ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Development of Highly Potent and Selective Diaminothiazole Inhibitors of Cyclin-Dependent Kinases

View Author Information
Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
§ Translational Research Laboratory, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
Molecular Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
*For E.S: phone, +813-745-4503; e-mail, [email protected]. For G.I.G.: phone, +612-626-6320; e-mail, [email protected]
Cite this: J. Med. Chem. 2013, 56, 10, 3768–3782
Publication Date (Web):April 19, 2013
https://doi.org/10.1021/jm301234k
Copyright © 2013 American Chemical Society

    Article Views

    4839

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009–0.0015 μM) from a single hit compound with weak inhibitory activity (IC50 = 15 μM), discovered by high-throughput screening. Structure-based design was performed using 35 cocrystal structures of CDK2 liganded with distinct analogues of the parent compound. The profiling of compound 51 against a panel of 339 kinases revealed high selectivity for CDKs, with preference for CDK2 and CDK5 over CDK9, CDK1, CDK4, and CDK6. Compound 51 inhibited the proliferation of 13 out of 15 cancer cell lines with IC50 values between 0.27 and 6.9 μM, which correlated with the complete suppression of retinoblastoma phosphorylation and the onset of apoptosis. Combined, the results demonstrate the potential of this new inhibitors series for further development into CDK-specific chemical probes or therapeutics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    X-ray crystallography data and refinement statistics, FoFc electron density omit maps, additional SAR data along with dose–response graphs, kinase profiling results, and NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Accession Codes

    The atomic coordinates and structure factors for the crystal structures determined as part of this work have been deposited in the Protein Data Bank (entries 3QQK, 3R8V, 3QTQ, 3R8U, 3S00, 3S0O, 3R8Z, 3QTR, 3RJC, 3R9N, 3RAH, 3QTW, 3QTS, 3RPR, 3RZB, 3QU0, 3RK7, 3RK9, 3RKB, 3RK5, 3QXP, 3QTZ, 3QTU, 3QTX, 3RPV, 3RAL, 3RAK, 3RPY, 3SQQ, 3S1H, 3RMF, 3RNI, 3R9D, 3R9O, 3R9H, and 4GCJ).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 67 publications.

    1. Runduo Liu, Wenchao Li, Yufen Yao, Yinuo Wu, Hai-Bin Luo, Zhe Li. Accelerating and Automating the Free Energy Perturbation Absolute Binding Free Energy Calculation with the RED-E Function. Journal of Chemical Information and Modeling 2023, 63 (24) , 7755-7767. https://doi.org/10.1021/acs.jcim.3c01670
    2. Laura A. T. Cleghorn, Richard J. Wall, Sébastien Albrecht, Stuart A. MacGowan, Suzanne Norval, Manu De Rycker, Andrew Woodland, Daniel Spinks, Stephen Thompson, Stephen Patterson, Victoriano Corpas Lopez, Gourav Dey, Iain T. Collie, Irene Hallyburton, Robert Kime, Frederick R. C. Simeons, Laste Stojanovski, Julie A. Frearson, Paul G. Wyatt, Kevin D. Read, Ian H. Gilbert, Susan Wyllie. Development of a 2,4-Diaminothiazole Series for the Treatment of Human African Trypanosomiasis Highlights the Importance of Static–Cidal Screening of Analogues. Journal of Medicinal Chemistry 2023, 66 (13) , 8896-8916. https://doi.org/10.1021/acs.jmedchem.3c00509
    3. Alexandre V. Fassio, Laura Shub, Luca Ponzoni, Jessica McKinley, Matthew J. O’Meara, Rafaela S. Ferreira, Michael J. Keiser, Raquel C. de Melo Minardi. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints. Journal of Chemical Information and Modeling 2022, 62 (18) , 4300-4318. https://doi.org/10.1021/acs.jcim.2c00695
    4. Alasdair Smith, Richard J. Wall, Stephen Patterson, Tim Rowan, Eva Rico Vidal, Laste Stojanovski, Margaret Huggett, Shahienaz E. Hampton, Michael G. Thomas, Victoriano Corpas Lopez, Kirsten Gillingwater, Jeff Duke, Grant Napier, Rose Peter, Hervé S. Vitouley, Justin R. Harrison, Rachel Milne, Laura Jeacock, Nicola Baker, Susan H. Davis, Frederick Simeons, Jennifer Riley, David Horn, Reto Brun, Fabio Zuccotto, Michael J Witty, Susan Wyllie, Kevin D. Read, Ian H. Gilbert. Repositioning of a Diaminothiazole Series Confirmed to Target the Cyclin-Dependent Kinase CRK12 for Use in the Treatment of African Animal Trypanosomiasis. Journal of Medicinal Chemistry 2022, 65 (7) , 5606-5624. https://doi.org/10.1021/acs.jmedchem.1c02104
    5. Tomomi Shimazaki, Masanori Tachikawa. Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2. ACS Omega 2022, 7 (12) , 10372-10381. https://doi.org/10.1021/acsomega.1c06976
    6. Matthew H. Daniels, Goran Malojcic, Susan L. Clugston, Brett Williams, Marie Coeffet-Le Gal, Xin-Ru Pan-Zhou, Srinivasan Venkatachalan, Jean-Christophe Harmange, Mark Ledeboer. Discovery and Optimization of Highly Selective Inhibitors of CDK5. Journal of Medicinal Chemistry 2022, 65 (4) , 3575-3596. https://doi.org/10.1021/acs.jmedchem.1c02069
    7. Anusha Avadhani, Pethaperumal Iniyavan, Yogendra Kumar, Hiriyakkanavar Ila. Single-Pot Preparation of 4-Amino-2-(het)aryl-5-Substituted Thiazoles Employing Functionalized Dithioesters as Thiocarbonyl Precursors. The Journal of Organic Chemistry 2021, 86 (12) , 8508-8515. https://doi.org/10.1021/acs.joc.1c00616
    8. Yang Wang, Xing Chen, Yaoyao Yan, Xiaochen Zhu, Mingming Liu, Xinhua Liu. Discovery and SARs of 5-Chloro-N4-phenyl-N2-(pyridin-2-yl)pyrimidine-2,4-diamine Derivatives as Oral Available and Dual CDK 6 and 9 Inhibitors with Potent Antitumor Activity. Journal of Medicinal Chemistry 2020, 63 (6) , 3327-3347. https://doi.org/10.1021/acs.jmedchem.9b02121
    9. Hye-Jin Kwon, Ye-Ji Kim, Si-Yeon Han, Young-Dae Gong. Design and Solid-Phase Parallel Synthesis of 2,4,5-Trisubstituted Thiazole Derivatives via Cyclization Reaction with a Carbamimidothioate Linker. ACS Combinatorial Science 2019, 21 (6) , 482-488. https://doi.org/10.1021/acscombsci.9b00039
    10. Solomon Tadesse, Elizabeth C. Caldon, Wayne Tilley, Shudong Wang. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. Journal of Medicinal Chemistry 2019, 62 (9) , 4233-4251. https://doi.org/10.1021/acs.jmedchem.8b01469
    11. Jianzhong Chen, Xingyu Wang, John Z. H. Zhang, Tong Zhu. Effect of Substituents in Different Positions of Aminothiazole Hinge-Binding Scaffolds on Inhibitor–CDK2 Association Probed by Interaction Entropy Method. ACS Omega 2018, 3 (12) , 18052-18064. https://doi.org/10.1021/acsomega.8b02354
    12. Priya Mahajan, Gousia Chashoo, Monika Gupta, Amit Kumar, Parvinder Pal Singh, and Amit Nargotra . Fusion of Structure and Ligand Based Methods for Identification of Novel CDK2 Inhibitors. Journal of Chemical Information and Modeling 2017, 57 (8) , 1957-1969. https://doi.org/10.1021/acs.jcim.7b00293
    13. Malgorzata N. Drwal, Célien Jacquemard, Carlos Perez, Jérémy Desaphy, and Esther Kellenberger . Do Fragments and Crystallization Additives Bind Similarly to Drug-like Ligands?. Journal of Chemical Information and Modeling 2017, 57 (5) , 1197-1209. https://doi.org/10.1021/acs.jcim.6b00769
    14. Yuezhou Zhang, Alexandre Borrel, Leo Ghemtio, Leslie Regad, Gustav Boije af Gennäs, Anne-Claude Camproux, Jari Yli-Kauhaluoma, and Henri Xhaard . Structural Isosteres of Phosphate Groups in the Protein Data Bank. Journal of Chemical Information and Modeling 2017, 57 (3) , 499-516. https://doi.org/10.1021/acs.jcim.6b00519
    15. Peng Zhan, Yukihiro Itoh, Takayoshi Suzuki, and Xinyong Liu . Strategies for the Discovery of Target-Specific or Isoform-Selective Modulators. Journal of Medicinal Chemistry 2015, 58 (19) , 7611-7633. https://doi.org/10.1021/acs.jmedchem.5b00229
    16. Brett R. Beno, Kap-Sun Yeung, Michael D. Bartberger, Lewis D. Pennington, and Nicholas A. Meanwell . A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. Journal of Medicinal Chemistry 2015, 58 (11) , 4383-4438. https://doi.org/10.1021/jm501853m
    17. Mathew P. Martin, Sanne H. Olesen, Gunda I. Georg, and Ernst Schönbrunn . Cyclin-Dependent Kinase Inhibitor Dinaciclib Interacts with the Acetyl-Lysine Recognition Site of Bromodomains. ACS Chemical Biology 2013, 8 (11) , 2360-2365. https://doi.org/10.1021/cb4003283
    18. Davood Gheidari, Morteza Mehrdad, Mohammad Bayat. Synthesis, docking, MD simulation, ADMET, drug likeness, and DFT studies of novel furo[2,3-b]indol-3a-ol as promising Cyclin-dependent kinase 2 inhibitors. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-53514-1
    19. Yan Zhu, Saad Alqahtani, Xiche Hu. An Assessment of Dispersion-Corrected DFT Methods for Modeling Nonbonded Interactions in Protein Kinase Inhibitor Complexes. Molecules 2024, 29 (2) , 304. https://doi.org/10.3390/molecules29020304
    20. Lifei Wang, Dan Lu, Yan Wang, Xiaoyan Xu, Peihua Zhong, Zhiyong Yang. Binding selectivity-dependent molecular mechanism of inhibitors towards CDK2 and CDK6 investigated by multiple short molecular dynamics and free energy landscapes. Journal of Enzyme Inhibition and Medicinal Chemistry 2023, 38 (1) , 84-99. https://doi.org/10.1080/14756366.2022.2135511
    21. Erik B. Faber, Luxin Sun, Jian Tang, Emily Roberts, Sornakala Ganeshkumar, Nan Wang, Damien Rasmussen, Abir Majumdar, Laura E. Hirsch, Kristen John, An Yang, Hira Khalid, Jon E. Hawkinson, Nicholas M. Levinson, Vargheese Chennathukuzhi, Daniel A. Harki, Ernst Schönbrunn, Gunda I. Georg. Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38732-x
    22. Thoraya A. Farghaly, Wedian A. Al-Hasani, Mona H. Ibrahim, Magda H. Abdellattif, Zeinab A. Abdallah. Design, Synthesis, Anticancer Activity and Docking Studies of Thiazole Linked Phenylsulfone Moiety as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors. Polycyclic Aromatic Compounds 2023, 43 (6) , 5001-5020. https://doi.org/10.1080/10406638.2022.2097715
    23. Andrii Kyrylchuk, Iryna Kravets, Anton Cherednichenko, Valentyna Tararina, Anna Kapeliukha, Dmytro Dudenko, Mykola Protopopov. Creation of targeted compound libraries based on 3D shape recognition. Molecular Diversity 2023, 27 (2) , 939-949. https://doi.org/10.1007/s11030-022-10447-z
    24. Ian Hope, Jane A. Endicott, Jessica E. Watt. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chemical Biology 2023, 4 (2) , 146-164. https://doi.org/10.1039/D2CB00201A
    25. Dalia M. Soleman, Omayma A. Eldahshan, Mona H. Ibrahim, Hanan A. Ogaly, Heba M. Galal, Gaber El-Saber Batiha, Rawah H. Elkousy. GC/MS Analysis, Cytotoxicity, and Antiviral Activities of Annona glabra Hexane Extract Supported by In Silico Study. Molecules 2023, 28 (4) , 1628. https://doi.org/10.3390/molecules28041628
    26. Yaoguang Huang, Deping Li, Chang Xu, Chengze Zhu, Limeng Wu, Meiling Shen, Yue Li, Xiaowen Jiang, Wenwu Liu, Qingchun Zhao, Tianshu Ren. Discovery of novel and potent tacrine derivatives as CDK2 inhibitors. New Journal of Chemistry 2022, 46 (43) , 20972-20984. https://doi.org/10.1039/D2NJ03591J
    27. Kinga Czarnota-Łydka, Katarzyna Kucwaj-Brysz, Patryk Pyka, Wawrzyniec Haberek, Sabina Podlewska, Jadwiga Handzlik. Multitargeting the Action of 5-HT6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer’s Disease: Can It Work from a Molecular Point of View?. International Journal of Molecular Sciences 2022, 23 (15) , 8768. https://doi.org/10.3390/ijms23158768
    28. Si Huang, Jingxian Xiao, Junyong Wu, Jiayi Liu, Xueping Feng, Chengdong Yang, Daxiong Xiang, Shilin Luo. Tizoxanide Promotes Apoptosis in Glioblastoma by Inhibiting CDK1 Activity. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.895573
    29. Lei Zheng, Yunpeng Yang, Jingxiao Bao, Liping He, Yifei Qi, John Z. H. Zhang. Discovery of novel inhibitors of CDK2 using docking and physics‐based binding free energy calculation. Chemical Biology & Drug Design 2022, 99 (5) , 662-673. https://doi.org/10.1111/cbdd.14027
    30. Israa Taha, Eman M. Keshk, Abdel-Galil M. Khalil, Ahmed Fekri. Benzocaine as a precursor of promising derivatives: synthesis, reactions, and biological activity. Chemical Papers 2021, 75 (12) , 6181-6215. https://doi.org/10.1007/s11696-021-01808-3
    31. Nopawit Khamto, Lada Chaichuang, Puracheth Rithchumpon, Worrapong Phupong, Phuangthip Bhoopong, Suriya Tateing, Wilart Pompimon, Natthawat Semakul, Ni-orn Chomsri, Puttinan Meepowpan. Synthesis, cytotoxicity evaluation and molecular docking studies on 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone derivatives. RSC Advances 2021, 11 (50) , 31433-31447. https://doi.org/10.1039/D1RA05445G
    32. Magda Abdellattif, Mohd Shahbaaz, M. Arief, Mostafa Hussien. Oxazinethione Derivatives as a Precursor to Pyrazolone and Pyrimidine Derivatives: Synthesis, Biological Activities, Molecular Modeling, ADME, and Molecular Dynamics Studies. Molecules 2021, 26 (18) , 5482. https://doi.org/10.3390/molecules26185482
    33. S.S. Liang, X.G. Liu, Y.X. Cui, S.L. Zhang, Q.G. Zhang, J.Z. Chen. Molecular mechanism concerning conformational changes of CDK2 mediated by binding of inhibitors using molecular dynamics simulations and principal component analysis. SAR and QSAR in Environmental Research 2021, 32 (7) , 573-594. https://doi.org/10.1080/1062936X.2021.1934896
    34. Seyedeh Roya Alizadeh, Seyedeh Mahdieh Hashemi. Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery. Medicinal Chemistry Research 2021, 30 (4) , 771-806. https://doi.org/10.1007/s00044-020-02686-2
    35. Jae Chul Lee, Kwon Ho Hong, Andreas Becker, Joseph S. Tash, Ernst Schönbrunn, Gunda I. Georg. Tetrahydroindazole inhibitors of CDK2/cyclin complexes. European Journal of Medicinal Chemistry 2021, 214 , 113232. https://doi.org/10.1016/j.ejmech.2021.113232
    36. Zhen Zhang, Bing Shu, Yaodong Zhang, Girdhar Singh Deora, Qing-Shan Li. 2,4,5-Trisubstituted Thiazole: A Privileged Scaffold in Drug Design and Activity Improvement. Current Topics in Medicinal Chemistry 2020, 20 (28) , 2535-2577. https://doi.org/10.2174/1568026620999200917153856
    37. Shovonlal Bhowmick, Nora Abdullah AlFaris, Jozaa Zaidan ALTamimi, Zeid A. ALOthman, Tahany Saleh Aldayel, Saikh Mohammad Wabaidur, Md Ataul Islam. Screening and analysis of bioactive food compounds for modulating the CDK2 protein for cell cycle arrest: Multi-cheminformatics approaches for anticancer therapeutics. Journal of Molecular Structure 2020, 1216 , 128316. https://doi.org/10.1016/j.molstruc.2020.128316
    38. Erik B Faber, Nan Wang, Gunda I Georg. Review of rationale and progress toward targeting cyclin-dependent kinase 2 (CDK2) for male contraception†. Biology of Reproduction 2020, 103 (2) , 357-367. https://doi.org/10.1093/biolre/ioaa107
    39. Sumalatha Rani Talapati, Vijayashankar Nataraj, Manoj Pothuganti, Suraj Gore, Murali Ramachandra, Thomas Antony, Sunil Shivaji More, Narasimha Rao Krishnamurthy. Structure of cyclin-dependent kinase 2 (CDK2) in complex with the specific and potent inhibitor CVT-313. Acta Crystallographica Section F Structural Biology Communications 2020, 76 (8) , 350-356. https://doi.org/10.1107/S2053230X20009243
    40. Juan Zhao, Baohua Yin, Haibo Sun, Laixue Pang, Jianzhong Chen. Identifying hot spots of inhibitor-CDK2 bindings by computational alanine scanning. Chemical Physics Letters 2020, 747 , 137329. https://doi.org/10.1016/j.cplett.2020.137329
    41. Linkai Mou, Zilong Ma, Xiaomin Meng, Wenxing Li, Shuai Liang, Xiangyu Chen. Exploration of the selective binding mechanism of GSK3β via molecular modeling and molecular dynamics simulation studies. Medicinal Chemistry Research 2020, 29 (4) , 690-698. https://doi.org/10.1007/s00044-020-02514-7
    42. Jianzhong Chen, Laixue Pang, Wei Wang, Lifei Wang, John Z. H. Zhang, Tong Zhu. Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. Journal of Biomolecular Structure and Dynamics 2020, 38 (4) , 985-996. https://doi.org/10.1080/07391102.2019.1591304
    43. Vagner S. Ribeiro, Charles A. Santana, Alexandre V. Fassio, Fabio R. Cerqueira, Carlos H. da Silveira, João P. R. Romanelli, Adriana Patarroyo-Vargas, Maria G. A. Oliveira, Valdete Gonçalves-Almeida, Sandro C. Izidoro, Raquel C. de Melo-Minardi, Sabrina de A. Silveira. visGReMLIN: graph mining-based detection and visualization of conserved motifs at 3D protein-ligand interface at the atomic level. BMC Bioinformatics 2020, 21 (S2) https://doi.org/10.1186/s12859-020-3347-7
    44. Zahra Shamsi, Diwakar Shukla. How does evolution design functional free energy landscapes of proteins? A case study on the emergence of regulation in the Cyclin Dependent Kinase family. Molecular Systems Design & Engineering 2020, 5 (1) , 392-400. https://doi.org/10.1039/C9ME00097F
    45. Jing-Wei Liang, Ming-Yang Wang, Shan Wang, Shi-Long Li, Wan-Qiu Li, Fan-Hao Meng. Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model. Journal of Enzyme Inhibition and Medicinal Chemistry 2020, 35 (1) , 235-244. https://doi.org/10.1080/14756366.2019.1693702
    46. Adileh Ayati, Saeed Emami, Setareh Moghimi, Alireza Foroumadi. Thiazole in the Targeted Anticancer Drug Discovery. Future Medicinal Chemistry 2019, 11 (15) , 1929-1952. https://doi.org/10.4155/fmc-2018-0416
    47. Somaia S. Abd El-Karim, Yasmin M. Syam, Ahmed M. El Kerdawy, Tamer M. Abdelghany. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorganic Chemistry 2019, 86 , 80-96. https://doi.org/10.1016/j.bioorg.2019.01.026
    48. Amir Zeb, Donghwan Kim, Sayed Alam, Minky Son, Raj Kumar, Shailima Rampogu, Saravanan Parameswaran, Rahul Shelake, Rabia Rana, Shraddha Parate, Jae-Yean Kim, Keun Lee. Computational Simulations Identify Pyrrolidine-2,3-Dione Derivatives as Novel Inhibitors of Cdk5/p25 Complex to Attenuate Alzheimer’s Pathology. Journal of Clinical Medicine 2019, 8 (5) , 746. https://doi.org/10.3390/jcm8050746
    49. Alexandre Victor Fassio, Lucianna H. Santos, Sabrina A. Silveira, Rafaela S. Ferreira, Raquel Cardoso de Melo-Minardi. nAPOLI: a graph-based strategy to detect and visualize conserved protein-ligand interactions in large-scale. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2019, 157 , 1-1. https://doi.org/10.1109/TCBB.2019.2892099
    50. . 2‐Aminothiazoles. 2018, 284-320. https://doi.org/10.1002/9781118686263.ch8
    51. Maurício Boff de Ávila, Mariana Morrone Xavier, Val Oliveira Pintro, Walter Filgueira de Azevedo. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochemical and Biophysical Research Communications 2017, 494 (1-2) , 305-310. https://doi.org/10.1016/j.bbrc.2017.10.035
    52. Susana G. Medina, Alexandre V. Fassio, Sabrina de A. Silveira, Carlos H. da Silveira, Raquel C. de Melo-Minardi. CALI: A Novel Visual Model for Frequent Pattern Mining in Protein-Ligand Graphs. 2017, 352-358. https://doi.org/10.1109/BIBE.2017.00-29
    53. Lili Duan, Guoqiang Feng, Xianwei Wang, Lizhi Wang, Qinggang Zhang. Effect of electrostatic polarization and bridging water on CDK2–ligand binding affinities calculated using a highly efficient interaction entropy method. Physical Chemistry Chemical Physics 2017, 19 (15) , 10140-10152. https://doi.org/10.1039/C7CP00841D
    54. Gamal A. El-Hiti, Hanan A. Mohamed, Bakr F. Abdel-Wahab. Synthesis of Some Novel Thiophene and Thiazole Derivatives and Their Antimicrobial Evaluation. HETEROCYCLES 2017, 94 (4) , 716. https://doi.org/10.3987/COM-17-13668
    55. Lidao Bao, Linlin Wang, Guomin Wei, Yuehong Wang, Gerile Wuyun, Agula Bo. Role of microRNA-4458 in patients with non-small-cell lung cancer. Oncology Letters 2016, 12 (5) , 3958-3966. https://doi.org/10.3892/ol.2016.5176
    56. Charles A. Santana, Fabio R. Cerqueira, Carlos H. Da Silveira, Alexandre V. Fassio, Raquel C. De Melo-Minardi, Sabrina de A. Silveira. GReMLIN: A Graph Mining Strategy to Infer Protein-Ligand Interaction Patterns. 2016, 28-35. https://doi.org/10.1109/BIBE.2016.48
    57. Tomasz M. Wróbel, Michał Kiełbus, Agnieszka A. Kaczor, Vladimír Kryštof, Zbigniew Karczmarzyk, Waldemar Wysocki, Andrzej Fruziński, Sylwia K. Król, Aneta Grabarska, Andrzej Stepulak, Dariusz Matosiuk. Discovery of nitroaryl urea derivatives with antiproliferative properties. Journal of Enzyme Inhibition and Medicinal Chemistry 2016, 31 (4) , 608-618. https://doi.org/10.3109/14756366.2015.1057716
    58. Sanne H. Olesen, Jin‐Yi Zhu, Mathew P. Martin, Ernst Schönbrunn. Discovery of Diverse Small‐Molecule Inhibitors of Mammalian Sterile20‐like Kinase 3 (MST3). ChemMedChem 2016, 11 (11) , 1137-1144. https://doi.org/10.1002/cmdc.201600115
    59. Daniel Dias Rufino Arcanjo, Andreanne Gomes Vasconcelos, Simón Gabriel Comerma-Steffensen, Joilson Ramos Jesus, Luciano Paulino Silva, Osmindo Rodrigues Pires, Claudio Miguel Costa-Neto, Eduardo Brandt Oliveira, Ludovico Migliolo, Octávio Luiz Franco, Carolina Baraldi Araújo Restini, Michele Paulo, Lusiane Maria Bendhack, Marcelo Porto Bemquerer, Aldeidia Pereira Oliveira, Ulf Simonsen, José Roberto de Souza de Almeida Leite, . A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium. PLOS ONE 2015, 10 (12) , e0145071. https://doi.org/10.1371/journal.pone.0145071
    60. Bo Xu, Zhilei Mao, Xiaoli Ji, Mengmeng Yao, Minjian Chen, Xuemei Zhang, Bo Hang, Yi Liu, Wei Tang, Qiusha Tang, Yankai Xia. miR-98 and its host gene Huwe1 target Caspase-3 in Silica nanoparticles-treated male germ cells. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep12938
    61. Daehun Kim, Dong Jae Baek, Doohyun Lee, Kwang-Hyeon Liu, Jong-Sup Bae, Young-Dae Gong, Kyung Hoon Min, Taeho Lee. Efficient solid-phase synthesis of 2,4-disubstituted 5-carbamoyl-thiazole derivatives using a traceless support. Tetrahedron 2015, 71 (21) , 3367-3377. https://doi.org/10.1016/j.tet.2015.03.104
    62. Jayme L. Dahlin, James Inglese, Michael A. Walters. Mitigating risk in academic preclinical drug discovery. Nature Reviews Drug Discovery 2015, 14 (4) , 279-294. https://doi.org/10.1038/nrd4578
    63. Jeffrey Y. W. Mak, Weijun Xu, David P. Fairlie. Thiazoles in Peptides and Peptidomimetics. 2015, 235-266. https://doi.org/10.1007/7081_2015_176
    64. Antony M. Latham, Jayakanth Kankanala, Gareth W. Fearnley, Matthew C. Gage, Mark T. Kearney, Shervanthi Homer-Vanniasinkam, Stephen B. Wheatcroft, Colin W. G. Fishwick, Sreenivasan Ponnambalam, . In Silico Design and Biological Evaluation of a Dual Specificity Kinase Inhibitor Targeting Cell Cycle Progression and Angiogenesis. PLoS ONE 2014, 9 (11) , e110997. https://doi.org/10.1371/journal.pone.0110997
    65. Jayme L Dahlin, Michael A Walters. The Essential Roles of Chemistry in High-Throughput Screening Triage. Future Medicinal Chemistry 2014, 6 (11) , 1265-1290. https://doi.org/10.4155/fmc.14.60
    66. Pierluigi Gasparini, Matteo Fassan, Luciano Cascione, Gulnur Guler, Serdar Balci, Cigdem Irkkan, Carolyn Paisie, Francesca Lovat, Carl Morrison, Jianying Zhang, Aldo Scarpa, Carlo M. Croce, Charles L. Shapiro, Kay Huebner, . Androgen Receptor Status Is a Prognostic Marker in Non-Basal Triple Negative Breast Cancers and Determines Novel Therapeutic Options. PLoS ONE 2014, 9 (2) , e88525. https://doi.org/10.1371/journal.pone.0088525
    67. Laichun Luo, Lanlan Meng, Qi Sun, Zemei Ge, Runtao Li. NBS-mediated sequential one-pot synthesis of multifunctionalized thiazoles and thiophenes from 1,3-dicarbonyl compounds and mercaptonitrile salts. Tetrahedron Letters 2014, 55 (1) , 259-263. https://doi.org/10.1016/j.tetlet.2013.11.014

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect