ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Crystal Structure-Based Virtual Screening for Fragment-like Ligands of the Human Histamine H1 Receptor

View Author Information
Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, GAC-1200, La Jolla, California 92037, United States
§ Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, U.K.
# Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, U.K.
× Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
Phone: +31 20 5987600. Fax: +31 20 5987610. E-mail: [email protected]
Cite this: J. Med. Chem. 2011, 54, 23, 8195–8206
Publication Date (Web):October 18, 2011
https://doi.org/10.1021/jm2011589
Copyright © 2011 American Chemical Society

    Article Views

    5962

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    The recent crystal structure determinations of druggable class A G protein-coupled receptors (GPCRs) have opened up excellent opportunities in structure-based ligand discovery for this pharmaceutically important protein family. We have developed and validated a customized structure-based virtual fragment screening protocol against the recently determined human histamine H1 receptor (H1R) crystal structure. The method combines molecular docking simulations with a protein–ligand interaction fingerprint (IFP) scoring method. The optimized in silico screening approach was successfully applied to identify a chemically diverse set of novel fragment-like (≤22 heavy atoms) H1R ligands with an exceptionally high hit rate of 73%. Of the 26 tested fragments, 19 compounds had affinities ranging from 10 μM to 6 nM. The current study shows the potential of in silico screening against GPCR crystal structures to explore novel, fragment-like GPCR ligand space.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional analysis results of the retrospective and prospective virtual screening studies, H1R, H3R, and H4R radioligand displacement curves, and InsP accumulation barplots; a zipped file containing molecular structures of ligand test set (SMILES) and receptor mol2 coordinates (H1R crystal structure), PLANTS docking conf(iguration) file, reference IFP bit-strings, and cavity coordinates used for IFP calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 169 publications.

    1. Merveille Eguida, Christel Schmitt-Valencia, Marcel Hibert, Pascal Villa, Didier Rognan. Target-Focused Library Design by Pocket-Applied Computer Vision and Fragment Deep Generative Linking. Journal of Medicinal Chemistry 2022, 65 (20) , 13771-13783. https://doi.org/10.1021/acs.jmedchem.2c00931
    2. Zhi Yuan Kok, Leigh A. Stoddart, Sarah J. Mistry, Tamara A. M. Mocking, Henry F. Vischer, Rob Leurs, Stephen J. Hill, Shailesh N. Mistry, Barrie Kellam. Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor. Journal of Medicinal Chemistry 2022, 65 (12) , 8258-8288. https://doi.org/10.1021/acs.jmedchem.2c00125
    3. Andreas Luttens, Hjalmar Gullberg, Eldar Abdurakhmanov, Duy Duc Vo, Dario Akaberi, Vladimir O. Talibov, Natalia Nekhotiaeva, Laura Vangeel, Steven De Jonghe, Dirk Jochmans, Janina Krambrich, Ali Tas, Bo Lundgren, Ylva Gravenfors, Alexander J. Craig, Yoseph Atilaw, Anja Sandström, Lindon W. K. Moodie, Åke Lundkvist, Martijn J. van Hemert, Johan Neyts, Johan Lennerstrand, Jan Kihlberg, Kristian Sandberg, U. Helena Danielson, Jens Carlsson. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society 2022, 144 (7) , 2905-2920. https://doi.org/10.1021/jacs.1c08402
    4. Viet-Khoa Tran-Nguyen, Guillaume Bret, Didier Rognan. True Accuracy of Fast Scoring Functions to Predict High-Throughput Screening Data from Docking Poses: The Simpler the Better. Journal of Chemical Information and Modeling 2021, 61 (6) , 2788-2797. https://doi.org/10.1021/acs.jcim.1c00292
    5. Heng-Hui Li, Jia-Qi Li, Xiao Zheng, Pei-Qiang Huang. Photoredox-Catalyzed Decarboxylative Cross-Coupling of α-Amino Acids with Nitrones. Organic Letters 2021, 23 (3) , 876-880. https://doi.org/10.1021/acs.orglett.0c04101
    6. Stanisław Jastrzębski, Maciej Szymczak, Agnieszka Pocha, Stefan Mordalski, Jacek Tabor, Andrzej J. Bojarski, Sabina Podlewska. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4246-4262. https://doi.org/10.1021/acs.jcim.9b01202
    7. Enade P. Istyastono, Muhammad Radifar, Nunung Yuniarti, Vivitri D. Prasasty, Sudi Mungkasi. PyPLIF HIPPOS: A Molecular Interaction Fingerprinting Tool for Docking Results of AutoDock Vina and PLANTS. Journal of Chemical Information and Modeling 2020, 60 (8) , 3697-3702. https://doi.org/10.1021/acs.jcim.0c00305
    8. Gábor Wágner, Tamara A. M. Mocking, Marta Arimont, Gustavo Provensi, Barbara Rani, Bruna Silva-Marques, Gniewomir Latacz, Daniel Da Costa Pereira, Christina Karatzidou, Henry F. Vischer, Maikel Wijtmans, Katarzyna Kieć-Kononowicz, Iwan J. P. de Esch, Rob Leurs. 4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H3 Receptor Agonists with in Vivo Central Nervous System Activity. Journal of Medicinal Chemistry 2019, 62 (23) , 10848-10866. https://doi.org/10.1021/acs.jmedchem.9b01462
    9. Dahlia R. Weiss, Joel Karpiak, Xi-Ping Huang, Maria F. Sassano, Jiankun Lyu, Bryan L. Roth, Brian K. Shoichet. Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. Journal of Medicinal Chemistry 2018, 61 (15) , 6830-6845. https://doi.org/10.1021/acs.jmedchem.8b00718
    10. Qian Li, Xiaohui Ning, Yuxin An, Brett J. Stanley, Yuan Liang, Jing Wang, Kaizhu Zeng, Fuhuan Fei, Ting Liu, Huanmei Sun, Jiajun Liu, Xinfeng Zhao, Xiaohui Zheng. Reliable Analysis of the Interaction between Specific Ligands and Immobilized Beta-2-Adrenoceptor by Adsorption Energy Distribution. Analytical Chemistry 2018, 90 (13) , 7903-7911. https://doi.org/10.1021/acs.analchem.8b00214
    11. Kwangseok Ko, Hye-Jung Kim, Pil-Su Ho, Soon Ok Lee, Ji-Eun Lee, Cho-Rong Min, Yu Chul Kim, Ju-Han Yoon, Eun-Jung Park, Young-Jin Kwon, Jee-Hun Yun, Dong-Oh Yoon, Jung-Sook Kim, Woul-Seong Park, Seung-Su Oh, Yu-Mi Song, Woon-Ki Cho, Kazumi Morikawa, Kyoung-June Lee, Chan-Hee Park. Discovery of a Novel Highly Selective Histamine H4 Receptor Antagonist for the Treatment of Atopic Dermatitis. Journal of Medicinal Chemistry 2018, 61 (7) , 2949-2961. https://doi.org/10.1021/acs.jmedchem.7b01855
    12. Axel Rudling, Robert Gustafsson, Ingrid Almlöf, Evert Homan, Martin Scobie, Ulrika Warpman Berglund, Thomas Helleday, Pål Stenmark, and Jens Carlsson . Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Journal of Medicinal Chemistry 2017, 60 (19) , 8160-8169. https://doi.org/10.1021/acs.jmedchem.7b01006
    13. Marta Arimont, Shan-Liang Sun, Rob Leurs, Martine Smit, Iwan J. P. de Esch, and Chris de Graaf . Structural Analysis of Chemokine Receptor–Ligand Interactions. Journal of Medicinal Chemistry 2017, 60 (12) , 4735-4779. https://doi.org/10.1021/acs.jmedchem.6b01309
    14. Zhong Zheng, Xi-Ping Huang, Thomas J. Mangano, Rodger Zou, Xin Chen, Saheem A. Zaidi, Bryan L. Roth, Raymond C. Stevens, and Vsevolod Katritch . Structure-Based Discovery of New Antagonist and Biased Agonist Chemotypes for the Kappa Opioid Receptor. Journal of Medicinal Chemistry 2017, 60 (7) , 3070-3081. https://doi.org/10.1021/acs.jmedchem.7b00109
    15. Anirudh Ranganathan, Philipp Heine, Axel Rudling, Andreas Plückthun, Lutz Kummer, and Jens Carlsson . Ligand Discovery for a Peptide-Binding GPCR by Structure-Based Screening of Fragment- and Lead-Like Chemical Libraries. ACS Chemical Biology 2017, 12 (3) , 735-745. https://doi.org/10.1021/acschembio.6b00646
    16. Eelke B. Lenselink, Willem Jespers, Herman W. T. van Vlijmen, Adriaan P. IJzerman, and Gerard J. P. van Westen . Interacting with GPCRs: Using Interaction Fingerprints for Virtual Screening. Journal of Chemical Information and Modeling 2016, 56 (10) , 2053-2060. https://doi.org/10.1021/acs.jcim.6b00314
    17. Sebastiaan Kuhne, Albert J. Kooistra, Reggie Bosma, Andrea Bortolato, Maikel Wijtmans, Henry F. Vischer, Jonathan S. Mason, Chris de Graaf, Iwan J. P. de Esch, and Rob Leurs . Identification of Ligand Binding Hot Spots of the Histamine H1 Receptor following Structure-Based Fragment Optimization. Journal of Medicinal Chemistry 2016, 59 (19) , 9047-9061. https://doi.org/10.1021/acs.jmedchem.6b00981
    18. Chimed Jansen, Albert J. Kooistra, Georgi K. Kanev, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. Journal of Medicinal Chemistry 2016, 59 (15) , 7029-7065. https://doi.org/10.1021/acs.jmedchem.5b01813
    19. John J. Irwin and Brian K. Shoichet . Docking Screens for Novel Ligands Conferring New Biology. Journal of Medicinal Chemistry 2016, 59 (9) , 4103-4120. https://doi.org/10.1021/acs.jmedchem.5b02008
    20. Dávid Bajusz, György G. Ferenczy, and György M. Keserű . Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2016, 56 (1) , 234-247. https://doi.org/10.1021/acs.jcim.5b00634
    21. Anirudh Ranganathan, Leigh A. Stoddart, Stephen J. Hill, and Jens Carlsson . Fragment-Based Discovery of Subtype-Selective Adenosine Receptor Ligands from Homology Models. Journal of Medicinal Chemistry 2015, 58 (24) , 9578-9590. https://doi.org/10.1021/acs.jmedchem.5b01120
    22. Albert J. Kooistra, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Journal of Chemical Information and Modeling 2015, 55 (5) , 1045-1061. https://doi.org/10.1021/acs.jcim.5b00066
    23. Sabine Schultes, Albert J. Kooistra, Henry F. Vischer, Saskia Nijmeijer, Eric E. J. Haaksma, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT3A, Histamine H1, and Histamine H4 Receptors. Journal of Chemical Information and Modeling 2015, 55 (5) , 1030-1044. https://doi.org/10.1021/ci500694c
    24. Oscar Méndez-Lucio, Albert J. Kooistra, Chris de Graaf, Andreas Bender, and José L. Medina-Franco . Analyzing Multitarget Activity Landscapes Using Protein–Ligand Interaction Fingerprints: Interaction Cliffs. Journal of Chemical Information and Modeling 2015, 55 (2) , 251-262. https://doi.org/10.1021/ci500721x
    25. Dahlia A. Goldfeld, Robert Murphy, Byungchan Kim, Lingle Wang, Thijs Beuming, Robert Abel, and Richard A. Friesner . Docking and Free Energy Perturbation Studies of Ligand Binding in the Kappa Opioid Receptor. The Journal of Physical Chemistry B 2015, 119 (3) , 824-835. https://doi.org/10.1021/jp5053612
    26. Márton Vass, Éva Ágai-Csongor, Ferenc Horti, and György M. Keserű . Multiple Fragment Docking and Linking in Primary and Secondary Pockets of Dopamine Receptors. ACS Medicinal Chemistry Letters 2014, 5 (9) , 1010-1014. https://doi.org/10.1021/ml500201u
    27. Antonella Ciancetta, Alberto Cuzzolin, and Stefano Moro . Alternative Quality Assessment Strategy to Compare Performances of GPCR-Ligand Docking Protocols: The Human Adenosine A2A Receptor as a Case Study. Journal of Chemical Information and Modeling 2014, 54 (8) , 2243-2254. https://doi.org/10.1021/ci5002857
    28. David Rodríguez, Anirudh Ranganathan, and Jens Carlsson . Strategies for Improved Modeling of GPCR-Drug Complexes: Blind Predictions of Serotonin Receptors Bound to Ergotamine. Journal of Chemical Information and Modeling 2014, 54 (7) , 2004-2021. https://doi.org/10.1021/ci5002235
    29. Eelke B. Lenselink, Thijs Beuming, Woody Sherman, Herman W. T. van Vlijmen, and Adriaan P. IJzerman . Selecting an Optimal Number of Binding Site Waters To Improve Virtual Screening Enrichments Against the Adenosine A2A Receptor. Journal of Chemical Information and Modeling 2014, 54 (6) , 1737-1746. https://doi.org/10.1021/ci5000455
    30. Diane Joseph-McCarthy, Arthur J. Campbell, Gunther Kern, and Demetri Moustakas . Fragment-Based Lead Discovery and Design. Journal of Chemical Information and Modeling 2014, 54 (3) , 693-704. https://doi.org/10.1021/ci400731w
    31. Oscar P. J. van Linden, Albert J. Kooistra, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . KLIFS: A Knowledge-Based Structural Database To Navigate Kinase–Ligand Interaction Space. Journal of Medicinal Chemistry 2014, 57 (2) , 249-277. https://doi.org/10.1021/jm400378w
    32. Ákos Tarcsay, Gábor Paragi, Márton Vass, Balázs Jójárt, Ferenc Bogár, and György M. Keserű . The Impact of Molecular Dynamics Sampling on the Performance of Virtual Screening against GPCRs. Journal of Chemical Information and Modeling 2013, 53 (11) , 2990-2999. https://doi.org/10.1021/ci400087b
    33. Dan Chen, Anirudh Ranganathan, Adriaan P. IJzerman, Gregg Siegal, and Jens Carlsson . Complementarity between in Silico and Biophysical Screening Approaches in Fragment-Based Lead Discovery against the A2A Adenosine Receptor. Journal of Chemical Information and Modeling 2013, 53 (10) , 2701-2714. https://doi.org/10.1021/ci4003156
    34. Yasushi Yoshikawa, Shinya Oishi, Tatsuhiko Kubo, Noriko Tanahara, Nobutaka Fujii, and Toshio Furuya . Optimized Method of G-Protein-Coupled Receptor Homology Modeling: Its Application to the Discovery of Novel CXCR7 Ligands. Journal of Medicinal Chemistry 2013, 56 (11) , 4236-4251. https://doi.org/10.1021/jm400307y
    35. Dahlia R. Weiss, SeungKirl Ahn, Maria F. Sassano, Andrew Kleist, Xiao Zhu, Ryan Strachan, Bryan L. Roth, Robert J. Lefkowitz, and Brian K. Shoichet . Conformation Guides Molecular Efficacy in Docking Screens of Activated β-2 Adrenergic G Protein Coupled Receptor. ACS Chemical Biology 2013, 8 (5) , 1018-1026. https://doi.org/10.1021/cb400103f
    36. John A. Christopher, Jason Brown, Andrew S. Doré, James C. Errey, Markus Koglin, Fiona H. Marshall, David G. Myszka, Rebecca L. Rich, Christopher G. Tate, Benjamin Tehan, Tony Warne, and Miles Congreve . Biophysical Fragment Screening of the β1-Adrenergic Receptor: Identification of High Affinity Arylpiperazine Leads Using Structure-Based Drug Design. Journal of Medicinal Chemistry 2013, 56 (9) , 3446-3455. https://doi.org/10.1021/jm400140q
    37. Chimed Jansen, Huanchen Wang, Albert J. Kooistra, Chris de Graaf, Kristina M. Orrling, Hermann Tenor, Thomas Seebeck, David Bailey, Iwan J. P. de Esch, Hengming Ke, and Rob Leurs . Discovery of Novel Trypanosoma brucei Phosphodiesterase B1 Inhibitors by Virtual Screening against the Unliganded TbrPDEB1 Crystal Structure. Journal of Medicinal Chemistry 2013, 56 (5) , 2087-2096. https://doi.org/10.1021/jm3017877
    38. Yingkui Yang, Vinod K. Mishra, Min Chen, Elaine Duffee, Reed Dimmitt, and Carroll M. Harmon . Molecular Characterization of Human Melanocortin-5 Receptor Ligand–Receptor Interaction. Biochemistry 2013, 52 (10) , 1737-1745. https://doi.org/10.1021/bi3013593
    39. Francesco Sirci, Enade P. Istyastono, Henry F. Vischer, Albert J. Kooistra, Saskia Nijmeijer, Martien Kuijer, Maikel Wijtmans, Raimund Mannhold, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Virtual Fragment Screening: Discovery of Histamine H3 Receptor Ligands Using Ligand-Based and Protein-Based Molecular Fingerprints. Journal of Chemical Information and Modeling 2012, 52 (12) , 3308-3324. https://doi.org/10.1021/ci3004094
    40. Thijs Beuming and Woody Sherman . Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines. Journal of Chemical Information and Modeling 2012, 52 (12) , 3263-3277. https://doi.org/10.1021/ci300411b
    41. Dilip K. Tosh, Khai Phan, Zhan-Guo Gao, Andrei A. Gakh, Fei Xu, Francesca Deflorian, Ruben Abagyan, Raymond C. Stevens, Kenneth A. Jacobson, and Vsevolod Katritch . Optimization of Adenosine 5′-Carboxamide Derivatives as Adenosine Receptor Agonists Using Structure-Based Ligand Design and Fragment Screening. Journal of Medicinal Chemistry 2012, 55 (9) , 4297-4308. https://doi.org/10.1021/jm300095s
    42. Pedro de Sena Murteira Pinheiro, Lucas Silva Franco, Carlos Alberto Manssour Fraga. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals 2023, 16 (8) , 1157. https://doi.org/10.3390/ph16081157
    43. Gregory L. Szwabowski, Daniel L. Baker, Abby L. Parrill. Application of computational methods for class A GPCR Ligand discovery. Journal of Molecular Graphics and Modelling 2023, 121 , 108434. https://doi.org/10.1016/j.jmgm.2023.108434
    44. Chia-Ju Hsieh, Sam Giannakoulias, E. James Petersson, Robert H. Mach. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals 2023, 16 (2) , 317. https://doi.org/10.3390/ph16020317
    45. Elissa A. Fink, Jun Xu, Harald Hübner, Joao M. Braz, Philipp Seemann, Charlotte Avet, Veronica Craik, Dorothee Weikert, Maximilian F. Schmidt, Chase M. Webb, Nataliya A. Tolmachova, Yurii S. Moroz, Xi-Ping Huang, Chakrapani Kalyanaraman, Stefan Gahbauer, Geng Chen, Zheng Liu, Matthew P. Jacobson, John J. Irwin, Michel Bouvier, Yang Du, Brian K. Shoichet, Allan I. Basbaum, Peter Gmeiner. Structure-based discovery of nonopioid analgesics acting through the α 2A -adrenergic receptor. Science 2022, 377 (6614) https://doi.org/10.1126/science.abn7065
    46. Marcus Conrad, Christian A. Söldner, Heinrich Sticht. Effect of Ions and Sequence Variants on the Antagonist Binding Properties of the Histamine H1 Receptor. International Journal of Molecular Sciences 2022, 23 (3) , 1420. https://doi.org/10.3390/ijms23031420
    47. Arman A. Sadybekov, Anastasiia V. Sadybekov, Yongfeng Liu, Christos Iliopoulos-Tsoutsouvas, Xi-Ping Huang, Julie Pickett, Blake Houser, Nilkanth Patel, Ngan K. Tran, Fei Tong, Nikolai Zvonok, Manish K. Jain, Olena Savych, Dmytro S. Radchenko, Spyros P. Nikas, Nicos A. Petasis, Yurii S. Moroz, Bryan L. Roth, Alexandros Makriyannis, Vsevolod Katritch. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 2022, 601 (7893) , 452-459. https://doi.org/10.1038/s41586-021-04220-9
    48. Yang Zheng, Gábor Wágner, Niels Hauwert, Xiaoyuan Ma, Henry F. Vischer, Rob Leurs. New Chemical Biology Tools for the Histamine Receptor Family. 2022, 3-28. https://doi.org/10.1007/7854_2022_360
    49. Stefan Mordalski, Agnieszka Wojtuch, Igor Podolak, Rafał Kurczab, Andrzej J. Bojarski. 2D SIFt: a matrix of ligand-receptor interactions. Journal of Cheminformatics 2021, 13 (1) https://doi.org/10.1186/s13321-021-00545-9
    50. Cédric Bouysset, Sébastien Fiorucci. ProLIF: a library to encode molecular interactions as fingerprints. Journal of Cheminformatics 2021, 13 (1) https://doi.org/10.1186/s13321-021-00548-6
    51. Dehua Yang, Qingtong Zhou, Viktorija Labroska, Shanshan Qin, Sanaz Darbalaei, Yiran Wu, Elita Yuliantie, Linshan Xie, Houchao Tao, Jianjun Cheng, Qing Liu, Suwen Zhao, Wenqing Shui, Yi Jiang, Ming-Wei Wang. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduction and Targeted Therapy 2021, 6 (1) https://doi.org/10.1038/s41392-020-00435-w
    52. Flavio Ballante, Albert J Kooistra, Stefanie Kampen, Chris de Graaf, Jens Carlsson, . Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews 2021, 73 (4) , 1698-1736. https://doi.org/10.1124/pharmrev.120.000246
    53. Brian J. Bender, Stefan Gahbauer, Andreas Luttens, Jiankun Lyu, Chase M. Webb, Reed M. Stein, Elissa A. Fink, Trent E. Balius, Jens Carlsson, John J. Irwin, Brian K. Shoichet. A practical guide to large-scale docking. Nature Protocols 2021, 16 (10) , 4799-4832. https://doi.org/10.1038/s41596-021-00597-z
    54. Qingtong Zhou, Wanjing Guo, Antao Dai, Xiaoqing Cai, Márton Vass, Chris de Graaf, Wenqing Shui, Suwen Zhao, Dehua Yang, Ming-Wei Wang. Discovery of Novel Allosteric Modulators Targeting an Extra-Helical Binding Site of GLP-1R Using Structure- and Ligand-Based Virtual Screening. Biomolecules 2021, 11 (7) , 929. https://doi.org/10.3390/biom11070929
    55. Attila Egyed, Ádám A. Kelemen, Márton Vass, András Visegrády, Stephanie A. Thee, Zhiyong Wang, Chris de Graaf, Jose Brea, Maria Isabel Loza, Rob Leurs, György M. Keserű. Controlling the selectivity of aminergic GPCR ligands from the extracellular vestibule. Bioorganic Chemistry 2021, 111 , 104832. https://doi.org/10.1016/j.bioorg.2021.104832
    56. Jon Kapla, Ismael Rodríguez-Espigares, Flavio Ballante, Jana Selent, Jens Carlsson, . Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models?. PLOS Computational Biology 2021, 17 (5) , e1008936. https://doi.org/10.1371/journal.pcbi.1008936
    57. Enade P. Istyastono, Nunung Yuniarti, Vivitri D. Prasasty, Sudi Mungkasi. PyPLIF HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors. Molecules 2021, 26 (9) , 2452. https://doi.org/10.3390/molecules26092452
    58. Miles Congreve, John A. Christopher, Chris de Graaf. Structure‐Based Drug Design for G Protein‐Coupled Receptors. 2021, 1-59. https://doi.org/10.1002/0471266949.bmc269
    59. Kalpana K. Bhanumathy, Omar Abuhussein, Frederick S. Vizeacoumar, Andrew Freywald, Franco J. Vizeacoumar, Christopher P. Phenix, Eric W. Price, Ran Cao. Computational Prediction of Chemical Tools for Identification and Validation of Synthetic Lethal Interaction Networks. 2021, 333-358. https://doi.org/10.1007/978-1-0716-1740-3_18
    60. David A. Sykes, Leire Borrega-Roman, Clare R. Harwood, Bradley Hoare, Jack M. Lochray, Thais Gazzi, Stephen J. Briddon, Marc Nazaré, Uwe Grether, Stephen J. Hill, Steven J. Charlton, Dmitry B. Veprintsev. Kinetic Profiling of Ligands and Fragments Binding to GPCRs by TR-FRET. 2021, 1-32. https://doi.org/10.1007/7355_2021_120
    61. Raquel Rodríguez-Pérez, Filip Miljković, Jürgen Bajorath. Assessing the information content of structural and protein–ligand interaction representations for the classification of kinase inhibitor binding modes via machine learning and active learning. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00434-7
    62. Dohyun Im, Asuka Inoue, Takaaki Fujiwara, Takanori Nakane, Yasuaki Yamanaka, Tomoko Uemura, Chihiro Mori, Yuki Shiimura, Kanako Terakado Kimura, Hidetsugu Asada, Norimichi Nomura, Tomoyuki Tanaka, Ayumi Yamashita, Eriko Nango, Kensuke Tono, Francois Marie Ngako Kadji, Junken Aoki, So Iwata, Tatsuro Shimamura. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-20221-0
    63. Miles Congreve, Chris de Graaf, Nigel A. Swain, Christopher G. Tate. Impact of GPCR Structures on Drug Discovery. Cell 2020, 181 (1) , 81-91. https://doi.org/10.1016/j.cell.2020.03.003
    64. Reed M. Stein, Hye Jin Kang, John D. McCorvy, Grant C. Glatfelter, Anthony J. Jones, Tao Che, Samuel Slocum, Xi-Ping Huang, Olena Savych, Yurii S. Moroz, Benjamin Stauch, Linda C. Johansson, Vadim Cherezov, Terry Kenakin, John J. Irwin, Brian K. Shoichet, Bryan L. Roth, Margarita L. Dubocovich. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020, 579 (7800) , 609-614. https://doi.org/10.1038/s41586-020-2027-0
    65. Mariama Jaiteh, Ismael Rodríguez-Espigares, Jana Selent, Jens Carlsson, . Performance of virtual screening against GPCR homology models: Impact of template selection and treatment of binding site plasticity. PLOS Computational Biology 2020, 16 (3) , e1007680. https://doi.org/10.1371/journal.pcbi.1007680
    66. Babs Briels, Chris de Graaf, Andreas Bender. Structural Chemogenomics. 2020, 53-77. https://doi.org/10.1002/9781118681121.ch3
    67. Jinan Wang, Apurba Bhattarai, Waseem Imtiaz Ahmad, Treyton S. Farnan, Karen Priyadarshini John, Yinglong Miao. Computer-aided GPCR drug discovery. 2020, 283-293. https://doi.org/10.1016/B978-0-12-816228-6.00015-5
    68. Jiankun Lyu, Sheng Wang, Trent E. Balius, Isha Singh, Anat Levit, Yurii S. Moroz, Matthew J. O’Meara, Tao Che, Enkhjargal Algaa, Kateryna Tolmachova, Andrey A. Tolmachev, Brian K. Shoichet, Bryan L. Roth, John J. Irwin. Ultra-large library docking for discovering new chemotypes. Nature 2019, 566 (7743) , 224-229. https://doi.org/10.1038/s41586-019-0917-9
    69. I. Adlere, S. Sun, A. Zarca, L. Roumen, M. Gozelle, C. Perpiñá Viciano, B. Caspar, M. Arimont, J.P. Bebelman, S.J. Briddon, C. Hoffmann, S.J. Hill, M.J. Smit, H.F. Vischer, M. Wijtmans, C. de Graaf, I.J.P. de Esch, R. Leurs. Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. European Journal of Medicinal Chemistry 2019, 162 , 631-649. https://doi.org/10.1016/j.ejmech.2018.10.060
    70. Anita Rácz, Dávid Bajusz, Károly Héberger. Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0302-y
    71. Leigh A. Stoddart, Andrea J. Vernall, Monica Bouzo-Lorenzo, Reggie Bosma, Albert J. Kooistra, Chris de Graaf, Henry F. Vischer, Rob Leurs, Stephen J. Briddon, Barrie Kellam, Stephen J. Hill. Development of novel fluorescent histamine H1-receptor antagonists to study ligand-binding kinetics in living cells. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-19714-2
    72. Wanchao Yin, X. Edward Zhou, Dehua Yang, Parker W. de Waal, Meitian Wang, Antao Dai, Xiaoqing Cai, Chia-Ying Huang, Ping Liu, Xiaoxi Wang, Yanting Yin, Bo Liu, Yu Zhou, Jiang Wang, Hong Liu, Martin Caffrey, Karsten Melcher, Yechun Xu, Ming-Wei Wang, H. Eric Xu, Yi Jiang. Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Cell Discovery 2018, 4 (1) https://doi.org/10.1038/s41421-018-0009-2
    73. Sabina Podlewska, Rafał Kafel, Enza Lacivita, Grzegorz Satała, Albert J. Kooistra, Márton Vass, Chris de Graaf, Marcello Leopoldo, Andrzej J. Bojarski, Stefan Mordalski. Structural insights into serotonin receptor ligands polypharmacology. European Journal of Medicinal Chemistry 2018, 151 , 797-814. https://doi.org/10.1016/j.ejmech.2018.04.010
    74. Roberto Todeschini, Viviana Consonni, Davide Ballabio, Francesca Grisoni. Mapping of Activity through Dichotomic Scores (MADS): A new chemoinformatic approach to detect activity‐rich structural regions. Journal of Chemometrics 2018, 32 (4) https://doi.org/10.1002/cem.2994
    75. Franck Da Silva, Jeremy Desaphy, Didier Rognan. IChem: A Versatile Toolkit for Detecting, Comparing, and Predicting Protein–Ligand Interactions. ChemMedChem 2018, 13 (6) , 507-510. https://doi.org/10.1002/cmdc.201700505
    76. Shaherin Basith, Minghua Cui, Stephani J. Y. Macalino, Jongmi Park, Nina A. B. Clavio, Soosung Kang, Sun Choi. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00128
    77. Hector A. Velazquez, Demian Riccardi, Zhousheng Xiao, Leigh Darryl Quarles, Charless Ryan Yates, Jerome Baudry, Jeremy C. Smith. Ensemble docking to difficult targets in early-stage drug discovery: Methodology and application to fibroblast growth factor 23. Chemical Biology & Drug Design 2018, 91 (2) , 491-504. https://doi.org/10.1111/cbdd.13110
    78. Jason B. Cross. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges. 2018, 233-264. https://doi.org/10.1007/978-1-4939-7465-8_11
    79. Przemysław Miszta, Jakub Jakowiecki, Ewelina Rutkowska, Maria Turant, Dorota Latek, Sławomir Filipek. Approaches for Differentiation and Interconverting GPCR Agonists and Antagonists. 2018, 265-296. https://doi.org/10.1007/978-1-4939-7465-8_12
    80. Ida Osborn Frandsen, Michael W. Boesgaard, Kimberley Fidom, Alexander S. Hauser, Vignir Isberg, Hans Bräuner-Osborne, Petrine Wellendorph, David E. Gloriam. Identification of Histamine H3 Receptor Ligands Using a New Crystal Structure Fragment-based Method. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-05058-w
    81. Bryan L Roth, John J Irwin, Brian K Shoichet. Discovery of new GPCR ligands to illuminate new biology. Nature Chemical Biology 2017, 13 (11) , 1143-1151. https://doi.org/10.1038/nchembio.2490
    82. Didier Rognan. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacology & Therapeutics 2017, 175 , 47-66. https://doi.org/10.1016/j.pharmthera.2017.02.034
    83. Lingling Yang, Xiaobo Ma, Yanying He, Chen Yuan, Quanlong Chen, Guobo Li, Xianggui Chen. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Science China Life Sciences 2017, 60 (3) , 249-256. https://doi.org/10.1007/s11427-016-0060-7
    84. Damian Bartuzi, Agnieszka Kaczor, Katarzyna Targowska-Duda, Dariusz Matosiuk. Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Molecules 2017, 22 (2) , 340. https://doi.org/10.3390/molecules22020340
    85. G.K. Kanev, A.J. Kooistra, I.J.P de Esch, C. de Graaf. Structural Chemogenomics Databases to Navigate Protein–Ligand Interaction Space. 2017, 444-471. https://doi.org/10.1016/B978-0-12-409547-2.12298-X
    86. D. Bajusz, A. Rácz, K. Héberger. Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. 2017, 329-378. https://doi.org/10.1016/B978-0-12-409547-2.12345-5
    87. M. Congreve, A. Bortolato, G. Brown, R.M. Cooke. Modeling and Design for Membrane Protein Targets. 2017, 145-188. https://doi.org/10.1016/B978-0-12-409547-2.12358-3
    88. Anirudh Ranganathan, David Rodríguez, Jens Carlsson. Structure-Based Discovery of GPCR Ligands from Crystal Structures and Homology Models. 2017, 65-99. https://doi.org/10.1007/7355_2016_25
    89. Róbert Kiss, György M. Keserű. Structure-based discovery and binding site analysis of histamine receptor ligands. Expert Opinion on Drug Discovery 2016, 11 (12) , 1165-1185. https://doi.org/10.1080/17460441.2016.1245288
    90. Mengjie Lu, Beili Wu. Structural studies of G protein‐coupled receptors. IUBMB Life 2016, 68 (11) , 894-903. https://doi.org/10.1002/iub.1578
    91. Christian Munk, Kasper Harpsøe, Alexander S Hauser, Vignir Isberg, David E Gloriam. Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Current Opinion in Pharmacology 2016, 30 , 51-58. https://doi.org/10.1016/j.coph.2016.07.003
    92. Márton Vass, Albert J Kooistra, Tina Ritschel, Rob Leurs, Iwan JP de Esch, Chris de Graaf. Molecular interaction fingerprint approaches for GPCR drug discovery. Current Opinion in Pharmacology 2016, 30 , 59-68. https://doi.org/10.1016/j.coph.2016.07.007
    93. Tony Ngo, Irina Kufareva, James LJ Coleman, Robert M Graham, Ruben Abagyan, Nicola J Smith. Identifying ligands at orphan GPCRs: current status using structure‐based approaches. British Journal of Pharmacology 2016, 173 (20) , 2934-2951. https://doi.org/10.1111/bph.13452
    94. Albert J. Kooistra, Henry F. Vischer, Daniel McNaught-Flores, Rob Leurs, Iwan J. P. de Esch, Chris de Graaf. Function-specific virtual screening for GPCR ligands using a combined scoring method. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28288
    95. Inna Slynko, Franck Da Silva, Guillaume Bret, Didier Rognan. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015. Journal of Computer-Aided Molecular Design 2016, 30 (9) , 669-683. https://doi.org/10.1007/s10822-016-9930-3
    96. Aashish Manglik, Henry Lin, Dipendra K. Aryal, John D. McCorvy, Daniela Dengler, Gregory Corder, Anat Levit, Ralf C. Kling, Viachaslau Bernat, Harald Hübner, Xi-Ping Huang, Maria F. Sassano, Patrick M. Giguère, Stefan Löber, Da Duan, Grégory Scherrer, Brian K. Kobilka, Peter Gmeiner, Bryan L. Roth, Brian K. Shoichet. Structure-based discovery of opioid analgesics with reduced side effects. Nature 2016, 537 (7619) , 185-190. https://doi.org/10.1038/nature19112
    97. Celine Lacroix, Inbar Fish, Hayarpi Torosyan, Pranavan Parathaman, John J. Irwin, Brian K. Shoichet, Stephane Angers, . Identification of Novel Smoothened Ligands Using Structure-Based Docking. PLOS ONE 2016, 11 (8) , e0160365. https://doi.org/10.1371/journal.pone.0160365
    98. Yurii V. Koshchienko, Tatyana A. Kuz’menko, Anatolii S. Morkovnik, Mikhail A. Kiskin, Grigorii G. Alexandrov. Unexpected domino reaction of 3-alkyl-1,2,4-triazolo[1,5-a]benzimidazoles with butylmagnesium bromide leading to benzimidazolyl guanidines. Mendeleev Communications 2016, 26 (4) , 320-322. https://doi.org/10.1016/j.mencom.2016.07.018
    99. Ran Cao, Yanli Wang. Predicting Molecular Targets for Small‐Molecule Drugs with a Ligand‐Based Interaction Fingerprint Approach. ChemMedChem 2016, 11 (12) , 1352-1361. https://doi.org/10.1002/cmdc.201500228
    100. Agnieszka A. Kaczor, Andrea G. Silva, María I. Loza, Peter Kolb, Marián Castro, Antti Poso. Structure‐Based Virtual Screening for Dopamine D 2 Receptor Ligands as Potential Antipsychotics. ChemMedChem 2016, 11 (7) , 718-729. https://doi.org/10.1002/cmdc.201500599
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect