ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Potent Aminocyclitol Glucocerebrosidase Inhibitors are Subnanomolar Pharmacological Chaperones for Treating Gaucher Disease

View Author Information
Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC−CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
*Phone: 34-934-006-108. Fax: +34-932045904. E-mail: [email protected]
Cite this: J. Med. Chem. 2012, 55, 9, 4479–4488
Publication Date (Web):April 19, 2012
https://doi.org/10.1021/jm300342q
Copyright © 2012 American Chemical Society

    Article Views

    1603

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Amino-myo-inositol derivatives have been found to be potent inhibitors of glucocerebrosidase (GCase), the β-glucosidase enzyme deficient in Gaucher disease (GD). When tested using lymphoblasts derived from patients with GD homozygous for N370S or L444P mutations, the compounds enhanced GCase activity at very low concentrations. The most potent inhibitor, (1R,2S,3R,4S,5S,6R)-5-(nonylamino)-6-(nonyloxy)cyclohexane-1,2,3,4-tetraol had a Ki of 1 nM using isolated enzyme and an IC50 of 4.3 nM when assayed in human fibroblast cell culture. This aminocyclitol produced maximum increases of GCase activities of 90% in N370S lymphoblasts at 1 nM and 40% in L444P at 0.01 nM following a three-day incubation. In addition to inhibitory potency, this compound has the permeability, subcellular distribution, and cell metabolism characteristics that are important for use as a pharmacological chaperone. It is a remarkable finding that picomolar concentrations of aminocyclitols are sufficient to enhance activity in the L444P variant, which produces a severe neuronopathic form of GD without clinical treatment.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    General experimental protocols and compound characterization data for all new compounds, as well as experimental procedure for glycosidase inhibition assays, GCS inhibition in cell homogenates, cytotoxicity, GCase and GBA2 inhibition in mouse tissue homogenates, stabilization ratios after thermal denaturation of recombinant GCase (Imiglucerase), and the effects of compounds on L444P or N370S GCase activity in GD lymphoblasts. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 40 publications.

    1. Li Qiao, Ke Zhang, Zhichao Wang, Hanjie Li, Ping Lu, Yanguang Wang. Visible-Light-Induced Photocatalyst-Free Aerobic Hydroxyazidations of Indoles: A Highly Regioselective and Stereoselective Synthesis of trans-2-Azidoindolin-3-ols. The Journal of Organic Chemistry 2021, 86 (12) , 7955-7962. https://doi.org/10.1021/acs.joc.1c00186
    2. Vimal Kant Harit and Namakkal G. Ramesh . A Chiron Approach to Diversity-Oriented Synthesis of Aminocyclitols, (−)-Conduramine F-4 and Polyhydroxyaminoazepanes from a Common Precursor. The Journal of Organic Chemistry 2016, 81 (23) , 11574-11586. https://doi.org/10.1021/acs.joc.6b01790
    3. Jianbin Zheng, Long Chen, Michael Schwake, Richard B. Silverman, and Dimitri Krainc . Design and Synthesis of Potent Quinazolines as Selective β-Glucocerebrosidase Modulators. Journal of Medicinal Chemistry 2016, 59 (18) , 8508-8520. https://doi.org/10.1021/acs.jmedchem.6b00930
    4. Marino Convertino, Jhuma Das, and Nikolay V. Dokholyan . Pharmacological Chaperones: Design and Development of New Therapeutic Strategies for the Treatment of Conformational Diseases. ACS Chemical Biology 2016, 11 (6) , 1471-1489. https://doi.org/10.1021/acschembio.6b00195
    5. Ana Trapero, Meritxell Egido-Gabás, Jordi Bujons, and Amadeu Llebaria . Synthesis and Evaluation of Hydroxymethylaminocyclitols as Glycosidase Inhibitors. The Journal of Organic Chemistry 2015, 80 (7) , 3512-3529. https://doi.org/10.1021/acs.joc.5b00133
    6. Robert E. Boyd, Gary Lee, Philip Rybczynski, Elfrida R. Benjamin, Richie Khanna, Brandon A. Wustman, and Kenneth J. Valenzano . Pharmacological Chaperones as Therapeutics for Lysosomal Storage Diseases. Journal of Medicinal Chemistry 2013, 56 (7) , 2705-2725. https://doi.org/10.1021/jm301557k
    7. Pratigya Tripathi, Ankit Ganeshpurkar, Sushil Kumar Singh, Sairam Krishnamurthy. Identification of novel glucocerebrosidase chaperone for potential treatment of Parkinson's disease: An approach using in silico virtual screening, molecular docking and molecular dynamics, and in vitro studies. International Journal of Biological Macromolecules 2023, 228 , 453-466. https://doi.org/10.1016/j.ijbiomac.2022.12.217
    8. Pratigya Tripathi, Ankit Ganeshpurkar, Sushil Kumar Singh, Sairam Krishnamurthy. Generation of wild-type rat Glucocerebrosidase homology modeling: Identification of putative interactions site and mechanism for chaperone using combined in-silico and in-vitro studies. Bioorganic Chemistry 2022, 126 , 105871. https://doi.org/10.1016/j.bioorg.2022.105871
    9. A.E. Kopytova, G.N. Rychkov, M.A. Nikolaev, G.V. Baydakova, A.A. Cheblokov, K.A. Senkevich, D.A. Bogdanova, O.I. Bolshakova, I.V. Miliukhina, V.A. Bezrukikh, G.N. Salogub, S.V. Sarantseva, T.C. Usenko, E.Y. Zakharova, A.K. Emelyanov, S.N. Pchelina. Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism & Related Disorders 2021, 84 , 112-121. https://doi.org/10.1016/j.parkreldis.2021.02.003
    10. Emine Salamci, Yunus Zozik. Stereoselective syntheses of 3-aminocyclooctanetriols and halocyclooctanetriols. Beilstein Journal of Organic Chemistry 2021, 17 , 705-710. https://doi.org/10.3762/bjoc.17.59
    11. Mysore S. Shashidhar, Nivedita T. Patil. Recent developments in the synthesis of biologically relevant inositol derivatives. 2020, 283-329. https://doi.org/10.1016/B978-0-12-816675-8.00007-5
    12. Nisa Eda Çullas Ilarslan, Fatih Gunay, Nazan Cobanoglu, Merve Karaman, Fatma Tuba Eminoglu. Respiratory manifestations in inherited metabolic diseases: 6‐year single‐center experience. Pediatric Pulmonology 2019, 54 (8) , 1190-1199. https://doi.org/10.1002/ppul.24359
    13. Teresa Mena-Barragán, M. García-Moreno, Alen Sevšek, Tetsuya Okazaki, Eiji Nanba, Katsumi Higaki, Nathaniel Martin, Roland Pieters, José Fernández, Carmen Mellet. Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease. Molecules 2018, 23 (4) , 927. https://doi.org/10.3390/molecules23040927
    14. David M. Pereira, Patrícia Valentão, Paula B. Andrade. Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chemical Science 2018, 9 (7) , 1740-1752. https://doi.org/10.1039/C7SC04712F
    15. Buge Yilmazer, Z. Begum Yagci, Emre Bakar, Burcu Ozden, Kutlu Ulgen, Elif Ozkirimli. Investigation of novel pharmacological chaperones for Gaucher Disease. Journal of Molecular Graphics and Modelling 2017, 76 , 364-378. https://doi.org/10.1016/j.jmgm.2017.07.014
    16. Alen Sevšek, Luka Šrot, Jakob Rihter, Maša Čelan, Linda Quarles van Ufford, Ed E. Moret, Nathaniel I. Martin, Roland J. Pieters. N ‐Guanidino Derivatives of 1,5‐Dideoxy‐1,5‐imino‐ d ‐xylitol are Potent, Selective, and Stable Inhibitors of β‐Glucocerebrosidase. ChemMedChem 2017, 12 (7) , 483-486. https://doi.org/10.1002/cmdc.201700050
    17. Alen Sevšek, Javier Sastre Toraño, Linda Quarles van Ufford, Ed E. Moret, Roland J. Pieters, Nathaniel I. Martin. Orthoester functionalized N -guanidino derivatives of 1,5-dideoxy-1,5-imino- d -xylitol as pH-responsive inhibitors of β-glucocerebrosidase. MedChemComm 2017, 8 (11) , 2050-2054. https://doi.org/10.1039/C7MD00480J
    18. Victoria de la Sovera, Pablo Garay, Natalia Thevenet, Mario A. Macías, David González, Gustavo Seoane, Ignacio Carrera. Novel chemoenzymatic synthesis of an enantiopure allo-inosamine hexaacetate from benzyl azide. Tetrahedron Letters 2016, 57 (23) , 2484-2487. https://doi.org/10.1016/j.tetlet.2016.04.072
    19. Elena M. Sánchez-Fernández, José M. García Fernández, Carmen Ortiz Mellet. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, G M1 -gangliosidosis and Fabry diseases. Chemical Communications 2016, 52 (32) , 5497-5515. https://doi.org/10.1039/C6CC01564F
    20. Alen Sevšek, Maša Čelan, Bibi Erjavec, Linda Quarles van Ufford, Javier Sastre Toraño, Ed E. Moret, Roland J. Pieters, Nathaniel I. Martin. Bicyclic isoureas derived from 1-deoxynojirimycin are potent inhibitors of β-glucocerebrosidase. Organic & Biomolecular Chemistry 2016, 14 (37) , 8670-8673. https://doi.org/10.1039/C6OB01735E
    21. Shinichi Kuno, Seiichiro Ogawa. From Quercitols to Biologically Active Valienamine and Conduramine Derivatives: Development of Pharmacological Chaperones. Trends in Glycoscience and Glycotechnology 2016, 28 (159) , E13-E22. https://doi.org/10.4052/tigg.1435.1E
    22. Shinichi Kuno, Seiichiro Ogawa. From Quercitols to Biologically Active Valienamine and Conduramine Derivatives: Development of Pharmacological Chaperones. Trends in Glycoscience and Glycotechnology 2016, 28 (159) , J13-J22. https://doi.org/10.4052/tigg.1435.1J
    23. Mario de la Mata, David Cotán, Manuel Oropesa-Ávila, Juan Garrido-Maraver, Mario D. Cordero, Marina Villanueva Paz, Ana Delgado Pavón, Elizabet Alcocer-Gómez, Isabel de Lavera, Patricia Ybot-González, Ana Paula Zaderenko, Carmen Ortiz Mellet, José M. García Fernández, José A. Sánchez-Alcázar. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep10903
    24. Javier Castilla, Rocío Rísquez, Katsumi Higaki, Eiji Nanba, Kousaku Ohno, Yoshiyuki Suzuki, Yolanda Díaz, Carmen Ortiz Mellet, José M. García Fernández, Sergio Castillón. Conformationally-locked N-glycosides: Exploiting long-range non-glycone interactions in the design of pharmacological chaperones for Gaucher disease. European Journal of Medicinal Chemistry 2015, 90 , 258-266. https://doi.org/10.1016/j.ejmech.2014.11.002
    25. Gökay Aydin, Khamis Ally, Fatih Aktaş, Ertan Şahin, Arif Baran, Metin Balci. Synthesis and α‐Glucosidase and α‐Amylase Inhibitory Activity Evaluation of Azido‐ and Aminocyclitols. European Journal of Organic Chemistry 2014, 2014 (31) , 6903-6917. https://doi.org/10.1002/ejoc.201402762
    26. Zsolt Török, Tim Crul, Bruno Maresca, Gerhard J. Schütz, Felix Viana, Laura Dindia, Stefano Piotto, Mario Brameshuber, Gábor Balogh, Mária Péter, Amalia Porta, Alfonso Trapani, Imre Gombos, Attila Glatz, Burcin Gungor, Begüm Peksel, László Vigh, Bálint Csoboz, Ibolya Horváth, Mathilakath M. Vijayan, Phillip L. Hooper, John L. Harwood, László Vigh. Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochimica et Biophysica Acta (BBA) - Biomembranes 2014, 1838 (6) , 1594-1618. https://doi.org/10.1016/j.bbamem.2013.12.015
    27. Giancarlo Parenti, Marco Moracci, Simona Fecarotta, Generoso Andria. Pharmacological chaperone therapy for lysosomal storage diseases. Future Medicinal Chemistry 2014, 6 (9) , 1031-1045. https://doi.org/10.4155/fmc.14.40
    28. Julio Rodríguez-Lavado, Mario de la Mata, José L. Jiménez-Blanco, M. Isabel García-Moreno, Juan M. Benito, Antonio Díaz-Quintana, José A. Sánchez-Alcázar, Katsumi Higaki, Eiji Nanba, Kousaku Ohno, Yoshiyuki Suzuki, Carmen Ortiz Mellet, José M. García Fernández. Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Org. Biomol. Chem. 2014, 12 (14) , 2289-2301. https://doi.org/10.1039/C3OB42530D
    29. Flora Camps Bres, Christine Guérard-Hélaine, Carlos Fernandes, José A. Castillo, Marielle Lemaire. Fructose-6-phosphate aldolases as versatile biocatalysts for nitrocyclitol syntheses. Tetrahedron: Asymmetry 2013, 24 (18) , 1075-1081. https://doi.org/10.1016/j.tetasy.2013.07.016
    30. Christina M. Ridley, Karen E. Thur, Jessica Shanahan, Nagendra Babu Thillaiappan, Ann Shen, Karly Uhl, Charlotte M. Walden, Ahad A. Rahim, Simon N. Waddington, Frances M. Platt, Aarnoud C. van der Spoel. β-Glucosidase 2 (GBA2) Activity and Imino Sugar Pharmacology. Journal of Biological Chemistry 2013, 288 (36) , 26052-26066. https://doi.org/10.1074/jbc.M113.463562
    31. Zhonghua Li, Tiehai Li, Shaoxing Dai, Xiaoli Xie, Xiaofeng Ma, Wei Zhao, Weimin Zhang, Jing Li, Peng George Wang. New Insights into the Pharmacological Chaperone Activity of C2‐Substituted Glucoimidazoles for the Treatment of Gaucher Disease. ChemBioChem 2013, 14 (10) , 1239-1247. https://doi.org/10.1002/cbic.201300197
    32. Julia A. Griffen, Jenifer C. White, Gabriele Kociok-Köhn, Matthew D. Lloyd, Andrew Wells, Tom C. Arnot, Simon E. Lewis. New aminocyclitols with quaternary stereocentres via acylnitroso cycloaddition with an ipso,ortho arene dihydrodiol. Tetrahedron 2013, 69 (29) , 5989-5997. https://doi.org/10.1016/j.tet.2013.04.033
    33. Pilar Alfonso, Vanesa Andreu, Almudena Pino‐Angeles, Aurelio A. Moya‐García, M. Isabel García‐Moreno, José C. Rodríguez‐Rey, Francisca Sánchez‐Jiménez, Miguel Pocoví, Carmen Ortiz Mellet, Jose M. García Fernández, Pilar Giraldo. Bicyclic Derivatives of L ‐Idonojirimycin as Pharmacological Chaperones for Neuronopathic Forms of Gaucher Disease. ChemBioChem 2013, 14 (8) , 943-949. https://doi.org/10.1002/cbic.201200708
    34. Rajiah Aldrin Denny, Lori Krim Gavrin, Eddine Saiah. Recent developments in targeting protein misfolding diseases. Bioorganic & Medicinal Chemistry Letters 2013, 23 (7) , 1935-1944. https://doi.org/10.1016/j.bmcl.2013.01.089
    35. Ana Trapero, Amadeu Llebaria. Glucocerebrosidase inhibitors for the treatment of Gaucher disease. Future Medicinal Chemistry 2013, 5 (5) , 573-590. https://doi.org/10.4155/fmc.13.14
    36. Inna Bendikov-Bar, Gali Maor, Mirella Filocamo, Mia Horowitz. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells, Molecules, and Diseases 2013, 50 (2) , 141-145. https://doi.org/10.1016/j.bcmd.2012.10.007
    37. Ana Trapero, Meritxell Egido-Gabás, Amadeu Llebaria. Adamantane substituted aminocyclitols as pharmacological chaperones for Gaucher disease. MedChemComm 2013, 4 (12) , 1584. https://doi.org/10.1039/c3md00217a
    38. Juan Aymami, Xavier Barril, Laura Rodríguez-Pascau, Marc Martinell. Pharmacological chaperones for enzyme enhancement therapy in genetic diseases. Pharmaceutical Patent Analyst 2013, 2 (1) , 109-124. https://doi.org/10.4155/ppa.12.74
    39. Wouter W. Kallemeijn, Kah‐Yee Li, Martin D. Witte, André R. A. Marques, Jan Aten, Saskia Scheij, Jianbing Jiang, Lianne I. Willems, Tineke M. Voorn‐Brouwer, Cindy P. A. A. van Roomen, Roelof Ottenhoff, Rolf G. Boot, Hans van den Elst, Marthe T. C. Walvoort, Bogdan I. Florea, Jeroen D. C. Codée, Gijsbert A. van der Marel, Johannes M. F. G. Aerts, Herman S. Overkleeft. Novel Activity‐Based Probes for Broad‐Spectrum Profiling of Retaining β‐Exoglucosidases In Situ and In Vivo. Angewandte Chemie International Edition 2012, 51 (50) , 12529-12533. https://doi.org/10.1002/anie.201207771
    40. Wouter W. Kallemeijn, Kah‐Yee Li, Martin D. Witte, André R. A. Marques, Jan Aten, Saskia Scheij, Jianbing Jiang, Lianne I. Willems, Tineke M. Voorn‐Brouwer, Cindy P. A. A. van Roomen, Roelof Ottenhoff, Rolf G. Boot, Hans van den Elst, Marthe T. C. Walvoort, Bogdan I. Florea, Jeroen D. C. Codée, Gijsbert A. van der Marel, Johannes M. F. G. Aerts, Herman S. Overkleeft. Novel Activity‐Based Probes for Broad‐Spectrum Profiling of Retaining β‐Exoglucosidases In Situ and In Vivo. Angewandte Chemie 2012, 124 (50) , 12697-12701. https://doi.org/10.1002/ange.201207771

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect