ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Optimization of Adenosine 5′-Carboxamide Derivatives as Adenosine Receptor Agonists Using Structure-Based Ligand Design and Fragment Screening

View Author Information
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
§ University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, California 92093, United States
*For V.K.: phone, 858-784-7723; E-mail, [email protected]. For K.A.J.: phone, 301-496-9024; E-mail, [email protected]
Cite this: J. Med. Chem. 2012, 55, 9, 4297–4308
Publication Date (Web):April 9, 2012
https://doi.org/10.1021/jm300095s
Copyright © 2012 American Chemical Society

    Article Views

    2438

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Structures of G protein-coupled receptors (GPCRs) have a proven utility in the discovery of new antagonists and inverse agonists modulating signaling of this important family of clinical targets. Applicability of active-state GPCR structures to virtual screening and rational optimization of agonists, however, remains to be assessed. In this study of adenosine 5′ derivatives, we evaluated the performance of an agonist-bound A2A adenosine receptor (AR) structure in retrieval of known agonists and then employed the structure to screen for new fragments optimally fitting the corresponding subpocket. Biochemical and functional assays demonstrate high affinity of new derivatives that include polar heterocycles. The binding models also explain modest selectivity gain for some substituents toward the closely related A1AR subtype and the modified agonist efficacy of some of these ligands. The study suggests further applicability of in silico fragment screening to rational lead optimization in GPCRs.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Known A2AAR agonists used in the initial docking model assessments. 3D binding models and scores for all ligands in Table 1. Synthetic procedures for the nucleoside derivatives and their characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Dilip K. Tosh, Harsha Rao, Amelia Bitant, Veronica Salmaso, Philip Mannes, David I. Lieberman, Kelli L. Vaughan, Julie A. Mattison, Amy C. Rothwell, John A. Auchampach, Antonella Ciancetta, Naili Liu, Zhenzhong Cui, Zhan-Guo Gao, Marc L. Reitman, Oksana Gavrilova, Kenneth A. Jacobson. Design and in Vivo Characterization of A1 Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series. Journal of Medicinal Chemistry 2019, 62 (3) , 1502-1522. https://doi.org/10.1021/acs.jmedchem.8b01662
    2. Dilip K. Tosh, Aaron Janowsky, Amy J. Eshleman, Eugene Warnick, Zhan-Guo Gao, Zhoumou Chen, Elizabeth Gizewski, John A. Auchampach, Daniela Salvemini, and Kenneth A. Jacobson . Scaffold Repurposing of Nucleosides (Adenosine Receptor Agonists): Enhanced Activity at the Human Dopamine and Norepinephrine Sodium Symporters. Journal of Medicinal Chemistry 2017, 60 (7) , 3109-3123. https://doi.org/10.1021/acs.jmedchem.7b00141
    3. Ali Jazayeri, Stephen P. Andrews, and Fiona H. Marshall . Structurally Enabled Discovery of Adenosine A2A Receptor Antagonists. Chemical Reviews 2017, 117 (1) , 21-37. https://doi.org/10.1021/acs.chemrev.6b00119
    4. David Rodríguez, Zhang-Guo Gao, Steven M. Moss, Kenneth A. Jacobson, and Jens Carlsson . Molecular Docking Screening Using Agonist-Bound GPCR Structures: Probing the A2A Adenosine Receptor. Journal of Chemical Information and Modeling 2015, 55 (3) , 550-563. https://doi.org/10.1021/ci500639g
    5. Georgios Leonis, Aggelos Avramopoulos, Ramin Ekhteiari Salmas, Serdar Durdagi, Mine Yurtsever, and Manthos G. Papadopoulos . Elucidation of Conformational States, Dynamics, and Mechanism of Binding in Human κ-Opioid Receptor Complexes. Journal of Chemical Information and Modeling 2014, 54 (8) , 2294-2308. https://doi.org/10.1021/ci5002873
    6. Dan Chen, Anirudh Ranganathan, Adriaan P. IJzerman, Gregg Siegal, and Jens Carlsson . Complementarity between in Silico and Biophysical Screening Approaches in Fragment-Based Lead Discovery against the A2A Adenosine Receptor. Journal of Chemical Information and Modeling 2013, 53 (10) , 2701-2714. https://doi.org/10.1021/ci4003156
    7. Kenneth A. Jacobson . Structure-Based Approaches to Ligands for G-Protein-Coupled Adenosine and P2Y Receptors, from Small Molecules to Nanoconjugates. Journal of Medicinal Chemistry 2013, 56 (10) , 3749-3767. https://doi.org/10.1021/jm400422s
    8. Jean-Louis Banères, Thomas Botzanowski, Jean A. Boutin, Barbara Calamini, Jérôme Castel, Laurent J. Catoire, Sarah Cianférani, Claire Demesmay, Gavin Ferguson, Gilles Ferry, Julie Kniazeff, Isabelle Krimm, Thierry Langer, Guillaume Lebon, Marie Ley, Miklos Nyerges, Magali Schwob, Catherine Venien-Bryan, Renaud Wagner, Gabrielle Zeder-Lutz, Claudia Zilian-Stohrer. Biophysical Dissection of Isolated GPCRs: The Adenosine A2A Receptor under the Bistouries. Receptors 2023, 2 (1) , 47-92. https://doi.org/10.3390/receptors2010004
    9. Lingyu Zhong, Qiao Peng, Xun Zeng. The role of adenosine A1 receptor on immune cells. Inflammation Research 2022, 71 (10-11) , 1203-1212. https://doi.org/10.1007/s00011-022-01607-w
    10. Heather Leduc‐Pessah, Cynthia Xu, Churmy Y. Fan, Rebecca Dalgarno, Yuta Kohro, Sydney Sparanese, Nikita N. Burke, Kenneth A. Jacobson, Christophe Altier, Daniela Salvemini, Tuan Trang. Spinal A 3 adenosine receptor activation acutely restores morphine antinociception in opioid tolerant male rats. Journal of Neuroscience Research 2022, 100 (1) , 251-264. https://doi.org/10.1002/jnr.24869
    11. Flavio Ballante, Albert J Kooistra, Stefanie Kampen, Chris de Graaf, Jens Carlsson, . Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews 2021, 73 (4) , 1698-1736. https://doi.org/10.1124/pharmrev.120.000246
    12. J. Daniel Hothersall, Andrew Y. Jones, Tim R. Dafforn, Trevor Perrior, Kathryn L. Chapman. Releasing the technical ‘shackles’ on GPCR drug discovery: opportunities enabled by detergent-free polymer lipid particle (PoLiPa) purification. Drug Discovery Today 2020, 25 (11) , 1944-1956. https://doi.org/10.1016/j.drudis.2020.08.006
    13. Kelton L. B. dos Santos, Jorddy N. Cruz, Luciane B. Silva, Ryan S. Ramos, Moysés F. A. Neto, Cleison C. Lobato, Sirlene S. B. Ota, Franco H. A. Leite, Rosivaldo S. Borges, Carlos H. T. P. da Silva, Joaquín M. Campos, Cleydson B. R. Santos. Identification of Novel Chemical Entities for Adenosine Receptor Type 2A Using Molecular Modeling Approaches. Molecules 2020, 25 (5) , 1245. https://doi.org/10.3390/molecules25051245
    14. Jinan Wang, Apurba Bhattarai, Waseem Imtiaz Ahmad, Treyton S. Farnan, Karen Priyadarshini John, Yinglong Miao. Computer-aided GPCR drug discovery. 2020, 283-293. https://doi.org/10.1016/B978-0-12-816228-6.00015-5
    15. Pran Kishore Deb, Satyendra Deka, Pobitra Borah, Sara N. Abed, Karl-Norbert Klotz. Medicinal Chemistry and Therapeutic Potential of Agonists, Antagonists and Allosteric Modulators of A1 Adenosine Receptor: Current Status and Perspectives. Current Pharmaceutical Design 2019, 25 (25) , 2697-2715. https://doi.org/10.2174/1381612825666190716100509
    16. Pavel S. Nosik, Andrii S. Poturai, Mykola O. Pashko, Kostiantyn P. Melnykov, Sergey V. Ryabukhin, Dmitriy M. Volochnyuk, Oleksandr O. Grygorenko. N ‐Difluorocyclopropyl‐Substituted Pyrazoles: Synthesis and Reactivity. European Journal of Organic Chemistry 2019, 2019 (27) , 4311-4319. https://doi.org/10.1002/ejoc.201900123
    17. Giulia Rossetti, Achim Kless, Luhua Lai, Tiago F. Outeiro, Paolo Carloni. Investigating targets for neuropharmacological intervention by molecular dynamics simulations. Biochemical Society Transactions 2019, 47 (3) , 909-918. https://doi.org/10.1042/BST20190048
    18. Rita C. Acúrcio, Anna Scomparin, Ronit Satchi‐Fainaro, Helena F. Florindo, Rita C. Guedes. Computer‐aided drug design in new druggable targets for the next generation of immune‐oncology therapies. WIREs Computational Molecular Science 2019, 9 (3) https://doi.org/10.1002/wcms.1397
    19. Pavel S. Nosik, Sergey V. Ryabukhin, Mykola O. Pashko, Galyna P. Grabchuk, Oleksandr O. Grygorenko, Dmitriy M. Volochnyuk. Synthesis of 1-hetaryl-2,2-difluorocyclopropane-derived building blocks: The case of pyrazoles. Journal of Fluorine Chemistry 2019, 217 , 80-89. https://doi.org/10.1016/j.jfluchem.2018.11.006
    20. Miles Congreve, Giles A. Brown, Alexandra Borodovsky, Michelle L. Lamb. Targeting adenosine A 2A receptor antagonism for treatment of cancer. Expert Opinion on Drug Discovery 2018, 13 (11) , 997-1003. https://doi.org/10.1080/17460441.2018.1534825
    21. Marian Vincenzi, Katarzyna Bednarska, Zbigniew Leśnikowski. Comparative Study of Carborane- and Phenyl-Modified Adenosine Derivatives as Ligands for the A2A and A3 Adenosine Receptors Based on a Rigid in Silico Docking and Radioligand Replacement Assay. Molecules 2018, 23 (8) , 1846. https://doi.org/10.3390/molecules23081846
    22. Antonella Ciancetta, Kenneth A. Jacobson. Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design. 2018, 45-72. https://doi.org/10.1007/978-1-4939-7465-8_3
    23. Zhan-Guo Gao, Dilip K. Tosh, Shanu Jain, Jinha Yu, Rama R. Suresh, Kenneth A. Jacobson. A1 Adenosine Receptor Agonists, Antagonists, and Allosteric Modulators. 2018, 59-89. https://doi.org/10.1007/978-3-319-90808-3_4
    24. Stefania Baraldi, Pier Giovanni Baraldi, Paola Oliva, Kiran S. Toti, Antonella Ciancetta, Kenneth A. Jacobson. A2A Adenosine Receptor: Structures, Modeling, and Medicinal Chemistry. 2018, 91-136. https://doi.org/10.1007/978-3-319-90808-3_5
    25. Kenneth A. Jacobson, Dilip K. Tosh, Zhan-Guo Gao, Jinha Yu, Rama R. Suresh, Harsha Rao, Romeo Romagnoli, Pier Giovanni Baraldi, Mojgan Aghazadeh Tabrizi. Medicinal Chemistry of the A3 Adenosine Receptor. 2018, 169-198. https://doi.org/10.1007/978-3-319-90808-3_7
    26. Nicolas Diercxsens. 2,2-Difluoroethylamine. 2017, 1-4. https://doi.org/10.1002/047084289X.rn02075
    27. Damian Bartuzi, Agnieszka Kaczor, Katarzyna Targowska-Duda, Dariusz Matosiuk. Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Molecules 2017, 22 (2) , 340. https://doi.org/10.3390/molecules22020340
    28. M. Congreve, A. Bortolato, G. Brown, R.M. Cooke. Modeling and Design for Membrane Protein Targets. 2017, 145-188. https://doi.org/10.1016/B978-0-12-409547-2.12358-3
    29. Anirudh Ranganathan, David Rodríguez, Jens Carlsson. Structure-Based Discovery of GPCR Ligands from Crystal Structures and Homology Models. 2017, 65-99. https://doi.org/10.1007/7355_2016_25
    30. Celine Lacroix, Inbar Fish, Hayarpi Torosyan, Pranavan Parathaman, John J. Irwin, Brian K. Shoichet, Stephane Angers, . Identification of Novel Smoothened Ligands Using Structure-Based Docking. PLOS ONE 2016, 11 (8) , e0160365. https://doi.org/10.1371/journal.pone.0160365
    31. Punita Kumari, Eshan Ghosh, Arun K. Shukla. Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Trends in Molecular Medicine 2015, 21 (11) , 687-701. https://doi.org/10.1016/j.molmed.2015.09.002
    32. Elizabeth Yuriev, Jessica Holien, Paul A. Ramsland. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. Journal of Molecular Recognition 2015, 28 (10) , 581-604. https://doi.org/10.1002/jmr.2471
    33. Giulia Rossetti, Domenica Dibenedetto, Vania Calandrini, Alejandro Giorgetti, Paolo Carloni. Structural predictions of neurobiologically relevant G-protein coupled receptors and intrinsically disordered proteins. Archives of Biochemistry and Biophysics 2015, 582 , 91-100. https://doi.org/10.1016/j.abb.2015.03.011
    34. Jeremy Shonberg, Ralf C. Kling, Peter Gmeiner, Stefan Löber. GPCR crystal structures: Medicinal chemistry in the pocket. Bioorganic & Medicinal Chemistry 2015, 23 (14) , 3880-3906. https://doi.org/10.1016/j.bmc.2014.12.034
    35. Gengyang Yuan, Nicholas G Gedeon, Tanner C Jankins, Graham B Jones. Novel approaches for targeting the adenosine A 2A receptor. Expert Opinion on Drug Discovery 2015, 10 (1) , 63-80. https://doi.org/10.1517/17460441.2015.971006
    36. Kenneth A. Jacobson, Zhan-Guo Gao, Silvia Paoletta, Evgeny Kiselev, Saibal Chakraborty, P. Suresh Jayasekara, Ramachandran Balasubramanian, Dilip K. Tosh. John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors. Computational and Structural Biotechnology Journal 2015, 13 , 286-298. https://doi.org/10.1016/j.csbj.2014.10.004
    37. Henrik Keränen, Hugo Gutiérrez-de-Terán, Johan Åqvist, . Structural and Energetic Effects of A2A Adenosine Receptor Mutations on Agonist and Antagonist Binding. PLoS ONE 2014, 9 (10) , e108492. https://doi.org/10.1371/journal.pone.0108492
    38. Kamil Kokosza, Jan Balzarini, Dorota G. Piotrowska. Novel 5-Arylcarbamoyl-2-methylisoxazolidin-3-yl-3-phosphonates as Nucleotide Analogues. Nucleosides, Nucleotides and Nucleic Acids 2014, 33 (8) , 552-582. https://doi.org/10.1080/15257770.2014.909046
    39. Stephen P. Andrews, Giles A. Brown, John A. Christopher. Structure‐Based and Fragment‐Based GPCR Drug Discovery. ChemMedChem 2014, 9 (2) , 256-275. https://doi.org/10.1002/cmdc.201300382
    40. Miles Congreve, João M. Dias, Fiona H. Marshall. Structure-Based Drug Design for G Protein-Coupled Receptors. 2014, 1-63. https://doi.org/10.1016/B978-0-444-63380-4.00001-9
    41. E F O'Donnell, D C Koch, W H Bisson, H S Jang, S K Kolluri. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death & Disease 2014, 5 (1) , e1038-e1038. https://doi.org/10.1038/cddis.2013.549
    42. Albert J. Kooistra, Rob Leurs, Iwan J. P. de Esch, Chris de Graaf. From Three-Dimensional GPCR Structure to Rational Ligand Discovery. 2014, 129-157. https://doi.org/10.1007/978-94-007-7423-0_7
    43. J. Robert Lane, Pavel Chubukov, Wei Liu, Meritxell Canals, Vadim Cherezov, Ruben Abagyan, Raymond C. Stevens, Vsevolod Katritch. Structure-Based Ligand Discovery Targeting Orthosteric and Allosteric Pockets of Dopamine Receptors. Molecular Pharmacology 2013, 84 (6) , 794-807. https://doi.org/10.1124/mol.113.088054
    44. Kenneth A Jacobson. Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry. In Silico Pharmacology 2013, 1 (1) https://doi.org/10.1186/2193-9616-1-22
    45. András Visegrády, György M Keserű. Fragment-based lead discovery on G-protein-coupled receptors. Expert Opinion on Drug Discovery 2013, 8 (7) , 811-820. https://doi.org/10.1517/17460441.2013.794135
    46. Sarah Barelier, Sarah E. Boyce, Inbar Fish, Marcus Fischer, David B. Goodin, Brian K. Shoichet, . Roles for Ordered and Bulk Solvent in Ligand Recognition and Docking in Two Related Cavities. PLoS ONE 2013, 8 (7) , e69153. https://doi.org/10.1371/journal.pone.0069153
    47. Ramon Subirós‐Funosas, Lidia Nieto‐Rodriguez, Knud J. Jensen, Fernando Albericio. COMU: scope and limitations of the latest innovation in peptide acyl transfer reagents. Journal of Peptide Science 2013, 19 (7) , 408-414. https://doi.org/10.1002/psc.2517
    48. Andrei A. Gakh, Andrey V. Sosnov, Mikhail Krasavin, Tam Luong Nguyen, Ernest Hamel. Identification of diaryl 5-amino-1,2,4-oxadiazoles as tubulin inhibitors: The special case of 3-(2-fluorophenyl)-5-(4-methoxyphenyl)amino-1,2,4-oxadiazole. Bioorganic & Medicinal Chemistry Letters 2013, 23 (5) , 1262-1268. https://doi.org/10.1016/j.bmcl.2013.01.007
    49. Vsevolod Katritch, Vadim Cherezov, Raymond C. Stevens. Structure-Function of the G Protein–Coupled Receptor Superfamily. Annual Review of Pharmacology and Toxicology 2013, 53 (1) , 531-556. https://doi.org/10.1146/annurev-pharmtox-032112-135923
    50. Raymond C. Stevens, Vadim Cherezov, Vsevolod Katritch, Ruben Abagyan, Peter Kuhn, Hugh Rosen, Kurt Wüthrich. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nature Reviews Drug Discovery 2013, 12 (1) , 25-34. https://doi.org/10.1038/nrd3859
    51. Stephen P. Andrews, Benjamin Tehan. Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A 2A receptor. MedChemComm 2013, 4 (1) , 52-67. https://doi.org/10.1039/C2MD20164J
    52. Kenneth A. Jacobson, Stefano Costanzi. New Insights for Drug Design from the X-Ray Crystallographic Structures of G-Protein-Coupled Receptors. Molecular Pharmacology 2012, 82 (3) , 361-371. https://doi.org/10.1124/mol.112.079335

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect