ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

KLIFS: A Knowledge-Based Structural Database To Navigate Kinase–Ligand Interaction Space

View Author Information
Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
*Phone: +31-20598-7553. E-mail: [email protected]
Cite this: J. Med. Chem. 2014, 57, 2, 249–277
Publication Date (Web):August 13, 2013
https://doi.org/10.1021/jm400378w
Copyright © 2013 American Chemical Society

    Article Views

    10134

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (19 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase–ligand interactions in all regions of the catalytic cleft of all 1252 human kinase–ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase–ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase–ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    2D structures of compounds that are not presented in other figures, a list of crystal structures of approved kinase inhibitors in the PDB, a table of all crystal structures used for the structural reference alignment, and the methodology of the KLIFS database preparation and analysis, including description of PDB collection, kinase domain sequence alignment, pocket selection, database creation, IFP generation, and DFG and αC-helix classification. This material is available free of charge via the Internet at http://pubs.acs.org. The KLIFS database is periodically updated and accessible on the Web at http://www.vu-compmedchem.nl, including all structure files and corresponding annotations.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 206 publications.

    1. Sarmistha Majumdar, Francesco Di Palma, Francesca Spyrakis, Sergio Decherchi, Andrea Cavalli. Molecular Dynamics and Machine Learning Give Insights on the Flexibility–Activity Relationships in Tyrosine Kinome. Journal of Chemical Information and Modeling 2023, 63 (15) , 4814-4826. https://doi.org/10.1021/acs.jcim.3c00738
    2. Ankit Kumar Singh, Pankaj Sonawane, Adarsh Kumar, Harshwardhan Singh, Vladislav Naumovich, Prateek Pathak, Maria Grishina, Habibullah Khalilullah, Mariusz Jaremko, Abdul-Hamid Emwas, Amita Verma, Pradeep Kumar. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS Omega 2023, 8 (31) , 27819-27844. https://doi.org/10.1021/acsomega.3c00332
    3. Thomas Ihle Aarhus, Frithjof Bjørnstad, Camilla Wolowczyk, Kristin Uhlving Larsen, Line Rognstad, Trygve Leithaug, Anke Unger, Peter Habenberger, Alexander Wolf, Geir Bjørkøy, Clare Pridans, Jan Eickhoff, Bert Klebl, Bård H. Hoff, Eirik Sundby. Synthesis and Development of Highly Selective Pyrrolo[2,3-d]pyrimidine CSF1R Inhibitors Targeting the Autoinhibited Form. Journal of Medicinal Chemistry 2023, 66 (10) , 6959-6980. https://doi.org/10.1021/acs.jmedchem.3c00428
    4. Aarion Romany, Ruibin Liu, Shaoqi Zhan, Joseph Clayton, Jana Shen. Analysis of the ERK Pathway Cysteinome for Targeted Covalent Inhibition of RAF and MEK Kinases. Journal of Chemical Information and Modeling 2023, 63 (8) , 2483-2494. https://doi.org/10.1021/acs.jcim.3c00014
    5. Xiaowen Dai, Yuan Xu, Haodi Qiu, Xu Qian, Mingde Lin, Lin Luo, Yang Zhao, Dingfang Huang, Yanmin Zhang, Yadong Chen, Haichun Liu, Yulei Jiang. KID: A Kinase-Focused Interaction Database and Its Application in the Construction of Kinase-Focused Molecule Databases. Journal of Chemical Information and Modeling 2022, 62 (23) , 6022-6034. https://doi.org/10.1021/acs.jcim.2c00908
    6. Merveille Eguida, Christel Schmitt-Valencia, Marcel Hibert, Pascal Villa, Didier Rognan. Target-Focused Library Design by Pocket-Applied Computer Vision and Fragment Deep Generative Linking. Journal of Medicinal Chemistry 2022, 65 (20) , 13771-13783. https://doi.org/10.1021/acs.jmedchem.2c00931
    7. Kareem A. Galal, Anna Truong, Frank Kwarcinski, Chandi de Silva, Krisha Avalani, Tammy M. Havener, Michael E. Chirgwin, Eric Merten, Han Wee Ong, Caleb Willis, Ahmad Abdelwaly, Mohamed A. Helal, Emily R. Derbyshire, Reena Zutshi, David H. Drewry. Identification of Novel 2,4,5-Trisubstituted Pyrimidines as Potent Dual Inhibitors of Plasmodial PfGSK3/PfPK6 with Activity against Blood Stage Parasites In Vitro. Journal of Medicinal Chemistry 2022, 65 (19) , 13172-13197. https://doi.org/10.1021/acs.jmedchem.2c00996
    8. Minh H. Nguyen, Onur Atasoylu, Liangxing Wu, Kanishk Kapilashrami, Michelle Pusey, Karen Gallagher, Cheng-Tsung Lai, Peng Zhao, Joseph Barbosa, Kai Liu, Chunhong He, Colin Zhang, Evan D. Styduhar, Michael R. Witten, Yaoyu Chen, Luping Lin, Yan-ou Yang, Maryanne Covington, Sharon Diamond, Swamy Yeleswaram, Wenqing Yao. Discovery of Novel Pyrazolopyrimidines as Potent, Selective, and Orally Bioavailable Inhibitors of ALK2. ACS Medicinal Chemistry Letters 2022, 13 (7) , 1159-1164. https://doi.org/10.1021/acsmedchemlett.2c00206
    9. Shan-Liang Sun, Shi-Han Wu, Ji-Bo Kang, Yi-Yuan Ma, Lu Chen, Peng Cao, Liang Chang, Ning Ding, Xin Xue, Nian-Guang Li, Zhi-Hao Shi. Medicinal Chemistry Strategies for the Development of Bruton’s Tyrosine Kinase Inhibitors against Resistance. Journal of Medicinal Chemistry 2022, 65 (11) , 7415-7437. https://doi.org/10.1021/acs.jmedchem.2c00030
    10. Dominique Sydow, Eva Aßmann, Albert J. Kooistra, Friedrich Rippmann, Andrea Volkamer. KiSSim: Predicting Off-Targets from Structural Similarities in the Kinome. Journal of Chemical Information and Modeling 2022, 62 (10) , 2600-2616. https://doi.org/10.1021/acs.jcim.2c00050
    11. Yi Hua, Xiaobao Fang, Guomeng Xing, Yuan Xu, Li Liang, Chenglong Deng, Xiaowen Dai, Haichun Liu, Tao Lu, Yanmin Zhang, Yadong Chen. Effective Reaction-Based De Novo Strategy for Kinase Targets: A Case Study on MERTK Inhibitors. Journal of Chemical Information and Modeling 2022, 62 (7) , 1654-1668. https://doi.org/10.1021/acs.jcim.2c00068
    12. Xuenan Mi, Diwakar Shukla. Predicting the Activities of Drug Excipients on Biological Targets using One-Shot Learning. The Journal of Physical Chemistry B 2022, 126 (7) , 1492-1503. https://doi.org/10.1021/acs.jpcb.1c10574
    13. Oliver Laufkötter, Huabin Hu, Filip Miljković, Jürgen Bajorath. Structure- and Similarity-Based Survey of Allosteric Kinase Inhibitors, Activators, and Closely Related Compounds. Journal of Medicinal Chemistry 2022, 65 (2) , 922-934. https://doi.org/10.1021/acs.jmedchem.0c02076
    14. Ruibin Liu, Shaoqi Zhan, Ye Che, Jana Shen. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. Journal of Medicinal Chemistry 2022, 65 (2) , 1525-1535. https://doi.org/10.1021/acs.jmedchem.1c01186
    15. Govindan Subramanian, Brian Duclos, Paul D. Johnson, Tracey Williams, Jason T. Ross, Scott J. Bowen, Yaqi Zhu, Julie A. White, Carolyn Hedke, Dennis Huczek, Wendy Collard, Christopher Javens, Rajendran Vairagoundar, Tomasz Respondek, Theresa Zachary, Todd Maddux, Mark R. Cox, Steven Kamerling, Andrea J. Gonzales. In Pursuit of an Allosteric Human Tropomyosin Kinase A (hTrkA) Inhibitor for Chronic Pain. ACS Medicinal Chemistry Letters 2021, 12 (11) , 1847-1852. https://doi.org/10.1021/acsmedchemlett.1c00483
    16. Lizhao Hu, Yuyao Yang, Shuangjia Zheng, Jun Xu, Ting Ran, Hongming Chen. Kinase Inhibitor Scaffold Hopping with Deep Learning Approaches. Journal of Chemical Information and Modeling 2021, 61 (10) , 4900-4912. https://doi.org/10.1021/acs.jcim.1c00608
    17. Ariane Nunes-Alves, Fabian Ormersbach, Rebecca C. Wade. Prediction of the Drug–Target Binding Kinetics for Flexible Proteins by Comparative Binding Energy Analysis. Journal of Chemical Information and Modeling 2021, 61 (7) , 3708-3721. https://doi.org/10.1021/acs.jcim.1c00639
    18. Ashley N. Matthew, Florian Leidner, Gordon J. Lockbaum, Mina Henes, Jacqueto Zephyr, Shurong Hou, Desaboini Nageswara Rao, Jennifer Timm, Linah N. Rusere, Debra A. Ragland, Janet L. Paulsen, Kristina Prachanronarong, Djade I. Soumana, Ellen A. Nalivaika, Nese Kurt Yilmaz, Akbar Ali, Celia A. Schiffer. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chemical Reviews 2021, 121 (6) , 3238-3270. https://doi.org/10.1021/acs.chemrev.0c00648
    19. Steven K. Albanese, John D. Chodera, Andrea Volkamer, Simon Keng, Robert Abel, Lingle Wang. Is Structure-Based Drug Design Ready for Selectivity Optimization?. Journal of Chemical Information and Modeling 2020, 60 (12) , 6211-6227. https://doi.org/10.1021/acs.jcim.0c00815
    20. Dominique Sydow, Paula Schmiel, Jérémie Mortier, Andrea Volkamer. KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-Focused Fragmentation and Recombination. Journal of Chemical Information and Modeling 2020, 60 (12) , 6081-6094. https://doi.org/10.1021/acs.jcim.0c00839
    21. Fabian Paul, Trayder Thomas, Benoît Roux. Diversity of Long-Lived Intermediates along the Binding Pathway of Imatinib to Abl Kinase Revealed by MD Simulations. Journal of Chemical Theory and Computation 2020, 16 (12) , 7852-7865. https://doi.org/10.1021/acs.jctc.0c00739
    22. Filip Miljković, Raquel Rodríguez-Pérez, Jürgen Bajorath. Machine Learning Models for Accurate Prediction of Kinase Inhibitors with Different Binding Modes. Journal of Medicinal Chemistry 2020, 63 (16) , 8738-8748. https://doi.org/10.1021/acs.jmedchem.9b00867
    23. Fabian Paul, Yilin Meng, Benoît Roux. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Journal of Chemical Theory and Computation 2020, 16 (3) , 1896-1912. https://doi.org/10.1021/acs.jctc.9b01158
    24. Ananthasri Sailapathi, Gopinath Murugan, Kanagasabai Somarathinam, Seshan Gunalan, Rahul Jagadeesan, Niyaz Yoosuf, Sekar Kanagaraj, Gugan Kothandan. Proposing the Promiscuous Protein Structures in JNK1 and JNK3 for Virtual Screening in Pursuit of Potential Leads. ACS Omega 2020, 5 (8) , 3969-3978. https://doi.org/10.1021/acsomega.9b03458
    25. Xingye Chen, Haichun Liu, Wuchen Xie, Yan Yang, Yuchen Wang, Yuanrong Fan, Yi Hua, Lu Zhu, Junnan Zhao, Tao Lu, Yadong Chen, Yanmin Zhang. Investigation of Crystal Structures in Structure-Based Virtual Screening for Protein Kinase Inhibitors. Journal of Chemical Information and Modeling 2019, 59 (12) , 5244-5262. https://doi.org/10.1021/acs.jcim.9b00684
    26. Jin Chen, Anhui Wang, Bing Liu, Ye Zhou, Pan Luo, Zhichao Zhang, Guohui Li, Quentin Liu, Fangjun Wang. Quantitative Lysine Reactivity Profiling Reveals Conformational Inhibition Dynamics and Potency of Aurora A Kinase Inhibitors. Analytical Chemistry 2019, 91 (20) , 13222-13229. https://doi.org/10.1021/acs.analchem.9b03647
    27. Cheng-Chieh Tsai, Zhi Yue, Jana Shen. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. Journal of the American Chemical Society 2019, 141 (38) , 15092-15101. https://doi.org/10.1021/jacs.9b06064
    28. Jianwen A. Feng, Patrick Lee, Moulay Hicham Alaoui, Kathy Barrett, Georgette Castanedo, Robert Godemann, Paul McEwan, Xiaolu Wang, Ping Wu, Yamin Zhang, Seth F. Harris, Steven T. Staben. Structure Based Design of Potent Selective Inhibitors of Protein Kinase D1 (PKD1). ACS Medicinal Chemistry Letters 2019, 10 (9) , 1260-1265. https://doi.org/10.1021/acsmedchemlett.8b00658
    29. Yuanxun Wang, Qiuyu Fu, Yu Zhou, Yunfei Du, Niu Huang. Replacement of Protein Binding-Site Waters Contributes to Favorable Halogen Bond Interactions. Journal of Chemical Information and Modeling 2019, 59 (7) , 3136-3143. https://doi.org/10.1021/acs.jcim.9b00128
    30. Ruibin Liu, Zhi Yue, Cheng-Chieh Tsai, Jana Shen. Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors. Journal of the American Chemical Society 2019, 141 (16) , 6553-6560. https://doi.org/10.1021/jacs.8b13248
    31. Victoria Georgi, Felix Schiele, Benedict-Tilman Berger, Andreas Steffen, Paula A. Marin Zapata, Hans Briem, Stephan Menz, Cornelia Preusse, James D. Vasta, Matthew B. Robers, Michael Brands, Stefan Knapp, Amaury Fernández-Montalván. Binding Kinetics Survey of the Drugged Kinome. Journal of the American Chemical Society 2018, 140 (46) , 15774-15782. https://doi.org/10.1021/jacs.8b08048
    32. Darwin Y. Fu and Jens Meiler . Predictive Power of Different Types of Experimental Restraints in Small Molecule Docking: A Review. Journal of Chemical Information and Modeling 2018, 58 (2) , 225-233. https://doi.org/10.1021/acs.jcim.7b00418
    33. Filip Miljković and Jürgen Bajorath . Exploring Selectivity of Multikinase Inhibitors across the Human Kinome. ACS Omega 2018, 3 (1) , 1147-1153. https://doi.org/10.1021/acsomega.7b01960
    34. Yanmin Zhang, Yadong Chen, Danfeng Zhang, Lu Wang, Tao Lu, and Yu Jiao . Discovery of Novel Potent VEGFR-2 Inhibitors Exerting Significant Antiproliferative Activity against Cancer Cell Lines. Journal of Medicinal Chemistry 2018, 61 (1) , 140-157. https://doi.org/10.1021/acs.jmedchem.7b01091
    35. Chenzhou Hao, Fan Zhao, Hongyan Song, Jing Guo, Xiaodong Li, Xiaolin Jiang, Ran Huan, Shuai Song, Qiaoling Zhang, Ruifeng Wang, Kai Wang, Yu Pang, Tongchao Liu, Tianqi Lu, Wanxu Huang, Jian Wang, Bin Lin, Zhonggui He, Haitao Li, Feng Li, Dongmei Zhao, and Maosheng Cheng . Structure-Based Design of 6-Chloro-4-aminoquinazoline-2-carboxamide Derivatives as Potent and Selective p21-Activated Kinase 4 (PAK4) Inhibitors. Journal of Medicinal Chemistry 2018, 61 (1) , 265-285. https://doi.org/10.1021/acs.jmedchem.7b01342
    36. Prasenjit Mukherjee, Jörg Bentzien, Todd Bosanac, Wang Mao, Michael Burke, and Ingo Muegge . Kinase Crystal Miner: A Powerful Approach to Repurposing 3D Hinge Binding Fragments and Its Application to Finding Novel Bruton Tyrosine Kinase Inhibitors. Journal of Chemical Information and Modeling 2017, 57 (9) , 2152-2160. https://doi.org/10.1021/acs.jcim.7b00213
    37. Yanmin Zhang, Lu Wang, Qing Zhang, Gaoyuan Zhu, Zhimin Zhang, Xiang Zhou, Yadong Chen, Tao Lu, and Weifang Tang . Potent Pan-Raf and Receptor Tyrosine Kinase Inhibitors Based on a Cyclopropyl Formamide Fragment Overcome Resistance. Journal of Chemical Information and Modeling 2017, 57 (6) , 1439-1452. https://doi.org/10.1021/acs.jcim.6b00795
    38. Zheng Zhao, Qingsong Liu, Spencer Bliven, Lei Xie, and Philip E. Bourne . Determining Cysteines Available for Covalent Inhibition Across the Human Kinome. Journal of Medicinal Chemistry 2017, 60 (7) , 2879-2889. https://doi.org/10.1021/acs.jmedchem.6b01815
    39. Ross McGuire, Stefan Verhoeven, Márton Vass, Gerrit Vriend, Iwan J. P. de Esch, Scott J. Lusher, Rob Leurs, Lars Ridder, Albert J. Kooistra, Tina Ritschel, and Chris de Graaf . 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. Journal of Chemical Information and Modeling 2017, 57 (2) , 115-121. https://doi.org/10.1021/acs.jcim.6b00686
    40. Chimed Jansen, Albert J. Kooistra, Georgi K. Kanev, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. Journal of Medicinal Chemistry 2016, 59 (15) , 7029-7065. https://doi.org/10.1021/acs.jmedchem.5b01813
    41. Frank E. Kwarcinski, Kristoffer R. Brandvold, Sameer Phadke, Omar M. Beleh, Taylor K. Johnson, Jennifer L. Meagher, Markus A. Seeliger, Jeanne A. Stuckey, and Matthew B. Soellner . Conformation-Selective Analogues of Dasatinib Reveal Insight into Kinase Inhibitor Binding and Selectivity. ACS Chemical Biology 2016, 11 (5) , 1296-1304. https://doi.org/10.1021/acschembio.5b01018
    42. Zheng Zhao, Li Xie, Lei Xie, and Philip E. Bourne . Delineation of Polypharmacology across the Human Structural Kinome Using a Functional Site Interaction Fingerprint Approach. Journal of Medicinal Chemistry 2016, 59 (9) , 4326-4341. https://doi.org/10.1021/acs.jmedchem.5b02041
    43. Albert J. Kooistra, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Journal of Chemical Information and Modeling 2015, 55 (5) , 1045-1061. https://doi.org/10.1021/acs.jcim.5b00066
    44. Andrea Volkamer, Sameh Eid, Samo Turk, Sabrina Jaeger, Friedrich Rippmann, and Simone Fulle . Pocketome of Human Kinases: Prioritizing the ATP Binding Sites of (Yet) Untapped Protein Kinases for Drug Discovery. Journal of Chemical Information and Modeling 2015, 55 (3) , 538-549. https://doi.org/10.1021/ci500624s
    45. Oscar Méndez-Lucio, Albert J. Kooistra, Chris de Graaf, Andreas Bender, and José L. Medina-Franco . Analyzing Multitarget Activity Landscapes Using Protein–Ligand Interaction Fingerprints: Interaction Cliffs. Journal of Chemical Information and Modeling 2015, 55 (2) , 251-262. https://doi.org/10.1021/ci500721x
    46. Ye Hu, Norbert Furtmann, and Jürgen Bajorath . Current Compound Coverage of the Kinome. Journal of Medicinal Chemistry 2015, 58 (1) , 30-40. https://doi.org/10.1021/jm5008159
    47. Norbert Furtmann, Ye Hu, and Jürgen Bajorath . Comprehensive Analysis of Three-Dimensional Activity Cliffs Formed by Kinase Inhibitors with Different Binding Modes and Cliff Mapping of Structural Analogues. Journal of Medicinal Chemistry 2015, 58 (1) , 252-264. https://doi.org/10.1021/jm5009264
    48. R. S. K. Vijayan, Peng He, Vivek Modi, Krisna C. Duong-Ly, Haiching Ma, Jeffrey R. Peterson, Roland L. Dunbrack, Jr., and Ronald M. Levy . Conformational Analysis of the DFG-Out Kinase Motif and Biochemical Profiling of Structurally Validated Type II Inhibitors. Journal of Medicinal Chemistry 2015, 58 (1) , 466-479. https://doi.org/10.1021/jm501603h
    49. Shawn J. Stachel, John M. Sanders, Darrell A. Henze, Mike T. Rudd, Hua-Poo Su, Yiwei Li, Kausik K. Nanda, Melissa S. Egbertson, Peter J. Manley, Kristen L. G. Jones, Edward J. Brnardic, Ahren Green, Jay A. Grobler, Barbara Hanney, Michael Leitl, Ming-Tain Lai, Vandna Munshi, Dennis Murphy, Keith Rickert, Daniel Riley, Alicja Krasowska-Zoladek, Christopher Daley, Paul Zuck, Stephanie A. Kane, and Mark T. Bilodeau . Maximizing Diversity from a Kinase Screen: Identification of Novel and Selective pan-Trk Inhibitors for Chronic Pain. Journal of Medicinal Chemistry 2014, 57 (13) , 5800-5816. https://doi.org/10.1021/jm5006429
    50. Zheng Zhao, Hong Wu, Li Wang, Yi Liu, Stefan Knapp, Qingsong Liu, and Nathanael S. Gray . Exploration of Type II Binding Mode: A Privileged Approach for Kinase Inhibitor Focused Drug Discovery?. ACS Chemical Biology 2014, 9 (6) , 1230-1241. https://doi.org/10.1021/cb500129t
    51. Astrid Stroobants, Lewis H. Mervin, Ola Engkvist, Graeme R. Robb. An industrial evaluation of proteochemometric modelling: Predicting drug-target affinities for kinases. Artificial Intelligence in the Life Sciences 2023, 4 , 100079. https://doi.org/10.1016/j.ailsci.2023.100079
    52. V. Pratap Reddy Gajulapalli. Development of Kinase‐Centric Drugs: A Computational Perspective. ChemMedChem 2023, 198 https://doi.org/10.1002/cmdc.202200693
    53. Brian Anderson, Peter Rosston, Han Wee Ong, Mohammad Anwar Hossain, Zachary W. Davis-Gilbert, David H. Drewry. How many kinases are druggable? A review of our current understanding. Biochemical Journal 2023, 480 (16) , 1331-1363. https://doi.org/10.1042/BCJ20220217
    54. Antoine Desilets, Matteo Repetto, Soo-Ryum Yang, Eric J. Sherman, Alexander Drilon. RET-Altered Cancers—A Tumor-Agnostic Review of Biology, Diagnosis and Targeted Therapy Activity. Cancers 2023, 15 (16) , 4146. https://doi.org/10.3390/cancers15164146
    55. Robert Roskoski Jr.. Small molecule protein kinase inhibitors approved by regulatory agencies outside of the United States. Pharmacological Research 2023, 194 , 106847. https://doi.org/10.1016/j.phrs.2023.106847
    56. Dávid Bajusz, Gáspár Pándy-Szekeres, Ágnes Takács, Elvin D de Araujo, György M Keserű. SH2db, an information system for the SH2 domain. Nucleic Acids Research 2023, 51 (W1) , W542-W552. https://doi.org/10.1093/nar/gkad420
    57. George Mihai Nitulescu, Gheorghe Stancov, Oana Cristina Seremet, Georgiana Nitulescu, Dragos Paul Mihai, Cosmina Gabriela Duta-Bratu, Stefania Felicia Barbuceanu, Octavian Tudorel Olaru. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023, 28 (14) , 5359. https://doi.org/10.3390/molecules28145359
