ACS Publications. Most Trusted. Most Cited. Most Read
Discovery of (R)-2-Amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic Acid and Congeners As Highly Potent Inhibitors of Human Arginases I and II for Treatment of Myocardial Reperfusion Injury
My Activity
    Article

    Discovery of (R)-2-Amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic Acid and Congeners As Highly Potent Inhibitors of Human Arginases I and II for Treatment of Myocardial Reperfusion Injury
    Click to copy article linkArticle link copied!

    View Author Information
    The Institutes for Pharmaceutical Discovery, LLC, 23 Business Park Drive, Branford, Connecticut 06405, United States
    Department of Integrative Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
    § IFLYSIB, Conicet, UNLP, Calle 59 N° 789, La Plata, Argentina
    Mars, Incorporated, 6885 Elm Street, McLean,Virginia 22101, United States
    *Phone: 203-494-1672. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2013, 56, 6, 2568–2580
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm400014c
    Published March 8, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Recent efforts to identify treatments for myocardial ischemia reperfusion injury have resulted in the discovery of a novel series of highly potent α,α-disubstituted amino acid-based arginase inhibitors. The lead candidate, (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid, compound 9, inhibits human arginases I and II with IC50s of 223 and 509 nM, respectively, and is active in a recombinant cellular assay overexpressing human arginase I (CHO cells). It is 28% orally bioavailable and significantly reduces the infarct size in a rat model of myocardial ischemia/reperfusion injury. Herein, we report the design, synthesis, and structure–activity relationships (SAR) for this novel series of inhibitors along with pharmacokinetic and in vivo efficacy data for compound 9 and X-ray crystallography data for selected lead compounds cocrystallized with arginases I and II.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    1H NMR and 13C NMR spectra, LC MS/MS data, analytical HPLC chromatograms, chiral HPLC chromatograms, and X-ray crystallography data collection and refinement statistics. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 72 publications.

    1. Jason D. Shields, Brian M. Aquila, David Emmons, M. Raymond V. Finlay, Eric T. Gangl, Chungang Gu, Scott N. Mlynarski, Jens Petersen, Petar Pop-Damkov, Li Sha, Iain Simpson, Siavash Tavakoli, Sharon Tentarelli, Haixia Wang, Qing Ye, XiaoLan Zheng. Design and Synthesis of Acyclic Boronic Acid Arginase Inhibitors. Journal of Medicinal Chemistry 2024, 67 (23) , 20799-20826. https://doi.org/10.1021/acs.jmedchem.4c02295
    2. Scott N. Mlynarski, Brian M. Aquila, Susan Cantin, Steve Cook, Aatman Doshi, M. Raymond V. Finlay, Eric T. Gangl, Tyler Grebe, Chungang Gu, Sameer P. Kawatkar, Jens Petersen, Petar Pop-Damkov, Alwin G. Schuller, Wenlin Shao, Jason D. Shields, Iain Simpson, Siavash Tavakoli, Sharon Tentarelli, Scott Throner, Haixia Wang, Jianyan Wang, Dedong Wu, Qing Ye. Discovery of (2R,4R)-4-((S)-2-Amino-3-methylbutanamido)-2-(4-boronobutyl)pyrrolidine-2-carboxylic Acid (AZD0011), an Actively Transported Prodrug of a Potent Arginase Inhibitor to Treat Cancer. Journal of Medicinal Chemistry 2024, 67 (23) , 20827-20841. https://doi.org/10.1021/acs.jmedchem.4c02309
    3. Mariacristina Failla, Maria Cristina Molaro, Marica Erminia Schiano, Marta Serafini, Gioele Antonio Tiburtini, Eleonora Gianquinto, Riccardo Scoccia, Chiara Battisegola, Maria Grazia Rimoli, Konstantin Chegaev, Giuseppe Ercolano, Loretta Lazzarato, Francesca Spyrakis, Federica Sodano. Opportunities and Challenges of Arginase Inhibitors in Cancer: A Medicinal Chemistry Perspective. Journal of Medicinal Chemistry 2024, 67 (22) , 19988-20021. https://doi.org/10.1021/acs.jmedchem.4c01429
    4. R. Justin Grams, Webster L. Santos, Ion Romulus Scorei, Antonio Abad-García, Carol Ann Rosenblum, Andrei Bita, Hugo Cerecetto, Clara Viñas, Marvin A. Soriano-Ursúa. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chemical Reviews 2024, 124 (5) , 2441-2511. https://doi.org/10.1021/acs.chemrev.3c00663
    5. Cooper A. Vincent, Maria Irina Chiriac, Ludovic Troian-Gautier, Uttam K. Tambar. Photocatalytic Sulfonyl Fluorination of Alkyl Organoboron Substrates. ACS Catalysis 2023, 13 (6) , 3668-3675. https://doi.org/10.1021/acscatal.3c00107
    6. Min LuRachel L. Palte, Scott N. MlynarskiJason D. Shields. ARGINASE INHIBITORS FOR IMMUNO-ONCOLOGY. , 243-265. https://doi.org/10.1021/mc-2022-vol57.ch10
    7. You-Cai Xiao, Jun-Lin Yu, Qing-Qing Dai, Gen Li, Guo-Bo Li. Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores. Journal of Medicinal Chemistry 2021, 64 (24) , 17706-17727. https://doi.org/10.1021/acs.jmedchem.1c01691
    8. Derun Li, Hongjun Zhang, Thomas W. Lyons, Min Lu, Abdelghani Achab, Qinglin Pu, Matthew Childers, Matthew J. Mitcheltree, Jialiang Wang, Theodore A. Martinot, Spencer E. McMinn, David L. Sloman, Anandan Palani, Adam Beard, Lisa Nogle, Symon Gathiaka, Josep Saurí, Hai-Young Kim, Donovon Adpressa, Peter Spacciapoli, J. Richard Miller, Rachel L. Palte, Charles A. Lesburg, Jared Cumming, Christian Fischer. Comprehensive Strategies to Bicyclic Prolines: Applications in the Synthesis of Potent Arginase Inhibitors. ACS Medicinal Chemistry Letters 2021, 12 (11) , 1678-1688. https://doi.org/10.1021/acsmedchemlett.1c00258
    9. Min Lu, Hongjun Zhang, Derun Li, Matthew Childers, Qinglin Pu, Rachel L. Palte, Symon Gathiaka, Thomas W. Lyons, Anandan Palani, Peter W. Fan, Peter Spacciapoli, J. Richard Miller, Hyelim Cho, Mangeng Cheng, Kalyan Chakravarthy, Jennifer O’Neil, Padmanabhan Eangoor, Adam Beard, Hai-Young Kim, Josep Saurí, Hakan Gunaydin, David L. Sloman, Phieng Siliphaivanh, Jared Cumming, Christian Fischer. Structure-Based Discovery of Proline-Derived Arginase Inhibitors with Improved Oral Bioavailability for Immuno-Oncology. ACS Medicinal Chemistry Letters 2021, 12 (9) , 1380-1388. https://doi.org/10.1021/acsmedchemlett.1c00195
    10. J. Henry Blackwell, Roopender Kumar, Matthew J. Gaunt. Visible-Light-Mediated Carbonyl Alkylative Amination to All-Alkyl α-Tertiary Amino Acid Derivatives. Journal of the American Chemical Society 2021, 143 (3) , 1598-1609. https://doi.org/10.1021/jacs.0c12162
    11. Guangkuan Zhao, Shyam S. Samanta, Jessica Michieletto, Stéphane P. Roche. A Broad Substrate Scope of Aza-Friedel–Crafts Alkylation for the Synthesis of Quaternary α-Amino Esters. Organic Letters 2020, 22 (15) , 5822-5827. https://doi.org/10.1021/acs.orglett.0c01895
    12. Matthew J. Mitcheltree, Derun Li, Abdelghani Achab, Adam Beard, Kalyan Chakravarthy, Mangeng Cheng, Hyelim Cho, Padmanabhan Eangoor, Peter Fan, Symon Gathiaka, Hai-Young Kim, Charles A. Lesburg, Thomas W. Lyons, Theodore A. Martinot, J. Richard Miller, Spencer McMinn, Jennifer O’Neil, Anandan Palani, Rachel L. Palte, Josep Saurí, David L. Sloman, Hongjun Zhang, Jared N. Cumming, Christian Fischer. Discovery and Optimization of Rationally Designed Bicyclic Inhibitors of Human Arginase to Enhance Cancer Immunotherapy. ACS Medicinal Chemistry Letters 2020, 11 (4) , 582-588. https://doi.org/10.1021/acsmedchemlett.0c00058
    13. Roman Blaszczyk, Joanna Brzezinska, Barbara Dymek, Paulina S. Stanczak, Marcin Mazurkiewicz, Jacek Olczak, Julita Nowicka, Karolina Dzwonek, Agnieszka Zagozdzon, Jakub Golab, Adam Golebiowski. Discovery and Pharmacokinetics of Sulfamides and Guanidines as Potent Human Arginase 1 Inhibitors. ACS Medicinal Chemistry Letters 2020, 11 (4) , 433-438. https://doi.org/10.1021/acsmedchemlett.9b00508
    14. Michael C. Van Zandt, G. Erik Jagdmann, Darren L. Whitehouse, Minkoo Ji, Jennifer Savoy, Olga Potapova, Alexandra Cousido-Siah, Andre Mitschler, Eduardo I. Howard, Anna Marie Pyle, Alberto D. Podjarny. Discovery of N-Substituted 3-Amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic Acids as Highly Potent Third-Generation Inhibitors of Human Arginase I and II. Journal of Medicinal Chemistry 2019, 62 (17) , 8164-8177. https://doi.org/10.1021/acs.jmedchem.9b00931
    15. Allie Y. Chen, Rebecca N. Adamek, Benjamin L. Dick, Cy V. Credille, Christine N. Morrison, Seth M. Cohen. Targeting Metalloenzymes for Therapeutic Intervention. Chemical Reviews 2019, 119 (2) , 1323-1455. https://doi.org/10.1021/acs.chemrev.8b00201
    16. Jingjing Meng, Min Gao, Hui Lv, and Xumu Zhang . Highly Enantioselective Hydrogenation of ο-Alkoxy Tetrasubstituted Enamides Catalyzed by a Rh/(R,S)-JosiPhos Catalyst. Organic Letters 2015, 17 (8) , 1842-1845. https://doi.org/10.1021/acs.orglett.5b00401
    17. Yang Hai, Jennifer E. Edwards, Michael C. Van Zandt, Karl F. Hoffmann, and David W. Christianson . Crystal Structure of Schistosoma mansoni Arginase, a Potential Drug Target for the Treatment of Schistosomiasis. Biochemistry 2014, 53 (28) , 4671-4684. https://doi.org/10.1021/bi5004519
    18. Jerius Nkwuda Ejeje, Emmanuel Ayodeji Agbebi, Makhosazana Siduduzile Mathenjwa-Goqo, Obinna Aru Oje, Precious Eseose Agboinghale, Ikechukwu Theophilus Ebe, Tajudeen Olabisi Obafemi, Ezekiel Adewole, Omaka N. Omaka, Sunday Amos Onikanni, Basiru Olaitan Ajiboye, Olaposi Idowu Omotuyi, Babatunji Emmanuel Oyinloye. Computational Investigation of the Therapeutic Potential of Detarium senegalense in the Management of Erectile Dysfunction. International Journal of Molecular Sciences 2024, 25 (22) , 12362. https://doi.org/10.3390/ijms252212362
    19. Sarah J. Burke, Latifah M. Alhthlol, James M. Gamrat, Giulia Mancini, Christopher L. Orme, Jacqueline R. Santhouse, Dylan T. Tomares, John W. Tomsho*. Synthesis of Potassium 5‐Bromopentyltrifluoroborate via Hydroboration of a Haloalkene. 2024, 1-16. https://doi.org/10.1002/0471264229.os100.13
    20. Jason Muller, Luca Marchisio, Rym Attia, Andy Zedet, Robin Maradan, Maxence Vallet, Alison Aebischer, Dominique Harakat, François Senejoux, Christophe Ramseyer, Sarah Foley, Bruno Cardey, Corine Girard, Marc Pudlo. A colorimetric assay adapted to fragment screening revealing aurones and chalcones as new arginase inhibitors. RSC Medicinal Chemistry 2024, 15 (5) , 1722-1730. https://doi.org/10.1039/D3MD00713H
    21. Luigi F. Di Costanzo. The role of arginase in human health and disease. 2024, 333-342. https://doi.org/10.1016/B978-0-12-823974-2.00008-5
    22. Anna Gzik, Bartlomiej Borek, Jacek Chrzanowski, Karol Jedrzejczak, Marek Dziegielewski, Joanna Brzezinska, Julita Nowicka, Marcin M. Grzybowski, Tomasz Rejczak, Dorota Niedzialek, Grzegorz Wieczorek, Jacek Olczak, Adam Golebiowski, Zbigniew Zaslona, Roman Blaszczyk. Novel orally bioavailable piperidine derivatives as extracellular arginase inhibitors developed by a ring expansion. European Journal of Medicinal Chemistry 2024, 264 , 116033. https://doi.org/10.1016/j.ejmech.2023.116033
    23. Swanand Kulkarni, Dyuti Bhandary, Yogesh Singh, Vikramdeep Monga, Suresh Thareja. Boron in cancer therapeutics: An overview. Pharmacology & Therapeutics 2023, 251 , 108548. https://doi.org/10.1016/j.pharmthera.2023.108548
    24. Shan Wang, Lou Shi, Xiao‐Yi Chen, Wei Shu. Catalyst‐Controlled Regiodivergent and Enantioselective Formal Hydroamination of N,N ‐Disubstituted Acrylamides to α‐Tertiary‐α‐Aminolactam and β‐Aminoamide Derivatives. Angewandte Chemie 2023, 135 (22) https://doi.org/10.1002/ange.202303795
    25. Shan Wang, Lou Shi, Xiao‐Yi Chen, Wei Shu. Catalyst‐Controlled Regiodivergent and Enantioselective Formal Hydroamination of N,N ‐Disubstituted Acrylamides to α‐Tertiary‐α‐Aminolactam and β‐Aminoamide Derivatives. Angewandte Chemie International Edition 2023, 62 (22) https://doi.org/10.1002/anie.202303795
    26. Rosa E Menjivar, Zeribe C Nwosu, Wenting Du, Katelyn L Donahue, Hanna S Hong, Carlos Espinoza, Kristee Brown, Ashley Velez-Delgado, Wei Yan, Fatima Lima, Allison Bischoff, Padma Kadiyala, Daniel Salas-Escabillas, Howard C Crawford, Filip Bednar, Eileen Carpenter, Yaqing Zhang, Christopher J Halbrook, Costas A Lyssiotis, Marina Pasca di Magliano. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 2023, 12 https://doi.org/10.7554/eLife.80721
    27. Figueroa-Valverde Lauro, Rosas-Nexticapa Marcela, López-Ramos Maria, Díaz-Cedillo Francisco, Alvarez-Ramirez Magdalena, Mateu-Armad Maria Virginia, Melgarejo-Gutierrez Montserrat. Effect Produced by a Cyclooctyne Derivative on Both Infarct Area and Left Ventricular Pressure via Calcium Channel Activation. Drug Research 2022, 8 https://doi.org/10.1055/a-1967-2004
    28. Anthony J. Doman, Sara Tommasi, Michael V. Perkins, Ross A. McKinnon, Arduino A. Mangoni, Pramod C. Nair. Chemical similarities and differences among inhibitors of nitric oxide synthase, arginase and dimethylarginine dimethylaminohydrolase-1: Implications for the design of novel enzyme inhibitors modulating the nitric oxide pathway. Bioorganic & Medicinal Chemistry 2022, 72 , 116970. https://doi.org/10.1016/j.bmc.2022.116970
    29. Urszula Bąchor, Agnieszka Lizak, Remigiusz Bąchor, Marcin Mączyński. 5-Amino-3-methyl-Isoxazole-4-carboxylic Acid as a Novel Unnatural Amino Acid in the Solid Phase Synthesis of α/β-Mixed Peptides. Molecules 2022, 27 (17) , 5612. https://doi.org/10.3390/molecules27175612
    30. Jason Muller, Rym Attia, Andy Zedet, Corine Girard, Marc Pudlo. An Update on Arginase Inhibitors and Inhibitory Assays. Mini-Reviews in Medicinal Chemistry 2022, 22 (15) , 1963-1976. https://doi.org/10.2174/1389557522666211229105703
    31. Trishna Saha Detroja, Abraham O. Samson. Virtual Screening for FDA-Approved Drugs That Selectively Inhibit Arginase Type 1 and 2. Molecules 2022, 27 (16) , 5134. https://doi.org/10.3390/molecules27165134
    32. Marcin Mikołaj Grzybowski, Paulina Seweryna Stańczak, Paulina Pomper, Roman Błaszczyk, Bartłomiej Borek, Anna Gzik, Julita Nowicka, Karol Jędrzejczak, Joanna Brzezińska, Tomasz Rejczak, Nazan Cemre Güner-Chalimoniuk, Agnieszka Kikulska, Michał Mlącki, Jolanta Pęczkowicz-Szyszka, Jacek Olczak, Adam Gołębiowski, Karolina Dzwonek, Paweł Dobrzański, Zbigniew Zasłona. OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer. Cancers 2022, 14 (16) , 3967. https://doi.org/10.3390/cancers14163967
    33. Rini Prastiwi, Berna Elya, Muhammad Hanafi, Rani Sauriasari, Yesi Desmiaty, Ema Dewanti, Rina Herowati. The chemical constituents of Sterculia comosa (wall) Roxb woods for arginase inhibitory, antioxidant activity, and molecular docking against SARS CoV-2 protein. Heliyon 2022, 8 (1) , e08798. https://doi.org/10.1016/j.heliyon.2022.e08798
    34. Rachel L. Palte, Veronica Juan, Yacob Gomez-Llorente, Marc Andre Bailly, Kalyan Chakravarthy, Xun Chen, Daniel Cipriano, Ghassan N. Fayad, Laurence Fayadat-Dilman, Symon Gathiaka, Heiko Greb, Brian Hall, Mas Handa, Mark Hsieh, Esther Kofman, Heping Lin, J. Richard Miller, Nhung Nguyen, Jennifer O’Neil, Hussam Shaheen, Eric Sterner, Corey Strickland, Angie Sun, Shane Taremi, Giovanna Scapin. Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02444-z
    35. Tomasz M. Grzywa, Anna Sosnowska, Zuzanna Rydzynska, Michal Lazniewski, Dariusz Plewczynski, Klaudia Klicka, Milena Malecka-Gieldowska, Anna Rodziewicz-Lurzynska, Olga Ciepiela, Magdalena Justyniarska, Paulina Pomper, Marcin M. Grzybowski, Roman Blaszczyk, Michal Wegrzynowicz, Agnieszka Tomaszewska, Grzegorz Basak, Jakub Golab, Dominika Nowis. Potent but transient immunosuppression of T-cells is a general feature of CD71+ erythroid cells. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02914-4
    36. Kai Gao, Sergey Lunev, Mariska P. M. van den Berg, Zayana M. Al-Dahmani, Stephen Evans, Dyon A. L. J. Mertens, Herman Meurs, Reinoud Gosens, Matthew R. Groves. A synthetic peptide as an allosteric inhibitor of human arginase I and II. Molecular Biology Reports 2021, 48 (2) , 1959-1966. https://doi.org/10.1007/s11033-021-06176-5
    37. Johnny Moretto, Marc Pudlo, Céline Demougeot. Human-based evidence for the therapeutic potential of arginase inhibitors in cardiovascular diseases. Drug Discovery Today 2021, 26 (1) , 138-147. https://doi.org/10.1016/j.drudis.2020.11.005
    38. Bartlomiej Borek, Tadeusz Gajda, Adam Golebiowski, Roman Blaszczyk. Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorganic & Medicinal Chemistry 2020, 28 (18) , 115658. https://doi.org/10.1016/j.bmc.2020.115658
    39. Yin-Qiu ZHANG, Jian-Bing WU, Wei YIN, Yi-Hua ZHANG, Zhang-Jian HUANG. Design, synthesis, and biological evaluation of ligustrazine/resveratrol hybrids as potential anti-ischemic stroke agents. Chinese Journal of Natural Medicines 2020, 18 (8) , 633-640. https://doi.org/10.1016/S1875-5364(20)30076-5
    40. Gonçalo S. Clemente, Aren van Waarde, Inês F. Antunes, Alexander Dömling, Philip H. Elsinga. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. International Journal of Molecular Sciences 2020, 21 (15) , 5291. https://doi.org/10.3390/ijms21155291
    41. M.P.M. van den Berg, S.H. Kurhade, H. Maarsingh, S. Erceg, I.R. Hulsbeek, P.H. Boekema, L.E.M. Kistemaker, M. van Faassen, I.P. Kema, P.H. Elsinga, A. Dömling, H. Meurs, R. Gosens. Pharmacological Screening Identifies SHK242 and SHK277 as Novel Arginase Inhibitors with Efficacy against Allergen-Induced Airway Narrowing In Vitro and In Vivo. The Journal of Pharmacology and Experimental Therapeutics 2020, 374 (1) , 62-73. https://doi.org/10.1124/jpet.119.264341
    42. J. Muller, B. Cardey, A. Zedet, C. Desingle, M. Grzybowski, P. Pomper, S. Foley, D. Harakat, C. Ramseyer, C. Girard, M. Pudlo. Synthesis, evaluation and molecular modelling of piceatannol analogues as arginase inhibitors. RSC Medicinal Chemistry 2020, 11 (5) , 559-568. https://doi.org/10.1039/D0MD00011F
    43. Qiong Wu, Ruiying Wang, Yang Shi, Wenchao Li, Meng Li, Peng Chen, Bowen Pan, Qing Wang, Caifeng Li, Jianbing Wang, Guibo Sun, Xiaobo Sun, Hongzheng Fu. Synthesis and biological evaluation of panaxatriol derivatives against myocardial ischemia/reperfusion injury in the rat. European Journal of Medicinal Chemistry 2020, 185 , 111729. https://doi.org/10.1016/j.ejmech.2019.111729
    44. Yvonne Grobben, Joost C.M. Uitdehaag, Nicole Willemsen-Seegers, Werner W.A. Tabak, Jos de Man, Rogier C. Buijsman, Guido J.R. Zaman. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. Journal of Structural Biology: X 2020, 4 , 100014. https://doi.org/10.1016/j.yjsbx.2019.100014
    45. Mark Austin, Daniel Burschowsky, Denice T.Y. Chan, Lesley Jenkinson, Stuart Haynes, Agata Diamandakis, Chitra Seewooruthun, Alexandra Addyman, Sebastian Fiedler, Stephanie Ryman, Jessica Whitehouse, Louise H. Slater, Andreas V. Hadjinicolaou, Uzi Gileadi, Ellen Gowans, Yoko Shibata, Michelle Barnard, Teresa Kaserer, Pooja Sharma, Nadia M. Luheshi, Robert W. Wilkinson, Tristan J. Vaughan, Sarah V. Holt, Vincenzo Cerundolo, Mark D. Carr, Maria A. T. Groves. Structural and functional characterization of C0021158, a high-affinity monoclonal antibody that inhibits Arginase 2 function via a novel non-competitive mechanism of action. mAbs 2020, 12 (1) https://doi.org/10.1080/19420862.2020.1801230
    46. Carlos Cativiela, Mario Ordóñez, José Luis Viveros-Ceballos. Stereoselective synthesis of acyclic α,α-disubstituted α-amino acids derivatives from amino acids templates. Tetrahedron 2020, 76 (4) , 130875. https://doi.org/10.1016/j.tet.2019.130875
    47. Juan J. Miret, Paul Kirschmeier, Shohei Koyama, Mingrui Zhu, Yvonne Y. Li, Yujiro Naito, Min Wu, Venkat S. Malladi, Wei Huang, William Walker, Sangeetha Palakurthi, Glenn Dranoff, Peter S. Hammerman, Chad V. Pecot, Kwok-Kin Wong, Esra A. Akbay. Suppression of Myeloid Cell Arginase Activity leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity. Journal for ImmunoTherapy of Cancer 2019, 7 (1) https://doi.org/10.1186/s40425-019-0504-5
    48. Qi Huang, Jean Michalland, Samir Z. Zard. Alternating Radical Stabilities: A Convergent Route to Terminal and Internal Boronates. Angewandte Chemie International Edition 2019, 58 (47) , 16936-16942. https://doi.org/10.1002/anie.201906497
    49. Qi Huang, Jean Michalland, Samir Z. Zard. Alternating Radical Stabilities: A Convergent Route to Terminal and Internal Boronates. Angewandte Chemie 2019, 131 (47) , 17092-17098. https://doi.org/10.1002/ange.201906497
    50. Antonio Abad García, Alexey Rayevsky, E. Andrade-Jorge, José G. Trujillo-Ferrara. Structural and Biological Overview of Boron-containing Amino Acids in the Medicinal Chemistry Field. Current Medicinal Chemistry 2019, 26 (26) , 5077-5089. https://doi.org/10.2174/0929867325666180926150403
    51. Liliya V. Korokina, Ivan V. Golubev, Olga N. Pokopejko, Anastasia V. Zagrebelnaya, Sergey A. Demchenko. Search for new pharmacological targets for increasing the efficiency of correction of cardiovascular diseases. Research Results in Pharmacology 2019, 5 (3) , 67-77. https://doi.org/10.3897/rrpharmacology.5.39521
    52. Evanoel Crizanto de Lima, Frederico S. Castelo-Branco, Claudia C. Maquiaveli, André B. Farias, Magdalena N. Rennó, Nubia Boechat, Edson R. Silva. Phenylhydrazides as inhibitors of Leishmania amazonensis arginase and antileishmanial activity. Bioorganic & Medicinal Chemistry 2019, 27 (17) , 3853-3859. https://doi.org/10.1016/j.bmc.2019.07.022
    53. Teresa Mancilla Percino, José Eduardo Guzmán Ramírez, Elvia Mera Jiménez, Cynthia Raquel Trejo Muñoz. Synthesis, characterization of novel isoindolinyl- and bis-isoindolinylphenylboronic anhydrides. Antiproliferative activity on glioblastoma cells and microglial cells assays of boron and isoindolines compounds. Journal of Organometallic Chemistry 2019, 891 , 35-43. https://doi.org/10.1016/j.jorganchem.2019.04.011
    54. Wataru Asano, Yu Takahashi, Motoaki Kawano, Yoshiji Hantani. Identification of an Arginase II Inhibitor via RapidFire Mass Spectrometry Combined with Hydrophilic Interaction Chromatography. SLAS Discovery 2019, 24 (4) , 457-465. https://doi.org/10.1177/2472555218812663
    55. José Luis Velázquez-Libera, Carlos Navarro-Retamal, Julio Caballero. Insights into the Structural Requirements of 2(S)-Amino-6-Boronohexanoic Acid Derivatives as Arginase I Inhibitors: 3D-QSAR, Docking, and Interaction Fingerprint Studies. International Journal of Molecular Sciences 2018, 19 (10) , 2956. https://doi.org/10.3390/ijms19102956
    56. Thanh-Nhat Pham, Bertrand Liagre, Corine Girard-Thernier, Céline Demougeot. Research of novel anticancer agents targeting arginase inhibition. Drug Discovery Today 2018, 23 (4) , 871-878. https://doi.org/10.1016/j.drudis.2018.01.046
    57. Jean-Denis Docquier, Stefano Mangani. An update on β-lactamase inhibitor discovery and development. Drug Resistance Updates 2018, 36 , 13-29. https://doi.org/10.1016/j.drup.2017.11.002
    58. Diego B. Diaz, Andrei K. Yudin. The versatility of boron in biological target engagement. Nature Chemistry 2017, 9 (8) , 731-742. https://doi.org/10.1038/nchem.2814
    59. Khaled S. Abdelkawy, Kelsey Lack, Fawzy Elbarbry. Pharmacokinetics and Pharmacodynamics of Promising Arginase Inhibitors. European Journal of Drug Metabolism and Pharmacokinetics 2017, 42 (3) , 355-370. https://doi.org/10.1007/s13318-016-0381-y
    60. Marc Pudlo, Céline Demougeot, Corine Girard‐Thernier. Arginase Inhibitors: A Rational Approach Over One Century. Medicinal Research Reviews 2017, 37 (3) , 475-513. https://doi.org/10.1002/med.21419
    61. Charles M. Marson. Saturated Heterocycles with Applications in Medicinal Chemistry. 2017, 13-33. https://doi.org/10.1016/bs.aihch.2016.03.004
    62. Thanh-Nhat Pham, Simon Bordage, Marc Pudlo, Céline Demougeot, Khac-Minh Thai, Corine Girard-Thernier. Cinnamide Derivatives as Mammalian Arginase Inhibitors: Synthesis, Biological Evaluation and Molecular Docking. International Journal of Molecular Sciences 2016, 17 (10) , 1656. https://doi.org/10.3390/ijms17101656
    63. Aitziber Buqué, Norma Bloy, Fernando Aranda, Isabelle Cremer, Alexander Eggermont, Wolf Hervé Fridman, Jitka Fucikova, Jérôme Galon, Radek Spisek, Eric Tartour, Laurence Zitvogel, Guido Kroemer, Lorenzo Galluzzi. Trial Watch—Small molecules targeting the immunological tumor microenvironment for cancer therapy. OncoImmunology 2016, 5 (6) , e1149674. https://doi.org/10.1080/2162402X.2016.1149674
    64. Yang Hai, David W. Christianson. Crystal structures of Leishmania mexicana arginase complexed with α,α-disubstituted boronic amino-acid inhibitors. Acta Crystallographica Section F Structural Biology Communications 2016, 72 (4) , 300-306. https://doi.org/10.1107/S2053230X16003630
    65. Sarah J. Burke, James M. Gamrat, Jacqueline R. Santhouse, Dylan T. Tomares, John W. Tomsho. Potassium haloalkyltrifluoroborate salts: synthesis, application, and reversible ligand replacement with MIDA. Tetrahedron Letters 2015, 56 (41) , 5500-5503. https://doi.org/10.1016/j.tetlet.2015.08.012
    66. Jerry L. Adams, James Smothers, Roopa Srinivasan, Axel Hoos. Big opportunities for small molecules in immuno-oncology. Nature Reviews Drug Discovery 2015, 14 (9) , 603-622. https://doi.org/10.1038/nrd4596
    67. Klaus-Dieter Schlüter, Rainer Schulz, Rolf Schreckenberg. Arginase induction and activation during ischemia and reperfusion and functional consequences for the heart. Frontiers in Physiology 2015, 6 https://doi.org/10.3389/fphys.2015.00054
    68. Klaus-Dieter Schlüter, Rainer Schulz, Rolf Schreckenberg. Arginase induction and activation during ischemia and reperfusion and functional consequences for the heart. Frontiers in Physiology 2015, 6 https://doi.org/10.3389/fphys.2015.00065
    69. Miroslav Radenković, Marko Stojanović, Milica Prostran. Novel facts in pharmacology of endothelial dysfunction. Medicinska istrazivanja 2015, 49 (3) , 18-22. https://doi.org/10.5937/MedIst1502018R
    70. Yan A Ivanenkov, Nina V Chufarova. Small-molecule Arginase Inhibitors. Pharmaceutical Patent Analyst 2014, 3 (1) , 65-85. https://doi.org/10.4155/ppa.13.75
    71. Yahor Tratsiakovich, Jiangning Yang, Adrian Thomas Gonon, Per-Ove Sjöquist, John Pernow. Arginase as a target for treatment of myocardial ischemia-reperfusion injury. European Journal of Pharmacology 2013, 720 (1-3) , 121-123. https://doi.org/10.1016/j.ejphar.2013.10.040
    72. Adam Golebiowski, Darren Whitehouse, R. Paul Beckett, Michael Van Zandt, Min Koo Ji, Todd R. Ryder, Erik Jagdmann, Monica Andreoli, Yung Lee, Ryan Sheeler, Bruce Conway, Jacek Olczak, Marzena Mazur, Wojciech Czestkowski, Wieslawa Piotrowska, Alexandra Cousido-Siah, Francesc X. Ruiz, Andre Mitschler, Alberto Podjarny, Hagen Schroeter. Synthesis of quaternary α-amino acid-based arginase inhibitors via the Ugi reaction. Bioorganic & Medicinal Chemistry Letters 2013, 23 (17) , 4837-4841. https://doi.org/10.1016/j.bmcl.2013.06.092

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 2013, 56, 6, 2568–2580
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm400014c
    Published March 8, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    3582

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.