, Deborah Sementa, Stefano Tomassi, Alfonso Carotenuto, Ettore Novellino, Stefania Scala, and Luciana Marinelli . Exploring the N-Terminal Region of C-X-C Motif Chemokine 12 (CXCL12): Identification of Plasma-Stable Cyclic Peptides As Novel, Potent C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonists. Journal of Medicinal Chemistry 2016, 59 (18) , 8369-8380. https://doi.org/10.1021/acs.jmedchem.6b00695
    7. Francesco Merlino, Ali M. Yousif, Étienne Billard, Julien Dufour-Gallant, Stéphane Turcotte, Paolo Grieco, David Chatenet, and William D. Lubell . Urotensin II(4–11) Azasulfuryl Peptides: Synthesis and Biological Activity. Journal of Medicinal Chemistry 2016, 59 (10) , 4740-4752. https://doi.org/10.1021/acs.jmedchem.6b00108
    8. Chiaki Komiya, Keisuke Aihara, Ko Morishita, Hao Ding, Tsubasa Inokuma, Akira Shigenaga, and Akira Otaka . Development of an Intein-Inspired Amide Cleavage Chemical Device. The Journal of Organic Chemistry 2016, 81 (2) , 699-707. https://doi.org/10.1021/acs.joc.5b02399
    9. Shinya Oishi, Tomoko Kuroyanagi, Tatsuhiko Kubo, Nicolas Montpas, Yasushi Yoshikawa, Ryosuke Misu, Yuka Kobayashi, Hiroaki Ohno, Nikolaus Heveker, Toshio Furuya, and Nobutaka Fujii . Development of Novel CXC Chemokine Receptor 7 (CXCR7) Ligands: Selectivity Switch from CXCR4 Antagonists with a Cyclic Pentapeptide Scaffold. Journal of Medicinal Chemistry 2015, 58 (13) , 5218-5225. https://doi.org/10.1021/acs.jmedchem.5b00216
    10. Jignesh Mungalpara, Stefanie Thiele, Øystein Eriksen, Johann Eksteen, Mette M. Rosenkilde, and Jon Våbenø . Rational Design of Conformationally Constrained Cyclopentapeptide Antagonists for C-X-C Chemokine Receptor 4 (CXCR4). Journal of Medicinal Chemistry 2012, 55 (22) , 10287-10291. https://doi.org/10.1021/jm300926y
    11. Won-Tak Choi, Santhosh Kumar, Navid Madani, Xiaofeng Han, Shaomin Tian, Chang-Zhi Dong, Dongxiang Liu, Srinivas Duggineni, Jian Yuan, Joseph G. Sodroski, Ziwei Huang, and Jing An . A Novel Synthetic Bivalent Ligand To Probe Chemokine Receptor CXCR4 Dimerization and Inhibit HIV-1 Entry. Biochemistry 2012, 51 (36) , 7078-7086. https://doi.org/10.1021/bi2016712
    12. Kazuya Kobayashi, Shinya Oishi, Ryoko Hayashi, Kenji Tomita, Tatsuhiko Kubo, Noriko Tanahara, Hiroaki Ohno, Yasushi Yoshikawa, Toshio Furuya, Masaru Hoshino, and Nobutaka Fujii . Structure–Activity Relationship Study of a CXC Chemokine Receptor Type 4 Antagonist, FC131, Using a Series of Alkene Dipeptide Isosteres. Journal of Medicinal Chemistry 2012, 55 (6) , 2746-2757. https://doi.org/10.1021/jm2016914
    13. Won-Tak Choi, Srinivas Duggineni, Yan Xu, Ziwei Huang, and Jing An . Drug Discovery Research Targeting the CXC Chemokine Receptor 4 (CXCR4). Journal of Medicinal Chemistry 2012, 55 (3) , 977-994. https://doi.org/10.1021/jm200568c
    14. Leila Hassanzadeh, Mostafa Erfani, Safura Jokar, Marjan Shariatpanahi. Design of a New 99mTc-radiolabeled Cyclo-peptide as Promising Molecular Imaging Agent of CXCR4 Receptor: Molecular Docking, Synthesis, Radiolabeling, and Biological Evaluation. Current Radiopharmaceuticals 2024, 17 (1) , 77-90. https://doi.org/10.2174/0118744710249305231017073022
    15. Xuan Yin, Kai Ai, Jianguang Luo, Wei Liu, Xiaowei Ma, Lianbo Zhou, Xin Xiang, Xin Su, Yunhua Wang, Yuan Li. A comparison of the performance of 68Ga-Pentixafor PET/CT versus adrenal vein sampling for subtype diagnosis in primary aldosteronism. Frontiers in Endocrinology 2024, 15 https://doi.org/10.3389/fendo.2024.1291775
    16. Liza Lindenberg, Mark Ahlman, Frank Lin, Esther Mena, Peter Choyke. Advances in PET Imaging of the CXCR4 Receptor: [68Ga]Ga-PentixaFor. Seminars in Nuclear Medicine 2024, 54 (1) , 163-170. https://doi.org/10.1053/j.semnuclmed.2023.09.002
    17. Julien Costes, Kilian Casasagrande, Constance Dubegny, Juan Castillo, Jens Kaufman, Julien Masset, Charles Vriamont, Corentin Warnier, Alain Faivre‐Chauvet, Judith Anna Delage. [ 68 Ga]Ga‐PentixaFor: Development of a fully automated in hospital production on the Trasis miniAllinOne synthesizer. Journal of Labelled Compounds and Radiopharmaceuticals 2023, 66 (12) , 400-410. https://doi.org/10.1002/jlcr.4061
    18. Xinyi Ren, Gang Cheng, Zhengjie Wang. Advances in the molecular imaging of primary aldosteronism. Annals of Nuclear Medicine 2023, 37 (8) , 433-441. https://doi.org/10.1007/s12149-023-01851-y
    19. Vincenzo Patamia, Chiara Zagni, Ilaria Brullo, Erika Saccullo, Alessandro Coco, Giuseppe Floresta, Antonio Rescifina. Computer-Assisted Design of Peptide-Based Radiotracers. International Journal of Molecular Sciences 2023, 24 (7) , 6856. https://doi.org/10.3390/ijms24076856
    20. Zhenying Chen, Qianqian Xue, Shaobo Yao. Nuclear Medicine Application of Pentixafor/Pentixather Targeting CXCR4 for Imaging and Therapy in Related Disease. Mini-Reviews in Medicinal Chemistry 2023, 23 (7) , 787-803. https://doi.org/10.2174/1389557523666221216095821
    21. Ankit Watts, Baljinder Singh, Harmandeep Singh, Amanjit Bal, Harneet Kaur, Ninjit Dhanota, Sunil K. Arora, Bhagwant R. Mittal, Digambar Behera. [68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: correlation with quantitative receptors’ density by immunochemistry techniques. European Journal of Nuclear Medicine and Molecular Imaging 2023, 50 (4) , 1216-1227. https://doi.org/10.1007/s00259-022-06059-2
    22. Clemens Schulte, Alice Soldà, Sebastian Spänig, Nathan Adams, Ivana Bekić, Werner Streicher, Dominik Heider, Ralf Strasser, Hans Michael Maric. Multivalent binding kinetics resolved by fluorescence proximity sensing. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03997-3
    23. Annika Hess, Tobias Borchert, Tobias L. Ross, Frank M. Bengel, James T. Thackeray. Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging. Basic Research in Cardiology 2022, 117 (1) https://doi.org/10.1007/s00395-022-00922-x
    24. Katarína Benčurová, Joachim Friske, Maximilian Anderla, Manuela Mayrhofer, Thomas Wanek, Lukas Nics, Gerda Egger, Thomas H. Helbich, Marcus Hacker, Alexander Haug, Markus Mitterhauser, Theresa Balber. CAM-Xenograft Model Provides Preclinical Evidence for the Applicability of [68Ga]Ga-Pentixafor in CRC Imaging. Cancers 2022, 14 (22) , 5549. https://doi.org/10.3390/cancers14225549
    25. Margherita LORUSSO, Vittoria RUFINI, Carmela DE CREA, Francesco PENNESTRÌ, Rocco BELLANTONE, Marco RAFFAELLI. Integration of molecular imaging in the personalized approach of patients with adrenal masses. The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2022, 66 (2) https://doi.org/10.23736/S1824-4785.22.03449-5
    26. Richard Lewis, Stefan Habringer, Malte Kircher, Maike Hefter, Caroline Anna Peuker, Rudolf Werner, Valëza Ademaj-Kospiri, Alexander Gäble, Wolfgang Weber, Hans-Jürgen Wester, Andreas Buck, Peter Herhaus, Constantin Lapa, Ulrich Keller. Investigation of spleen CXCR4 expression by [68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Research 2021, 11 (1) https://doi.org/10.1186/s13550-021-00822-6
    27. Santosh R. Alluri, Yusuke Higashi, Kun-Eek Kil. PET Imaging Radiotracers of Chemokine Receptors. Molecules 2021, 26 (17) , 5174. https://doi.org/10.3390/molecules26175174
    28. Ning Wu, Ruoyang Liu, Shuang Liang, Haitao Gao, Lan-Ping Xu, Xiao-Hui Zhang, Jiangying Liu, Xiao-Jun Huang. γδ T Cells May Aggravate Acute Graft-Versus-Host Disease Through CXCR4 Signaling After Allogeneic Hematopoietic Transplantation. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.687961
    29. Ankit Watts, Surbhi Chutani, Diksha Arora, Vasanth Madivanane, Samiksha Thakur, Monika Kamboj, Baljinder Singh. Automated Radiosynthesis, Quality Control, and Biodistribution of Ga-68 Pentixafor. Indian Journal of Nuclear Medicine 2021, 36 (3) , 237-244. https://doi.org/10.4103/ijnm.ijnm_216_20
    30. Carina Bergner, Anja Gummesson, Markus Joksch, Mohammadreza Kamali Sarvestani, Heike von Helldorff, Constantin Lapa, Bernd J. Krause, Sarah M. Schwarzenböck. Der Chemokinrezeptor CXCR4 – seine Entwicklung und Bedeutung in der nuklearmedizinischen Theranostik. Der Nuklearmediziner 2021, 44 (02) , 160-176. https://doi.org/10.1055/a-1393-7958
    31. Thorsten Derlin, Benedikt Jaeger, Danny Jonigk, Rosa M. Apel, Julia Freise, Hoen-Oh Shin, Desiree Weiberg, Gregor Warnecke, Tobias L. Ross, Hans-Jürgen Wester, Benjamin Seeliger, Tobias Welte, Frank M. Bengel, Antje Prasse. Clinical Molecular Imaging of Pulmonary CXCR4 Expression to Predict Outcome of Pirfenidone Treatment in Idiopathic Pulmonary Fibrosis. Chest 2021, 159 (3) , 1094-1106. https://doi.org/10.1016/j.chest.2020.08.2043
    32. Alexander Weich, Dorothee Rogoll, Sophia Gawlas, Lars Mayer, Wolfgang Weich, Judit Pongracz, Theodor Kudlich, Alexander Meining, Michael Scheurlen. Wnt/β-Catenin Signaling Regulates CXCR4 Expression and [68Ga] Pentixafor Internalization in Neuroendocrine Tumor Cells. Diagnostics 2021, 11 (2) , 367. https://doi.org/10.3390/diagnostics11020367
    33. Sarah Spreckelmeyer, Oliver Schulze, Winfried Brenner. Fully-automated production of [68Ga]Ga-PentixaFor on the module Modular Lab-PharmTracer. EJNMMI Radiopharmacy and Chemistry 2020, 5 (1) https://doi.org/10.1186/s41181-020-0091-2
    34. Irina Chifu, Britta Heinze, Carmina T. Fuss, Katharina Lang, Matthias Kroiss, Stefan Kircher, Cristina L. Ronchi, Barbara Altieri, Andreas Schirbel, Martin Fassnacht, Stefanie Hahner. Impact of the Chemokine Receptors CXCR4 and CXCR7 on Clinical Outcome in Adrenocortical Carcinoma. Frontiers in Endocrinology 2020, 11 https://doi.org/10.3389/fendo.2020.597878
    35. Ilze Adlere, Birgit Caspar, Marta Arimont, Sebastian Dekkers, Kirsten Visser, Jeffrey Stuijt, Chris de Graaf, Michael Stocks, Barrie Kellam, Stephen Briddon, Maikel Wijtmans, Iwan de Esch, Stephen Hill, Rob Leurs. Modulators of CXCR4 and CXCR7/ACKR3 Function. Molecular Pharmacology 2019, 96 (6) , 737-752. https://doi.org/10.1124/mol.119.117663
    36. Tibor Vag, Katja Steiger, Andreas Rossmann, Ulrich Keller, Aurelia Noske, Peter Herhaus, Johannes Ettl, Markus Niemeyer, Hans-Jürgen Wester, Markus Schwaiger. PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Research 2018, 8 (1) https://doi.org/10.1186/s13550-018-0442-0
    37. Malte Kircher, Peter Herhaus, Margret Schottelius, Andreas K. Buck, Rudolf A. Werner, Hans-Jürgen Wester, Ulrich Keller, Constantin Lapa. CXCR4-directed theranostics in oncology and inflammation. Annals of Nuclear Medicine 2018, 32 (8) , 503-511. https://doi.org/10.1007/s12149-018-1290-8
    38. Lawrence R. Gahan, Rodney M. Cusack. Metal complexes of synthetic cyclic peptides. Polyhedron 2018, 153 , 1-23. https://doi.org/10.1016/j.poly.2018.06.030
    39. Guifeng Liu, Hongda Chen, Shaonan Yu, Xiaodong Li, Zhenxin Wang. CXCR4 Peptide Conjugated Au-Fe2O3 Nanoparticles for Tumor-targeting Magnetic Resonance Imaging. Chemical Research in Chinese Universities 2018, 34 (4) , 584-589. https://doi.org/10.1007/s40242-018-8010-8
    40. Virginie Fievez, Martyna Szpakowska, Amor Mosbah, Karthik Arumugam, Julie Mathu, Manuel Counson, Nadia Beaupain, Carole Seguin-Devaux, Sabrina Deroo, Michèle Baudy-Floc’h, Andy Chevigné. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. Journal of Leukocyte Biology 2018, 104 (2) , 343-357. https://doi.org/10.1002/JLB.3MA0118-007
    41. Ashraf Fakhari, Ayuob Aghanejad, Amir Reza Jalilian, Esmaeil Gharepapagh. Recent developments in targeted imaging of CXCR4-chemokine receptor. Journal of Radioanalytical and Nuclear Chemistry 2018, 317 (1) , 1-14. https://doi.org/10.1007/s10967-018-5910-5
    42. Lun Kelvin Tsou, Ying‐Huey Huang, Jen‐Shin Song, Yi‐Yu Ke, Jing‐Kai Huang, Kak‐Shan Shia. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Medicinal Research Reviews 2018, 38 (4) , 1188-1234. https://doi.org/10.1002/med.21464
    43. Xiang Li, Daniel Heber, Tatjana Leike, Dietrich Beitzke, Xia Lu, Xiaoli Zhang, Yongxiang Wei, Markus Mitterhauser, Wolfgang Wadsak, Saskia Kropf, Hans J. Wester, Christian Loewe, Marcus Hacker, Alexander R. Haug. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. European Journal of Nuclear Medicine and Molecular Imaging 2018, 45 (4) , 558-566. https://doi.org/10.1007/s00259-017-3831-0
    44. Seungbeom Ko, Gayong Shim, Jinyoung Kim, Yu-Kyoung Oh. Chemokine-mimetic plerixafor derivative for tumor-specific delivery of nanomaterials. Nano Research 2018, 11 (4) , 2159-2172. https://doi.org/10.1007/s12274-017-1833-7
    45. Britta Heinze, Carmina T. Fuss, Paolo Mulatero, Felix Beuschlein, Martin Reincke, Mona Mustafa, Andreas Schirbel, Timo Deutschbein, Tracy Ann Williams, Yara Rhayem, Marcus Quinkler, Nada Rayes, Silvia Monticone, Vanessa Wild, Celso E. Gomez-Sanchez, Anna-Carinna Reis, Stephan Petersenn, Hans-Juergen Wester, Saskia Kropf, Martin Fassnacht, Katharina Lang, Ken Herrmann, Andreas K. Buck, Christina Bluemel, Stefanie Hahner. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension 2018, 71 (2) , 317-325. https://doi.org/10.1161/HYPERTENSIONAHA.117.09975
    46. Irina Velikyan. Prospective of 68 Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. Contrast Media & Molecular Imaging 2018, 2018 , 1-24. https://doi.org/10.1155/2018/9713691
    47. Andreas Poschenrieder, Margret Schottelius, Theresa Osl, Markus Schwaiger, Hans-Jürgen Wester. [64Cu]NOTA-pentixather enables high resolution PET imaging of CXCR4 expression in a preclinical lymphoma model. EJNMMI Radiopharmacy and Chemistry 2017, 2 (1) https://doi.org/10.1186/s41181-016-0020-6
    48. Sarah M. Schwarzenböck, Jan Stenzel, Thomas Otto, Heike V. Helldorff, Carina Bergner, Jens Kurth, Stefan Polei, Tobias Lindner, Romina Rauer, Alexander Hohn, Oliver W. Hakenberg, Hans J. Wester, Brigitte Vollmar, Bernd J. Krause. [68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model - comparison with [18F]FDG PET/CT, MRI and ex vivo receptor expression. Oncotarget 2017, 8 (56) , 95606-95619. https://doi.org/10.18632/oncotarget.21024
    49. Andreas K. Buck, Antje Stolzenburg, Heribert Hänscheid, Andreas Schirbel, Katharina Lückerath, Margret Schottelius, Hans-Jürgen Wester, Constantin Lapa. Chemokine receptor – Directed imaging and therapy. Methods 2017, 130 , 63-71. https://doi.org/10.1016/j.ymeth.2017.09.002
    50. Thorsten Derlin, Faikah Gueler, Jan Hinrich Bräsen, Jessica Schmitz, Dagmar Hartung, Thomas R. Herrmann, Tobias L. Ross, Frank Wacker, Hans-Jürgen Wester, Marcus Hiss, Hermann Haller, Frank M. Bengel, Katja Hueper. Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. Journal of Nuclear Medicine 2017, 58 (11) , 1831-1837. https://doi.org/10.2967/jnumed.117.193037
    51. Andreas Poschenrieder, Margret Schottelius, Markus Schwaiger, Horst Kessler, Hans-Jürgen Wester. The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Research 2016, 6 (1) https://doi.org/10.1186/s13550-016-0193-8
    52. Constantin Lapa, Heribert Hänscheid, Vanessa Wild, Theo Pelzer, Andreas Schirbel, Rudolf A. Werner, Sabine Droll, Ken Herrmann, Andreas K. Buck, Katharina Lückerath. Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy. Oncotarget 2016, 7 (15) , 20033-20040. https://doi.org/10.18632/oncotarget.7706
    53. Xuefeng Yan, Gang Niu, Zhe Wang, Xiangyu Yang, Dale O. Kiesewetter, Orit Jacobson, Baozhong Shen, Xiaoyuan Chen. Al[18F]NOTA-T140 Peptide for Noninvasive Visualization of CXCR4 Expression. Molecular Imaging and Biology 2016, 18 (1) , 135-142. https://doi.org/10.1007/s11307-015-0872-2
    54. C. L. Charron, J. L. Hickey, T. K. Nsiama, D. R. Cruickshank, W. L. Turnbull, L. G. Luyt. Molecular imaging probes derived from natural peptides. Natural Product Reports 2016, 33 (6) , 761-800. https://doi.org/10.1039/C5NP00083A
    55. James T. Thackeray, Thorsten Derlin, Arash Haghikia, L. Christian Napp, Yong Wang, Tobias L. Ross, Andreas Schäfer, Jochen Tillmanns, Hans J. Wester, Kai C. Wollert, Johann Bauersachs, Frank M. Bengel. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC: Cardiovascular Imaging 2015, 8 (12) , 1417-1426. https://doi.org/10.1016/j.jcmg.2015.09.008
    56. Simone U. Dalm, Anieta M. Sieuwerts, Maxime P. Look, Marleen Melis, Carolien H.M. van Deurzen, John A. Foekens, Marion de Jong, John W.M. Martens. Clinical Relevance of Targeting the Gastrin-Releasing Peptide Receptor, Somatostatin Receptor 2, or Chemokine C-X-C Motif Receptor 4 in Breast Cancer for Imaging and Therapy. Journal of Nuclear Medicine 2015, 56 (10) , 1487-1493. https://doi.org/10.2967/jnumed.115.160739
    57. Jon Våben⊘, Bengt Erik Haug, Mette M Rosenkilde. Progress Toward Rationally Designed Small-Molecule Peptide and Peptidomimetic CXCR4 Antagonists. Future Medicinal Chemistry 2015, 7 (10) , 1261-1283. https://doi.org/10.4155/fmc.15.64
    58. Monique R. Bernsen, Klazina Kooiman, Marcel Segbers, Fijs W. B. van Leeuwen, Marion de Jong. Biomarkers in preclinical cancer imaging. European Journal of Nuclear Medicine and Molecular Imaging 2015, 42 (4) , 579-596. https://doi.org/10.1007/s00259-014-2980-7
    59. Guillaume Pierre Charles George, Federica Pisaneschi, Quang-Dé Nguyen, Eric Ofori Aboagye. Positron Emission Tomographic Imaging of CXCR4 in Cancer: Challenges and Promises. Molecular Imaging 2015, 14 (1) https://doi.org/10.2310/7290.2014.00041
    60. S Thiele, J Mungalpara, A Steen, M M Rosenkilde, J Våbenø. Determination of the binding mode for the cyclopentapeptide CXCR 4 antagonist FC 131 using a dual approach of ligand modifications and receptor mutagenesis. British Journal of Pharmacology 2014, 171 (23) , 5313-5329. https://doi.org/10.1111/bph.12842
    61. Kohei Sano, Ryo Masuda, Hayato Hisada, Shinya Oishi, Kenta Shimokawa, Masahiro Ono, Nobutaka Fujii, Hideo Saji, Takahiro Mukai. A radiogallium–DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. Bioorganic & Medicinal Chemistry Letters 2014, 24 (5) , 1386-1388. https://doi.org/10.1016/j.bmcl.2014.01.031
    62. Irina Kufareva, Ruben Abagyan, Tracy M. Handel. Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. 2014, 41-85. https://doi.org/10.1007/7355_2014_77
    63. Irina Velikyan. Radionuclides for Imaging and Therapy in Oncology. 2014, 285-325. https://doi.org/10.1016/B978-0-12-407722-5.00017-7
    64. Samit Chatterjee, Babak Behnam Azad, Sridhar Nimmagadda. The Intricate Role of CXCR4 in Cancer. 2014, 31-82. https://doi.org/10.1016/B978-0-12-411638-2.00002-1
    65. René Martin, Steffen Jüttler, Marco Müller, Hans-Jürgen Wester. Cationic eluate pretreatment for automated synthesis of [68Ga]CPCR4.2. Nuclear Medicine and Biology 2014, 41 (1) , 84-89. https://doi.org/10.1016/j.nucmedbio.2013.09.002
    66. Xiao-Xiang Zhang, Zhongchan Sun, Jinxia Guo, Zhe Wang, Chenxi Wu, Gang Niu, Ying Ma, Dale O. Kiesewetter, Xiaoyuan Chen. Comparison of 18F-labeled CXCR4 antagonist peptides for PET imaging of CXCR4 expression. Molecular Imaging and Biology 2013, 15 (6) , 758-767. https://doi.org/10.1007/s11307-013-0640-0
    67. Erik H. J. G. Aarntzen, Mangala Srinivas, Caius G. Radu, Cornelis J. A. Punt, Otto C. Boerman, Carl G. Figdor, Wim J. G. Oyen, I. Jolanda M. de Vries. In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cellular and Molecular Life Sciences 2013, 70 (13) , 2237-2257. https://doi.org/10.1007/s00018-012-1159-2
    68. Tsukasa Mizuhara. Introduction. 2013, 1-5. https://doi.org/10.1007/978-4-431-54445-6_1
    69. Jignesh Mungalpara, Zack G. Zachariassen, Stefanie Thiele, Mette M. Rosenkilde, Jon Våbenø. Structure–activity relationship studies of the aromatic positions in cyclopentapeptide CXCR4 antagonists. Organic & Biomolecular Chemistry 2013, 11 (47) , 8202. https://doi.org/10.1039/c3ob41941j
    70. Oliver Demmer, Andreas O. Frank, Franz Hagn, Margret Schottelius, Luciana Marinelli, Sandro Cosconati, Ruth Brack‐Werner, Stephan Kremb, Hans‐Jürgen Wester, Horst Kessler. A Conformationally Frozen Peptoid Boosts CXCR4 Affinity and Anti‐HIV Activity. Angewandte Chemie International Edition 2012, 51 (32) , 8110-8113. https://doi.org/10.1002/anie.201202090
    71. Oliver Demmer, Andreas O. Frank, Franz Hagn, Margret Schottelius, Luciana Marinelli, Sandro Cosconati, Ruth Brack‐Werner, Stephan Kremb, Hans‐Jürgen Wester, Horst Kessler. Erhöhte CXCR4‐Affinität und Anti‐HIV‐Aktivität eines Peptoids durch Konformationsfixierung. Angewandte Chemie 2012, 124 (32) , 8234-8237. https://doi.org/10.1002/ange.201202090
    72. Alicja Kluczyk, Marzena Cydzik, Monika Biernat, Remigiusz Bąchor, Paweł Pasikowski, Piotr Stefanowicz, Jolanta Artym, Michał Zimecki, Zbigniew Szewczuk. Dimeric analogs of immunosuppressive decapeptide fragment of ubiquitin. Journal of Peptide Science 2012, 18 (7) , 456-465. https://doi.org/10.1002/psc.2416
    73. Yasushi Yoshikawa, Kazuya Kobayashi, Shinya Oishi, Nobutaka Fujii, Toshio Furuya. Molecular modeling study of cyclic pentapeptide CXCR4 antagonists: New insight into CXCR4–FC131 interactions. Bioorganic & Medicinal Chemistry Letters 2012, 22 (6) , 2146-2150. https://doi.org/10.1016/j.bmcl.2012.01.134
    74. Joeri Kuil, Tessa Buckle, Fijs W. B. van Leeuwen. Imaging agents for the chemokine receptor 4 (CXCR4). Chemical Society Reviews 2012, 41 (15) , 5239. https://doi.org/10.1039/c2cs35085h
    75. James C. Knight, Frank R. Wuest. Nuclear (PET/SPECT) and optical imaging probes targeting the CXCR4 chemokine receptor. MedChemComm 2012, 3 (9) , 1039. https://doi.org/10.1039/c2md20117h
    76. Shinya Oishi, Nobutaka Fujii. Peptide and peptidomimetic ligands for CXC chemokine receptor 4 (CXCR4). Organic & Biomolecular Chemistry 2012, 10 (30) , 5720. https://doi.org/10.1039/c2ob25107h

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2011, 54, 21, 7648–7662
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm2009716
    Published September 12, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3716

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.