    58. Jing Zhao, Wei Xu, Xiaoli Zhuo, Lei Liu, Junlei Zhang, Fengxian Jiang, Yanru Shen, Yan Lei, Dongsheng Hou, Xiaoyan Lin, Cuiyan Wang, Guobin Fu. Response to Pralsetinib in Multi-Drug-Resistant Breast Cancer With CCDC6-RET Mutation. The Oncologist 2023, 28 (6) , e416-e424. https://doi.org/10.1093/oncolo/oyad115
    59. Noha H. Amin, Mohammed T. El-Saadi, Maha M. Abdel-Fattah, Asmaa A. Mohammed, Eman G. Said. Development of certain aminoquinazoline scaffolds as potential multitarget anticancer agents with apoptotic and anti-proliferative effects: Design, synthesis and biological evaluation. Bioorganic Chemistry 2023, 135 , 106496. https://doi.org/10.1016/j.bioorg.2023.106496
    60. Sikang Chen, Jian Gao, Jiexuan Chen, Yufeng Xie, Zheyuan Shen, Lei Xu, Jinxin Che, Jian Wu, Xiaowu Dong. ClusterX: a novel representation learning-based deep clustering framework for accurate visual inspection in virtual screening. Briefings in Bioinformatics 2023, 24 (3) https://doi.org/10.1093/bib/bbad126
    61. Lijuan Xu, Chunlin Zhuang. Profiling of small‐molecule necroptosis inhibitors based on the subpockets of kinase–ligand interactions. Medicinal Research Reviews 2023, 17 https://doi.org/10.1002/med.21968
    62. Isehaq Al-Huseini, Srinivasa Rao Sirasanagandla, Kondaveeti Suresh Babu, Ramakrishna Gopala Sumesh Sofin, Srijit Das. Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications. Current Medicinal Chemistry 2023, 30 (13) , 1502-1528. https://doi.org/10.2174/0929867329666220117114306
    63. Ming-Xiao Zhao, Qiang Chen, Fulai Li, Songsen Fu, Biling Huang, Yufen Zhao. Protein phosphorylation database and prediction tools. Briefings in Bioinformatics 2023, 24 (2) https://doi.org/10.1093/bib/bbad090
    64. Han Wee Ong, Anna Truong, Frank Kwarcinski, Chandi de Silva, Krisha Avalani, Tammy M. Havener, Michael Chirgwin, Kareem A. Galal, Caleb Willis, Andreas Krämer, Shubin Liu, Stefan Knapp, Emily R. Derbyshire, Reena Zutshi, David H. Drewry. Discovery of potent Plasmodium falciparum protein kinase 6 (PfPK6) inhibitors with a type II inhibitor pharmacophore. European Journal of Medicinal Chemistry 2023, 249 , 115043. https://doi.org/10.1016/j.ejmech.2022.115043
    65. Xin Wang, Cheng‐hao Ye, En‐min Li, Li‐yan Xu, Wang‐qiang Lin, Guang‐hui Chen. Discovery of octahydropyrrolo [3,2‐b] pyridin derivative as a highly selective Type I inhibitor of FGFR3 over VEGFR2 by high‐throughput virtual screening. Journal of Cellular Biochemistry 2023, 124 (2) , 221-238. https://doi.org/10.1002/jcb.30357
    66. Robert Roskoski. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacological Research 2023, 187 , 106552. https://doi.org/10.1016/j.phrs.2022.106552
    67. Qing-Xin Wang, Yu-Hao Cao, Li-Jin Yang, Yi-Yuan Ma, Nan Li, Shi-Han Wu, Lu Chen, Jia-Zhen Wu, Zhen-Jiang Tong, Xiao-Long Wang, Xin Xue, Ning Ding, Xue-Jiao Leng, Liang Chang, Wei-Chen Dai, Yan-Cheng Yu, Shan-Liang Sun, Ye Yang, Nian-Guang Li, Zhi-Hao Shi. Design and synthesis of selective FLT3 inhibitors via exploration of back pocket II. Future Medicinal Chemistry 2023, 15 (1) , 57-71. https://doi.org/10.4155/fmc-2022-0231
    68. Yosui Nojima, Masahiko Aoki, Suyong Re, Hidekazu Hirano, Yuichi Abe, Ryohei Narumi, Satoshi Muraoka, Hirokazu Shoji, Kazufumi Honda, Takeshi Tomonaga, Kenji Mizuguchi, Narikazu Boku, Jun Adachi. Integration of pharmacoproteomic and computational approaches reveals the cellular signal transduction pathways affected by apatinib in gastric cancer cell lines. Computational and Structural Biotechnology Journal 2023, 21 , 2172-2187. https://doi.org/10.1016/j.csbj.2023.03.006
    69. Joan Gizzio, Abhishek Thakur, Allan Haldane, Ronald M Levy. Evolutionary divergence in the conformational landscapes of tyrosine vs serine/threonine kinases. eLife 2022, 11 https://doi.org/10.7554/eLife.83368
    70. Samdani Ansar, Umashankar Vetrivel. Structure-based design of small molecule and peptide inhibitors for selective targeting of ROCK1: an integrative computational approach. Journal of Biomolecular Structure and Dynamics 2022, 40 (16) , 7450-7468. https://doi.org/10.1080/07391102.2021.1898470
    71. Ankit Kumar Singh, Jurica Novak, Adarsh Kumar, Harshwardhan Singh, Suresh Thareja, Prateek Pathak, Maria Grishina, Amita Verma, Jagat Pal Yadav, Habibullah Khalilullah, Vikas Pathania, Hemraj Nandanwar, Mariusz Jaremko, Abdul-Hamid Emwas, Pradeep Kumar. Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine–sulfonamide hybrids as selective BRAF V600E inhibitors. RSC Advances 2022, 12 (46) , 30181-30200. https://doi.org/10.1039/D2RA05751D
    72. Yan Zhu, Xiche Hu. Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases. Molecules 2022, 27 (20) , 7124. https://doi.org/10.3390/molecules27207124
    73. Zheng Zhao, Philip E. Bourne. Harnessing systematic protein–ligand interaction fingerprints for drug discovery. Drug Discovery Today 2022, 27 (10) , 103319. https://doi.org/10.1016/j.drudis.2022.07.004
    74. Robert Roskoski. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacological Research 2022, 183 , 106362. https://doi.org/10.1016/j.phrs.2022.106362
    75. Xiao-Qing Liu, Yong-Jia Yi, Yuan Kong, Pan Yu, Lin-Guo Zhao, Dong-Dong Li. Consensus scoring model: A novel approach to the study of EGFR kinase inhibitors. Chemical Physics Letters 2022, 800 , 139650. https://doi.org/10.1016/j.cplett.2022.139650
    76. Yi Chen, Zhi-Zheng Wang, Ge-Fei Hao, Bao-An Song. Web support for the more efficient discovery of kinase inhibitors. Drug Discovery Today 2022, 27 (8) , 2216-2225. https://doi.org/10.1016/j.drudis.2022.04.002
    77. Zhi-Zheng Wang, Ming-Shu Wang, Fan Wang, Xing-Xing Shi, Wei Huang, Ge-Fei Hao, Guang-Fu Yang. Exploring the kinase-inhibitor fragment interaction space facilitates the discovery of kinase inhibitor overcoming resistance by mutations. Briefings in Bioinformatics 2022, 23 (4) https://doi.org/10.1093/bib/bbac203
    78. Dominique Sydow, Jaime Rodríguez-Guerra, Talia B Kimber, David Schaller, Corey J Taylor, Yonghui Chen, Mareike Leja, Sakshi Misra, Michele Wichmann, Armin Ariamajd, Andrea Volkamer. TeachOpenCADD 2022: open source and FAIR Python pipelines to assist in structural bioinformatics and cheminformatics research. Nucleic Acids Research 2022, 50 (W1) , W753-W760. https://doi.org/10.1093/nar/gkac267
    79. Shiwei Wang, Haoyu Lin, Zhixian Huang, Yufeng He, Xiaobing Deng, Youjun Xu, Jianfeng Pei, Luhua Lai. CavitySpace: A Database of Potential Ligand Binding Sites in the Human Proteome. Biomolecules 2022, 12 (7) , 967. https://doi.org/10.3390/biom12070967
    80. Hemavathy Nagarajan, Ansar Samdani, Vetrivel Umashankar, Jeyaraman Jeyakanthan. Deciphering the conformational transitions of LIMK2 active and inactive states to ponder specific druggable states through microsecond scale molecular dynamics simulation. Journal of Computer-Aided Molecular Design 2022, 36 (6) , 459-482. https://doi.org/10.1007/s10822-022-00459-0
    81. Faraat Ali, Kumari Neha, Garima Chauhan. Pralsetinib: chemical and therapeutic development with FDA authorization for the management of RET fusion-positive non-small-cell lung cancers. Archives of Pharmacal Research 2022, 45 (5) , 309-327. https://doi.org/10.1007/s12272-022-01385-3
    82. Robert Roskoski. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia. Pharmacological Research 2022, 178 , 106156. https://doi.org/10.1016/j.phrs.2022.106156
    83. Ekaterina Shevchenko, Tatu Pantsar. Regulatory spine RS3 residue of protein kinases: a lipophilic bystander or a decisive element in the small-molecule kinase inhibitor binding?. Biochemical Society Transactions 2022, 50 (1) , 633-648. https://doi.org/10.1042/BST20210837
    84. Dominique Sydow, Jaime Rodríguez-Guerra, Andrea Volkamer. OpenCADD-KLIFS: A Python package to fetch kinase data from the KLIFS database. Journal of Open Source Software 2022, 7 (70) , 3951. https://doi.org/10.21105/joss.03951
    85. Ruibin Liu, Neha Verma, Jack A. Henderson, Shaoqi Zhan, Jana Shen. Profiling MAP kinase cysteines for targeted covalent inhibitor design. RSC Medicinal Chemistry 2022, 13 (1) , 54-63. https://doi.org/10.1039/D1MD00277E
    86. Vivek Modi, Roland L Dunbrack. Kincore: a web resource for structural classification of protein kinases and their inhibitors. Nucleic Acids Research 2022, 50 (D1) , D654-D664. https://doi.org/10.1093/nar/gkab920
    87. Danica M. Vodopivec, Mimi I. Hu. RET kinase inhibitors for RET -altered thyroid cancers. Therapeutic Advances in Medical Oncology 2022, 14 , 175883592211016. https://doi.org/10.1177/17588359221101691
    88. Robert Roskoski Jr.. Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacological Research 2022, 175 , 106037. https://doi.org/10.1016/j.phrs.2021.106037
    89. Elena Kalinichenko, Aliaksandr Faryna, Tatyana Bozhok, Alesya Panibrat. Synthesis, In Vitro and In Silico Anticancer Activity of New 4-Methylbenzamide Derivatives Containing 2,6-Substituted Purines as Potential Protein Kinases Inhibitors. International Journal of Molecular Sciences 2021, 22 (23) , 12738. https://doi.org/10.3390/ijms222312738
    90. Ni Made Pitri Susanti, Sophi Damayanti, Rahmana Emran Kartasasmita, Daryono Hadi Tjahjono. A Search for Cyclin-Dependent Kinase 4/6 Inhibitors by Pharmacophore-Based Virtual Screening, Molecular Docking, and Molecular Dynamic Simulations. International Journal of Molecular Sciences 2021, 22 (24) , 13423. https://doi.org/10.3390/ijms222413423
    91. Ibrahim Abdelbaky, Hilal Tayara, Kil To Chong. Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-020-80758-4
    92. William A. Denny, Jack U. Flanagan. Inhibitors of Discoidin Domain Receptor (DDR) Kinases for Cancer and Inflammation. Biomolecules 2021, 11 (11) , 1671. https://doi.org/10.3390/biom11111671
    93. Stephan Kirchner, Patrick Schnider. Genotoxicity. 2021, 331-363. https://doi.org/10.1039/9781788016414-00331
    94. Omer Bayazeid, Taufiq Rahman. Correlation Analysis of Target Selectivity and Side Effects of FDA‐Approved Kinase Inhibitors**. ChemistrySelect 2021, 6 (30) , 7799-7814. https://doi.org/10.1002/slct.202101367
    95. Ni Made Pitri Susanti, Daryono Hadi Tjahjono. Cyclin-Dependent Kinase 4 and 6 Inhibitors in Cell Cycle Dysregulation for Breast Cancer Treatment. Molecules 2021, 26 (15) , 4462. https://doi.org/10.3390/molecules26154462
    96. Milagros Mateos-Olivares, Luis García-Onrubia, Fco. Javier Valentín-Bravo, Rogelio González-Sarmiento, Maribel Lopez-Galvez, J. Carlos Pastor, Ricardo Usategui-Martín, Salvador Pastor-Idoate. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021, 10 (7) , 1683. https://doi.org/10.3390/cells10071683
    97. Zhi-Zheng Wang, Xing-Xing Shi, Guang-Yi Huang, Ge-Fei Hao, Guang-Fu Yang. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends in Pharmacological Sciences 2021, 42 (7) , 551-565. https://doi.org/10.1016/j.tips.2021.04.001
    98. Huabin Hu, Jürgen Bajorath. Systematic assessment of structure-promiscuity relationships between different types of kinase inhibitors. Bioorganic & Medicinal Chemistry 2021, 41 , 116226. https://doi.org/10.1016/j.bmc.2021.116226
    99. Robert Roskoski. Hydrophobic and polar interactions of FDA-approved small molecule protein kinase inhibitors with their target enzymes. Pharmacological Research 2021, 169 , 105660. https://doi.org/10.1016/j.phrs.2021.105660
    100. Robert Roskoski. Properties of FDA-approved small molecule phosphatidylinositol 3-kinase inhibitors prescribed for the treatment of malignancies. Pharmacological Research 2021, 168 , 105579. https://doi.org/10.1016/j.phrs.2021.105579
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect