ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Tetraphenylporphyrin Tethered Chitosan Based Carriers for Photochemical Transfection

View Author Information
Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
PCI Biotech AS, N-1366 Lysaker, Norway
§ Oslo University Hospital, The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, N-0310 Oslo, Norway
Department of Physics, Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
*Phone: +354-8228301. Fax: +354-5254071. E-mail: [email protected]
Cite this: J. Med. Chem. 2013, 56, 3, 807–819
Publication Date (Web):January 3, 2013
https://doi.org/10.1021/jm301270r
Copyright © 2013 American Chemical Society

    Article Views

    2277

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Water-soluble amphiphilic chitosan nanocarriers tethered with the photosensitizer meso-tetraphenylporphyrin were synthesized in a seven-step procedure, starting from 3,6-di-O-tert-butyldimethylsilyl-chitosan and 5-(p-aminophenyl)-10,15,20-triphenylporphyrin. The lipophilic photosensitizer could be introduced in a quantitative and reproducible reaction to give either 0.1 or 0.25 degrees of substitution per glucosamine monomer. Fluorescence and NMR investigations revealed the dynamic structures of the carriers, which formed nanoparticles in aqueous solution with a core of π-stacked photosensitizers. These carriers can then unfold in the lipophilic environment, and the photosensitizer moiety can thus be inserted into the cell membrane. The efficacy of the carriers for photochemical internalization (PCI) mediated gene delivery was evaluated in vitro using the HCT116/LUC human colon carcinoma cell line. The efficacy of transfection was comparable to what could be achieved by the reference compound and current clinical candidate TPCS2a.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    General experimental methods and the copies of 1H, 13C NMR, HRMS, and fluorescence spectra of key compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Tiantian Wu, Zhiliang Li, Yajie Zhang, Jinkai Ji, Yun Huang, Hao Yuan, Fude Feng, Kirk S. Schanze. Remarkable Amplification of Polyethylenimine-Mediated Gene Delivery Using Cationic Poly(phenylene ethynylene)s as Photosensitizers. ACS Applied Materials & Interfaces 2018, 10 (29) , 24421-24430. https://doi.org/10.1021/acsami.8b07124
    2. Vivek S. Gaware, Monika Håkerud, Asta Juzeniene, Anders Høgset, Kristian Berg, and Már Másson . Endosome Targeting meso-Tetraphenylchlorin–Chitosan Nanoconjugates for Photochemical Internalization. Biomacromolecules 2017, 18 (4) , 1108-1126. https://doi.org/10.1021/acs.biomac.6b01670
    3. Joana F. B. Barata, Ricardo J. B. Pinto, Vanda I. R. C. Vaz Serra, Armando J. D. Silvestre, Tito Trindade, Maria Graça P. M. S. Neves, José A. S. Cavaleiro, Sara Daina, Patrizia Sadocco, and Carmen S. R. Freire . Fluorescent Bioactive Corrole Grafted-Chitosan Films. Biomacromolecules 2016, 17 (4) , 1395-1403. https://doi.org/10.1021/acs.biomac.6b00006
    4. Huabing Chen, Ling Xiao, Yasutaka Anraku, Peng Mi, Xueying Liu, Horacio Cabral, Aki Inoue, Takahiro Nomoto, Akihiro Kishimura, Nobuhiro Nishiyama, and Kazunori Kataoka . Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. Journal of the American Chemical Society 2014, 136 (1) , 157-163. https://doi.org/10.1021/ja406992w
    5. ChengHong Huang, Hong Tang, Shu Jiang, Hongjie Chen, Xiaorong Huang, Kangrui Wang, Ying Fang, Rongrong Men, Jie Gao. A Novel Drug-Carrier Based on CMC/MATPP-PTX(CTP) and In Vitro Release. Integrated Ferroelectrics 2022, 227 (1) , 13-27. https://doi.org/10.1080/10584587.2022.2065571
    6. KangRui Wang, Hong Tang, Hongjie Chen, Xiaorong Huang, Ying Fang, Rongrong Men, Jie Gao, Yue Wang, Yang Wang, ChengHong Huang. Synthesis, fabrication and properties research of CS-mPEG-AN nanocomposite. Ferroelectrics 2022, 593 (1) , 37-50. https://doi.org/10.1080/00150193.2022.2076450
    7. Lin Yue, Meihong Zheng, Min Wang, Imran Mahmood Khan, Xiaowei Ding, Yin Zhang, Zhouping Wang. Water-soluble chlorin e6-hydroxypropyl chitosan as a high-efficiency photoantimicrobial agent against Staphylococcus aureus. International Journal of Biological Macromolecules 2022, 208 , 669-677. https://doi.org/10.1016/j.ijbiomac.2022.03.140
    8. Priyanka Sahariah, Már Másson. Efficient synthesis of chitosan derivatives as clickable tools. European Polymer Journal 2022, 166 , 111039. https://doi.org/10.1016/j.eurpolymj.2022.111039
    9. F. A. Sewid, K. I. Annas, A. Dubavik, A. V. Veniaminov, V. G. Maslov, A. O. Orlova. Chitosan nanocomposites with CdSe/ZnS quantum dots and porphyrin. RSC Advances 2021, 12 (2) , 899-906. https://doi.org/10.1039/D1RA08148A
    10. Qihang Wu, Rui Xia, Chaonan Li, Yite Li, Tingting Sun, Zhigang Xie, Xiabin Jing. Nanoscale aggregates of porphyrins: red-shifted absorption, enhanced absorbance and phototherapeutic activity. Materials Chemistry Frontiers 2021, 5 (24) , 8333-8340. https://doi.org/10.1039/D1QM01420J
    11. Sankar Rathinam, Martha Á. Hjálmarsdóttir, Mikkel B. Thygesen, Már Másson. Chitotriazolan (poly(β(1-4)-2-(1H-1,2,3-triazol-1-yl)-2-deoxy-d-glucose)) derivatives: Synthesis, characterization, and evaluation of antibacterial activity. Carbohydrate Polymers 2021, 267 , 118162. https://doi.org/10.1016/j.carbpol.2021.118162
    12. Már Másson. Chitin and chitosan. 2021, 1039-1072. https://doi.org/10.1016/B978-0-12-820104-6.00013-9
    13. Sankar Rathinam, Sigríður Ólafsdóttir, Sigríður Jónsdóttir, Martha Á. Hjálmarsdóttir, Már Másson. Selective synthesis of N,N,N-trimethylated chitosan derivatives at different degree of substitution and investigation of structure-activity relationship for activity against P. aeruginosa and MRSA. International Journal of Biological Macromolecules 2020, 160 , 548-557. https://doi.org/10.1016/j.ijbiomac.2020.05.109
    14. Fengxiang Tang, Wei Xie, Sicong Li, Qingyan Hu, Biyuan Zheng, Meirong Ke, Jiandong Huang. Alginate-zinc (II) phthalocyanine conjugates: Synthesis, characterization and tumor-associated macrophages-targeted photodynamic therapy. Carbohydrate Polymers 2020, 240 , 116239. https://doi.org/10.1016/j.carbpol.2020.116239
    15. Fengxiang Tang, Fang Gao, Wei Xie, Sicong Li, Biyuan Zheng, Meirong Ke, Jiandong Huang. Carboxymethyl chitosan-zinc(II) phthalocyanine conjugates: Synthesis, characterization and photodynamic antifungal therapy. Carbohydrate Polymers 2020, 235 , 115949. https://doi.org/10.1016/j.carbpol.2020.115949
    16. Waseem Jerjes, Theodossis A. Theodossiou, Henry Hirschberg, Anders Høgset, Anette Weyergang, Pål Kristian Selbo, Zaid Hamdoon, Colin Hopper, Kristian Berg. Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. Journal of Clinical Medicine 2020, 9 (2) , 528. https://doi.org/10.3390/jcm9020528
    17. Manyu Jin, Yanqun Zhang, Ge Gao, Qiaoyue Xi, Jie Tong, Yongxia Zhao, Cunqi Wu, Hua Zhou, Qiuxia Yang, Wei Yang, Jingwei Xu. Tetraphenylporphyrin‐based dual‐functional medical agent for magnetic resonance and fluorescence imaging. Applied Organometallic Chemistry 2019, 33 (9) https://doi.org/10.1002/aoc.4953
    18. Feng-Xiang Tang, Hong-Cai Li, Xu-Dong Ren, Ya Sun, Wei Xie, Cheng-Yu Wang, Bi-Yuan Zheng, Mei-Rong Ke, Jian-Dong Huang. Preparation and antifungal properties of monosubstituted zinc(П) phthalocyanine-chitosan oligosaccharide conjugates and their quaternized derivatives. Dyes and Pigments 2018, 159 , 439-448. https://doi.org/10.1016/j.dyepig.2018.07.004
    19. Elnaz Yaghini, Ruggero Dondi, Karen J. Edler, Marilena Loizidou, Alexander J. MacRobert, Ian M. Eggleston. Codelivery of a cytotoxin and photosensitiser via a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release. Nanoscale 2018, 10 (43) , 20366-20376. https://doi.org/10.1039/C8NR04048F
    20. Simin Belali, Ali Reza Karimi, Mahnaz Hadizadeh. Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. International Journal of Biological Macromolecules 2018, 110 , 437-448. https://doi.org/10.1016/j.ijbiomac.2017.12.169
    21. Claude P. Gros, Clément Michelin, Léo Bucher, Nicolas Desbois, Charles H. Devillers, Athanassios G. Coutsolelos, Subhayan Biswas, Ganesh D. Sharma. Synthesis and characterization of zinc carboxy–porphyrin complexes for dye sensitized solar cells. New Journal of Chemistry 2018, 42 (10) , 8151-8159. https://doi.org/10.1039/C7NJ04612J
    22. M. A. Savko, N. A. Aksenova, A. K. Akishina, O. V. Khasanova, N. N. Glagolev, V. D. Rumyantseva, K. A. Zhdanova, A. L. Spokoinyi, A. B. Solov’eva. Effect of Pluronic F-127 on the photosensitizing activity of tetraphenylporphyrins in organic and aqueous phases. Russian Journal of Physical Chemistry A 2017, 91 (11) , 2260-2267. https://doi.org/10.1134/S0036024417110218
    23. Caitriona O’Rourke, Colin Hopper, Alexander J. MacRobert, James B. Phillips, Josephine H. Woodhams. Could clinical photochemical internalisation be optimised to avoid neuronal toxicity?. International Journal of Pharmaceutics 2017, 528 (1-2) , 133-143. https://doi.org/10.1016/j.ijpharm.2017.05.071
    24. Paula Morales, Laura Moreno, Javier Fernández-Ruiz, Nadine Jagerovic. Synthesis of a novel CB2 cannabinoid-porphyrin conjugate based on an antitumor chromenopyrazoledione. Journal of Porphyrins and Phthalocyanines 2017, 21 (01) , 67-76. https://doi.org/10.1142/S1088424617500092
    25. Priyanka Sahariah, Berglind Árnadóttir, Már Másson. Synthetic strategy for selective N -modified and O -modified PEGylated chitosan derivatives. European Polymer Journal 2016, 81 , 53-63. https://doi.org/10.1016/j.eurpolymj.2016.05.020
    26. Alejandra Martinez de Pinillos Bayona, Caroline M. Moore, Marilena Loizidou, Alexander J. MacRobert, Josephine H. Woodhams. Enhancing the efficacy of cytotoxic agents for cancer therapy using photochemical internalisation. International Journal of Cancer 2016, 138 (5) , 1049-1057. https://doi.org/10.1002/ijc.29510
    27. Ayelet David, Adi Golani-Armon. Polymer-Based DNA Delivery Systems for Cancer Immunotherapy. 2016, 221-244. https://doi.org/10.1007/978-1-4939-3634-2_10
    28. Kegang Liu, Xiaohua Jiang, Patrick Hunziker. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 2016, 8 (36) , 16091-16156. https://doi.org/10.1039/C6NR04489A
    29. Priyanka Sahariah, Bergthóra S. Snorradóttir, Martha Á. Hjálmarsdóttir, Ólafur E. Sigurjónsson, Már Másson. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. Journal of Materials Chemistry B 2016, 4 (27) , 4762-4770. https://doi.org/10.1039/C6TB00546B
    30. Cinzia Spagnul, Lauren C. Turner, Ross W. Boyle. Immobilized photosensitizers for antimicrobial applications. Journal of Photochemistry and Photobiology B: Biology 2015, 150 , 11-30. https://doi.org/10.1016/j.jphotobiol.2015.04.021
    31. Priyanka Sahariah, Bjarni M. Óskarsson, Martha Á. Hjálmarsdóttir, Már Másson. Synthesis of guanidinylated chitosan with the aid of multiple protecting groups and investigation of antibacterial activity. Carbohydrate Polymers 2015, 127 , 407-417. https://doi.org/10.1016/j.carbpol.2015.03.061
    32. Priyanka Sahariah, Kasper K. Sørensen, Martha Á. Hjálmarsdóttir, Ólafur E. Sigurjónsson, Knud J. Jensen, Már Másson, Mikkel B. Thygesen. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chemical Communications 2015, 51 (58) , 11611-11614. https://doi.org/10.1039/C5CC04010H
    33. Masaya Shibano, Shouko Nishida, Yasuko Saito, Hiroshi Kamitakahara, Toshiyuki Takano. Facile synthesis of acyl chitosan isothiocyanates and their application to porphyrin-appended chitosan derivative. Carbohydrate Polymers 2014, 113 , 279-285. https://doi.org/10.1016/j.carbpol.2014.05.099
    34. Priyanka Sahariah, Vivek Gaware, Ramona Lieder, Sigríður Jónsdóttir, Martha Hjálmarsdóttir, Olafur Sigurjonsson, Már Másson. The Effect of Substituent, Degree of Acetylation and Positioning of the Cationic Charge on the Antibacterial Activity of Quaternary Chitosan Derivatives. Marine Drugs 2014, 12 (8) , 4635-4658. https://doi.org/10.3390/md12084635
    35. Dong Ma, Qian-Ming Lin, Li-Ming Zhang, Yuan-Yuan Liang, Wei Xue. A star-shaped porphyrin-arginine functionalized poly(l-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials 2014, 35 (14) , 4357-4367. https://doi.org/10.1016/j.biomaterials.2014.01.070
    36. N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, O. Möhler. Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles. Atmospheric Chemistry and Physics 2014, 14 (5) , 2315-2324. https://doi.org/10.5194/acp-14-2315-2014
    37. Vivek Gaware, Berglind Benediktsdóttir, Már Másson. Utilization of Silyl Ethers and Other Protection Groups in the Synthesis of Chitosan Derivatives. 2013, 69-92. https://doi.org/10.1201/b15636-5
    38. Sigurd Leinæs Bøe, Eivind Hovig. Enhancing nucleic acid delivery by photochemical internalization. Therapeutic Delivery 2013, 4 (9) , 1125-1140. https://doi.org/10.4155/tde.13.78

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect