ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Life Beyond Kinases: Structure-Based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors

View Author Information
National Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
§ Department of Pharmacology and Division of Medicinal Chemistry and Natural Products, The University of North Carolina, Chapel Hill, North Carolina 27759, United States
BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
Department of Pharmaceutical Sciences, Howard University, Washington, D.C. 20059, United States
*Phone: 86-10-80720645. Fax: 86-10-80720813. E-mail: [email protected]
Cite this: J. Med. Chem. 2012, 55, 12, 5749–5759
Publication Date (Web):June 13, 2012
https://doi.org/10.1021/jm300338m
Copyright © 2012 American Chemical Society

    Article Views

    3491

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Of great interest in recent years has been computationally predicting the novel polypharmacology of drug molecules. Here, we applied an “induced-fit” protocol to improve the homology models of 5-HT2A receptor, and we assessed the quality of these models in retrospective virtual screening. Subsequently, we computationally screened the FDA approved drug molecules against the best induced-fit 5-HT2A models and chose six top scoring hits for experimental assays. Surprisingly, one well-known kinase inhibitor, sorafenib, has shown unexpected promiscuous 5-HTRs binding affinities, Ki = 1959, 56, and 417 nM against 5-HT2A, 5-HT2B, and 5-HT2C, respectively. Our preliminary SAR exploration supports the predicted binding mode and further suggests sorafenib to be a novel lead compound for 5HTR ligand discovery. Although it has been well-known that sorafenib produces anticancer effects through targeting multiple kinases, carefully designed experimental studies are desirable to fully understand whether its “off-target” 5-HTR binding activities contribute to its therapeutic efficacy or otherwise undesirable side effects.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The sequence alignment between 5-HT2A and its template β-2 adrenoceptor, the structural descriptors used to evaluate the ketanserin complex system, the chemical structure and docking pose prediction assessment of ketanserin-like and cyproheptadine-like ligands, the ranks and annotated activities of top scored docking hits, the structures and experimental binding data of six FDA approved drugs, the detailed experimental assay protocols, and the chemical synthesis route for sorafenib analogues and their corresponding analysis data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 56 publications.

    1. Marta Arimont, Shan-Liang Sun, Rob Leurs, Martine Smit, Iwan J. P. de Esch, and Chris de Graaf . Structural Analysis of Chemokine Receptor–Ligand Interactions. Journal of Medicinal Chemistry 2017, 60 (12) , 4735-4779. https://doi.org/10.1021/acs.jmedchem.6b01309
    2. Ross McGuire, Stefan Verhoeven, Márton Vass, Gerrit Vriend, Iwan J. P. de Esch, Scott J. Lusher, Rob Leurs, Lars Ridder, Albert J. Kooistra, Tina Ritschel, and Chris de Graaf . 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. Journal of Chemical Information and Modeling 2017, 57 (2) , 115-121. https://doi.org/10.1021/acs.jcim.6b00686
    3. Haosen Yuan, Zhixian Guo, and Tuoping Luo . Synthesis of (+)-Lysergol and Its Analogues To Assess Serotonin Receptor Activity. Organic Letters 2017, 19 (3) , 624-627. https://doi.org/10.1021/acs.orglett.6b03779
    4. Yu Zhou, Jing Ma, Xingyu Lin, Xi-Ping Huang, Kaichun Wu, and Niu Huang . Structure-Based Discovery of Novel and Selective 5-Hydroxytryptamine 2B Receptor Antagonists for the Treatment of Irritable Bowel Syndrome. Journal of Medicinal Chemistry 2016, 59 (2) , 707-720. https://doi.org/10.1021/acs.jmedchem.5b01631
    5. Ran Cao, Yanli Wang, and Niu Huang . Discovery of 2-Acylaminothiophene-3-Carboxamides as Multitarget Inhibitors for BCR-ABL Kinase and Microtubules. Journal of Chemical Information and Modeling 2015, 55 (11) , 2435-2442. https://doi.org/10.1021/acs.jcim.5b00540
    6. Trayder Thomas, Kimberley C. McLean, Fiona M. McRobb, David T. Manallack, David K. Chalmers, and Elizabeth Yuriev . Homology Modeling of Human Muscarinic Acetylcholine Receptors. Journal of Chemical Information and Modeling 2014, 54 (1) , 243-253. https://doi.org/10.1021/ci400502u
    7. Xiaobo Wan, Wei Zhang, Li Li, Yuting Xie, Wei Li, and Niu Huang . A New Target for an Old Drug: Identifying Mitoxantrone as a Nanomolar Inhibitor of PIM1 Kinase via Kinome-Wide Selectivity Modeling. Journal of Medicinal Chemistry 2013, 56 (6) , 2619-2629. https://doi.org/10.1021/jm400045y
    8. Dinesh Kumar, Pooja Sharma, Ayush Mahajan, Ravi Dhawan, Kamal Dua. Pharmaceutical interest of in-silico approaches. Physical Sciences Reviews 2023, 8 (9) , 2547-2560. https://doi.org/10.1515/psr-2018-0157
    9. Yash Gupta, Neha Sharma, Snigdha Singh, Jesus G. Romero, Vinoth Rajendran, Reagan M. Mogire, Mohammad Kashif, Jordan Beach, Walter Jeske, Poonam, Bernhards R. Ogutu, Stefan M. Kanzok, Hoseah M. Akala, Jennifer Legac, Philip J. Rosenthal, David J. Rademacher, Ravi Durvasula, Agam P. Singh, Brijesh Rathi, Prakasha Kempaiah. The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca2+ Homeostasis by Targeting a Unique Ion Channel. Pharmaceutics 2022, 14 (7) , 1371. https://doi.org/10.3390/pharmaceutics14071371
    10. Monika Marcinkowska, Monika Kubacka, Agnieszka Zagorska, Anna Jaromin, Nikola Fajkis-Zajaczkowska, Marcin Kolaczkowski. Exploring the antiplatelet activity of serotonin 5-HT2A receptor antagonists bearing 6-fluorobenzo[d]isoxazol-3-yl)propyl) motif– as potential therapeutic agents in the prevention of cardiovascular diseases. Biomedicine & Pharmacotherapy 2022, 145 , 112424. https://doi.org/10.1016/j.biopha.2021.112424
    11. Flavio Ballante, Albert J Kooistra, Stefanie Kampen, Chris de Graaf, Jens Carlsson, . Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews 2021, 73 (4) , 1698-1736. https://doi.org/10.1124/pharmrev.120.000246
    12. Hongwei Jin, Jie Xia, Zhenming Liu, Xiang Simon Wang, Liangren Zhang. A unique ligand‐steered strategy for CC chemokine receptor 2 homology modeling to facilitate structure‐based virtual screening. Chemical Biology & Drug Design 2021, 97 (4) , 944-961. https://doi.org/10.1111/cbdd.13820
    13. Rebecca E. Hughes, Richard J.R. Elliott, John C. Dawson, Neil O. Carragher. High-content phenotypic and pathway profiling to advance drug discovery in diseases of unmet need. Cell Chemical Biology 2021, 28 (3) , 338-355. https://doi.org/10.1016/j.chembiol.2021.02.015
    14. Sabina Podlewska, Ryszard Bugno, Enza Lacivita, Marcello Leopoldo, Andrzej J. Bojarski, Jadwiga Handzlik. Low Basicity as a Characteristic for Atypical Ligands of Serotonin Receptor 5-HT2. International Journal of Molecular Sciences 2021, 22 (3) , 1035. https://doi.org/10.3390/ijms22031035
    15. Neha Dhiman, Kamalpreet Kaur, Vikas Jaitak. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorganic & Medicinal Chemistry 2020, 28 (15) , 115599. https://doi.org/10.1016/j.bmc.2020.115599
    16. Youyou Zhou, Zunnan Huang, Juan Su, Jie Li, Shuang Zhao, Lisha Wu, JiangLing Zhang, Yijing He, Guigui Zhang, Juan Tao, Jianda Zhou, Xiang Chen, Cong Peng. Benserazide is a novel inhibitor targeting PKM2 for melanoma treatment. International Journal of Cancer 2020, 147 (1) , 139-151. https://doi.org/10.1002/ijc.32756
    17. Lucas Paul, Celestin N. Mudogo, Kelvin M. Mtei, Revocatus L. Machunda, Fidele Ntie-Kang. A computer-based approach for developing linamarase inhibitory agents. Physical Sciences Reviews 2020, 5 (7) https://doi.org/10.1515/psr-2019-0098
    18. Pei-Ming Yang, Li-Shan Lin, Tsang-Pai Liu. Sorafenib Inhibits Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in Hepatocellular Carcinoma Cells. Biomolecules 2020, 10 (1) , 117. https://doi.org/10.3390/biom10010117
    19. Yorley Duarte, Valeria Márquez‐Miranda, Matthieu J. Miossec, Fernando González‐Nilo. Integration of target discovery, drug discovery and drug delivery: A review on computational strategies. WIREs Nanomedicine and Nanobiotechnology 2019, 11 (4) https://doi.org/10.1002/wnan.1554
    20. Shiming Peng, Wen Xiao, Dapeng Ju, Baofa Sun, Nannan Hou, Qianlan Liu, Yanli Wang, Haijiao Zhao, Chunchun Gao, Song Zhang, Ran Cao, Pengfei Li, Huanwei Huang, Yongfen Ma, Yankai Wang, Weiyi Lai, Zhixiong Ma, Wei Zhang, Song Huang, Hailin Wang, Zhiyuan Zhang, Liping Zhao, Tao Cai, Yong-Liang Zhao, Fengchao Wang, Yongzhan Nie, Gang Zhi, Yun-Gui Yang, Eric Erquan Zhang, Niu Huang. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Science Translational Medicine 2019, 11 (488) https://doi.org/10.1126/scitranslmed.aau7116
    21. A. A. Spasov, D. S. Yakovlev, A. A. Brigadirova, D. V. Maltsev, Y. V. Agatsarskaya. Novel Approaches to the Development of Antimigraine Drugs: A Focus on 5-HT2A Receptor Antagonists. Russian Journal of Bioorganic Chemistry 2019, 45 (2) , 76-88. https://doi.org/10.1134/S1068162019020146
    22. Ye Tian, Simiao Yu, Lude Cai, Guowei Gong, Guodong Wu, Hongxia Qi, Yanfang Zhao, Mingze Qin. Synthesis and Antitumor Activity of Sorafenib Analogs Containing a Tetrazole Moiety. Chemical Research in Chinese Universities 2019, 35 (1) , 41-46. https://doi.org/10.1007/s40242-018-8236-5
    23. Nevine M.Y. Elsayed, Rabah A.T. Serya, Mai F. Tolba, Marawan Ahmed, Khaled Barakat, Dalal A. Abou El Ella, Khaled A.M. Abouzid. Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity. Bioorganic Chemistry 2019, 82 , 340-359. https://doi.org/10.1016/j.bioorg.2018.10.071
    24. Michael Williams. Reagent Validation to Facilitate Experimental Reproducibility. Current Protocols in Pharmacology 2018, 81 (1) https://doi.org/10.1002/cpph.40
    25. Márton Vass, Albert J. Kooistra, Dehua Yang, Raymond C. Stevens, Ming-Wei Wang, Chris de Graaf. Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends in Pharmacological Sciences 2018, 39 (5) , 494-512. https://doi.org/10.1016/j.tips.2018.02.004
    26. Tudor I. Oprea, Cristian G. Bologa, Søren Brunak, Allen Campbell, Gregory N. Gan, Anna Gaulton, Shawn M. Gomez, Rajarshi Guha, Anne Hersey, Jayme Holmes, Ajit Jadhav, Lars Juhl Jensen, Gary L. Johnson, Anneli Karlson, Andrew R. Leach, Avi Ma'ayan, Anna Malovannaya, Subramani Mani, Stephen L. Mathias, Michael T. McManus, Terrence F. Meehan, Christian von Mering, Daniel Muthas, Dac-Trung Nguyen, John P. Overington, George Papadatos, Jun Qin, Christian Reich, Bryan L. Roth, Stephan C. Schürer, Anton Simeonov, Larry A. Sklar, Noel Southall, Susumu Tomita, Ilinca Tudose, Oleg Ursu, Dušica Vidović, Anna Waller, David Westergaard, Jeremy J. Yang, Gergely Zahoránszky-Köhalmi. Unexplored therapeutic opportunities in the human genome. Nature Reviews Drug Discovery 2018, 17 (5) , 317-332. https://doi.org/10.1038/nrd.2018.14
    27. Fleur M. Ferguson, Nathanael S. Gray. Kinase inhibitors: the road ahead. Nature Reviews Drug Discovery 2018, 17 (5) , 353-377. https://doi.org/10.1038/nrd.2018.21
    28. Albert J. Kooistra, Márton Vass, Ross McGuire, Rob Leurs, Iwan J. P. de Esch, Gert Vriend, Stefan Verhoeven, Chris de Graaf. 3D‐e‐Chem: Structural Cheminformatics Workflows for Computer‐Aided Drug Discovery. ChemMedChem 2018, 13 (6) , 614-626. https://doi.org/10.1002/cmdc.201700754
    29. Akhil Kumar, Ashok Sharma. Computational Modeling of Multi-target-Directed Inhibitors Against Alzheimer’s Disease. 2018, 533-571. https://doi.org/10.1007/978-1-4939-7404-7_19
    30. Kevin Mullane, Michael J. Curtis, Michael Williams. Experimental Planning and Execution. 2018, 67-106. https://doi.org/10.1016/B978-0-12-804725-5.00002-1
    31. Wei Li, Mengzhu Zheng, Shuangping Wu, Suyu Gao, Mei Yang, Zhimei Li, Qiuxia Min, Weiguang Sun, Lixia Chen, Guangya Xiang, Hua Li. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. Journal of Experimental & Clinical Cancer Research 2017, 36 (1) https://doi.org/10.1186/s13046-017-0530-4
    32. Luca Costantino, Daniela Barlocco. Designing Approaches to Multitarget Drugs. 2017, 161-205. https://doi.org/10.1002/9783527674381.ch7
    33. Miquel Duran-Frigola, Lydia Siragusa, Eytan Ruppin, Xavier Barril, Gabriele Cruciani, Patrick Aloy, . Detecting similar binding pockets to enable systems polypharmacology. PLOS Computational Biology 2017, 13 (6) , e1005522. https://doi.org/10.1371/journal.pcbi.1005522
    34. R. Chaudhari, Z. Tan, S. Zhang. Overview of Drug Polypharmacology and Multitargeted Molecular Design. 2017, 259-275. https://doi.org/10.1016/B978-0-12-409547-2.12323-6
    35. Yisu Li, Binbin Guo, Zhijian Xu, Bo Li, Tingting Cai, Xinben Zhang, Yuqi Yu, Heyao Wang, Jiye Shi, Weiliang Zhu. Repositioning organohalogen drugs: a case study for identification of potent B-Raf V600E inhibitors via docking and bioassay. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep31074
    36. A. A. Spasov, D. S. Yakovlev, D. V. Maltsev, O. N. Zhukovskaya, V. A. Anisimova, G. I. Kovalev, I. A. Zimin, Y. V. Morkovina. The derivatives of imidazo[1,2-a]benzimidazole as 5-HT2A receptor antagonists. Russian Journal of Bioorganic Chemistry 2016, 42 (4) , 397-403. https://doi.org/10.1134/S1068162016040178
    37. Ran Cao, Yanli Wang. Predicting Molecular Targets for Small‐Molecule Drugs with a Ligand‐Based Interaction Fingerprint Approach. ChemMedChem 2016, 11 (12) , 1352-1361. https://doi.org/10.1002/cmdc.201500228
    38. Trayder Thomas, David K. Chalmers, Elizabeth Yuriev. Homology Modeling and Docking Evaluation of Human Muscarinic Acetylcholine Receptors. 2016, 15-35. https://doi.org/10.1007/978-1-4939-2858-3_2
    39. Francesca Spyrakis, Claudio N. Cavasotto. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Archives of Biochemistry and Biophysics 2015, 583 , 105-119. https://doi.org/10.1016/j.abb.2015.08.002
    40. Bryan L. Roth, Wesley K. Kroeze. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily. Journal of Biological Chemistry 2015, 290 (32) , 19471-19477. https://doi.org/10.1074/jbc.R115.654764
    41. Ashutosh Kumar, Kam Y.J. Zhang. Hierarchical virtual screening approaches in small molecule drug discovery. Methods 2015, 71 , 26-37. https://doi.org/10.1016/j.ymeth.2014.07.007
    42. J Willem M Nissink, Sam Blackburn. Quantification of frequent-hitter behavior based on historical high-throughput screening data. Future Medicinal Chemistry 2014, 6 (10) , 1113-1126. https://doi.org/10.4155/fmc.14.72
    43. Anat Levit, Stefanie Nowak, Maximilian Peters, Ayana Wiener, Wolfgang Meyerhof, Maik Behrens, Masha Y. Niv. The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. The FASEB Journal 2014, 28 (3) , 1181-1197. https://doi.org/10.1096/fj.13-242594
    44. Albert J. Kooistra, Rob Leurs, Iwan J. P. de Esch, Chris de Graaf. From Three-Dimensional GPCR Structure to Rational Ligand Discovery. 2014, 129-157. https://doi.org/10.1007/978-94-007-7423-0_7
    45. Fiona P. Bailey, Veselin I. Andreev, Patrick A. Eyers. The Resistance Tetrad. 2014, 117-146. https://doi.org/10.1016/B978-0-12-397918-6.00005-7
    46. Terry Kenakin, David B. Bylund, Myron L. Toews, Kevin Mullane, Raymond J. Winquist, Michael Williams. Replicated, replicable and relevant–target engagement and pharmacological experimentation in the 21st century. Biochemical Pharmacology 2014, 87 (1) , 64-77. https://doi.org/10.1016/j.bcp.2013.10.024
    47. Wei Li, Xiaobo Wan, Fanqi Zeng, Yuting Xie, Yanli Wang, Wei Zhang, Li Li, Niu Huang. More than just a GPCR ligand: structure-based discovery of thioridazine derivatives as Pim-1 kinase inhibitors. Med. Chem. Commun. 2014, 5 (4) , 507-511. https://doi.org/10.1039/C4MD00030G
    48. Xavier Jalencas, Jordi Mestres. Identification of Similar Binding Sites to Detect Distant Polypharmacology. Molecular Informatics 2013, 32 (11-12) , 976-990. https://doi.org/10.1002/minf.201300082
    49. A J Kooistra, S Kuhne, I J P de Esch, R Leurs, C de Graaf. A structural chemogenomics analysis of aminergic GPCRs : lessons for histamine receptor ligand design. British Journal of Pharmacology 2013, 170 (1) , 101-126. https://doi.org/10.1111/bph.12248
    50. Ye Fang. Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. Journal of Pharmacological and Toxicological Methods 2013, 67 (2) , 69-81. https://doi.org/10.1016/j.vascn.2013.01.004
    51. Andrew C. Emery. Catecholamine Receptors. 2013, 335-356. https://doi.org/10.1016/B978-0-12-411512-5.00016-6
    52. Stefan Knapp, Paulo Arruda, Julian Blagg, Stephen Burley, David H Drewry, Aled Edwards, Doriano Fabbro, Paul Gillespie, Nathanael S Gray, Bernhard Kuster, Karen E Lackey, Paulo Mazzafera, Nicholas C O Tomkinson, Timothy M Willson, Paul Workman, William J Zuercher. A public-private partnership to unlock the untargeted kinome. Nature Chemical Biology 2013, 9 (1) , 3-6. https://doi.org/10.1038/nchembio.1113
    53. Xavier Jalencas, Jordi Mestres. On the origins of drug polypharmacology. MedChemComm 2013, 4 (1) , 80-87. https://doi.org/10.1039/C2MD20242E
    54. Dik-Lung Ma, Daniel Shiu-Hin Chan, Chung-Hang Leung. Drug repositioning by structure-based virtual screening. Chemical Society Reviews 2013, 42 (5) , 2130. https://doi.org/10.1039/c2cs35357a
    55. Luca Costantino, Daniela Barlocco. Challenges in the design of multitarget drugs against multifactorial pathologies: a new life for medicinal chemistry?. Future Medicinal Chemistry 2013, 5 (1) , 5-7. https://doi.org/10.4155/fmc.12.193
    56. Doug Auld, Wendy Lea, Mindy I. Davis, Anton Simeonov. Literature Search and Review. ASSAY and Drug Development Technologies 2012, 10 (4) , 297-312. https://doi.org/10.1089/adt.2012.1004.lr

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect