QSAR Modeling: Where Have You Been? Where Are You Going To?Click to copy article linkArticle link copied!
- Artem Cherkasov
- Eugene N. Muratov
- Denis Fourches
- Alexandre Varnek
- Igor I. Baskin
- Mark Cronin
- John Dearden
- Paola Gramatica
- Yvonne C. Martin
- Roberto Todeschini
- Viviana Consonni
- Victor E. Kuz’min
- Richard Cramer
- Romualdo Benigni
- Chihae Yang
- James Rathman
- Lothar Terfloth
- Johann Gasteiger
- Ann Richard
- Alexander Tropsha
Abstract

Quantitative structure–activity relationship modeling is one of the major computational tools employed in medicinal chemistry. However, throughout its entire history it has drawn both praise and criticism concerning its reliability, limitations, successes, and failures. In this paper, we discuss (i) the development and evolution of QSAR; (ii) the current trends, unsolved problems, and pressing challenges; and (iii) several novel and emerging applications of QSAR modeling. Throughout this discussion, we provide guidelines for QSAR development, validation, and application, which are summarized in best practices for building rigorously validated and externally predictive QSAR models. We hope that this Perspective will help communications between computational and experimental chemists toward collaborative development and use of QSAR models. We also believe that the guidelines presented here will help journal editors and reviewers apply more stringent scientific standards to manuscripts reporting new QSAR studies, as well as encourage the use of high quality, validated QSARs for regulatory decision making.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 1482 publications.
- Sourav Pal, Quinlin M. Hanson, Sarah C. Ogden, Emily M. Lee, Natalia J. Martinez, Alexey V. Zakharov. Discovery of SARS-CoV-2 Nsp14-Methyltransferase (MTase) Inhibitors by Harnessing Scaffold-Centric Exploration of the Ultra Large Chemical Space. ACS Pharmacology & Translational Science 2025, Article ASAP.
- Richard Lonsdale, Jack Glancy, Leen Kalash, David Marcus, Ian D. Wall. Active Learning FEP: Impact on Performance of AL Protocol and Chemical Diversity. Journal of Chemical Theory and Computation 2025, Article ASAP.
- Alberto Marchetto, Monica Tirapelle, Luca Mazzei, Eva Sorensen, Maximilian O. Besenhard. In Silico High-Performance Liquid Chromatography Method Development via Machine Learning. Analytical Chemistry 2025, 97
(13)
, 6991-7001. https://doi.org/10.1021/acs.analchem.4c03466
- Hongtao Zhao, Karolina Kwapień, Eva Nittinger, Christian Tyrchan, Magnus Nilsson, Susanne Berglund, Werngard Czechtizky. AI-Augmented R-Group Exploration in Medicinal Chemistry. Journal of Chemical Information and Modeling 2025, 65
(5)
, 2251-2255. https://doi.org/10.1021/acs.jcim.4c02326
- Wei Guo, Xiangmin Song, Yongchao Gao, Shuai Yang, Jiahong Tang, Chen Zhao, Haojing Wang, Jiajun Ren, Lingda Zeng, Hanhong Xu. Exploring Insecticidal Molecules with Random Forest: Toward High Insecticidal Activity and Low Bee Toxicity. Journal of Agricultural and Food Chemistry 2025, 73
(9)
, 5573-5584. https://doi.org/10.1021/acs.jafc.4c08587
- Shan Lu, Nicholas J. Huls, Koushiki Basu, Tonglei Li. Deep Learning of CYP450 Binding of Small Molecules by Quantum Information. Journal of Chemical Information and Modeling 2025, 65
(3)
, 1188-1197. https://doi.org/10.1021/acs.jcim.4c01735
- Sourav Pal, Kellie D. Nance, Dirgha Raj Joshi, Stephen C. Kales, Lin Ye, Xin Hu, Khalida Shamim, Alexey V. Zakharov. Applications of Machine Learning Approaches for the Discovery of SARS-CoV-2 PLpro Inhibitors. Journal of Chemical Information and Modeling 2025, 65
(3)
, 1338-1356. https://doi.org/10.1021/acs.jcim.4c02126
- Jéssika de O. Viana, Karen C. Weber, Luiz E. G. da Cruz, Rhayane de O. Santos, Gerd B. Rocha, Alessandro K. Jordão, Euzébio G. Barbosa. In Silico Structural Insights and Potential Inhibitor Identification Based on the Benzothiazole Core for Targeting Leishmania major Pteridine Reductase 1. ACS Omega 2025, 10
(1)
, 306-317. https://doi.org/10.1021/acsomega.4c06146
- Srivathsan Badrinarayanan, Chakradhar Guntuboina, Parisa Mollaei, Amir Barati Farimani. Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties. Journal of Chemical Information and Modeling 2025, 65
(1)
, 83-91. https://doi.org/10.1021/acs.jcim.4c01443
- Zheng Wu, Nannan Wang, Zhuyifan Ye, Huanle Xu, Ging Chan, Defang Ouyang. FormulationBCS: A Machine Learning Platform Based on Diverse Molecular Representations for Biopharmaceutical Classification System (BCS) Class Prediction. Molecular Pharmaceutics 2025, 22
(1)
, 330-342. https://doi.org/10.1021/acs.molpharmaceut.4c00946
- Zhongyu Mou, Patra Volarath, Rebecca Racz, Kevin P. Cross, Mounika Girireddy, Suman Chakravarti, Lidiya Stavitskaya. Quantitative Structure–Activity Relationship Models to Predict Cardiac Adverse Effects. Chemical Research in Toxicology 2024, 37
(12)
, 1924-1933. https://doi.org/10.1021/acs.chemrestox.4c00186
- Peiyao Li, Lan Hua, Zhechao Ma, Wenbo Hu, Ye Liu, Jun Zhu. Conformalized Graph Learning for Molecular ADMET Property Prediction and Reliable Uncertainty Quantification. Journal of Chemical Information and Modeling 2024, 64
(23)
, 8705-8717. https://doi.org/10.1021/acs.jcim.4c01139
- Maciej Noga, Kamil Jurowski. Toxicity of Bromo-DragonFLY as a New Psychoactive Substance: Application of In Silico Methods for the Prediction of Key Toxicological Parameters Important to Clinical and Forensic Toxicology. Chemical Research in Toxicology 2024, 37
(11)
, 1821-1842. https://doi.org/10.1021/acs.chemrestox.4c00105
- Wanyu Li, Rong Cui, Shufang Qi, Ke Zheng, Jin Yang, Ren-Shan Ge, Yiyan Wang. Endocrine-Disrupting Effects of Salicylate Preservatives on Neurosteroidogenesis: Targeting 5α-Reductase Type 1. Journal of Agricultural and Food Chemistry 2024, 72
(44)
, 24797-24807. https://doi.org/10.1021/acs.jafc.4c04265
- Jakub Kostal, Adelina Voutchkova-Kostal, Joel P. Bercu, Jessica C. Graham, Jedd Hillegass, Melisa Masuda-Herrera, Alejandra Trejo-Martin, Janet Gould. Quantum-Mechanics Calculations Elucidate Skin-Sensitizing Pharmaceutical Compounds. Chemical Research in Toxicology 2024, 37
(8)
, 1404-1414. https://doi.org/10.1021/acs.chemrestox.4c00185
- Yunjia Lai, Jeremy P. Koelmel, Douglas I. Walker, Elliott J. Price, Stefano Papazian, Katherine E. Manz, Delia Castilla-Fernández, John A. Bowden, Vladimir Nikiforov, Arthur David, Vincent Bessonneau, Bashar Amer, Suresh Seethapathy, Xin Hu, Elizabeth Z. Lin, Akrem Jbebli, Brooklynn R. McNeil, Dinesh Barupal, Marina Cerasa, Hongyu Xie, Vrinda Kalia, Renu Nandakumar, Randolph Singh, Zhenyu Tian, Peng Gao, Yujia Zhao, Jean Froment, Pawel Rostkowski, Saurabh Dubey, Kateřina Coufalíková, Hana Seličová, Helge Hecht, Sheng Liu, Hanisha H. Udhani, Sophie Restituito, Kam-Meng Tchou-Wong, Kun Lu, Jonathan W. Martin, Benedikt Warth, Krystal J. Godri Pollitt, Jana Klánová, Oliver Fiehn, Thomas O. Metz, Kurt D. Pennell, Dean P. Jones, Gary W. Miller. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. Environmental Science & Technology 2024, 58
(29)
, 12784-12822. https://doi.org/10.1021/acs.est.4c01156
- Jen-Hung Wang, Ting-Yi Sung. ToxTeller: Predicting Peptide Toxicity Using Four Different Machine Learning Approaches. ACS Omega 2024, 9
(29)
, 32116-32123. https://doi.org/10.1021/acsomega.4c04246
- Yuting Xu, Andy Liaw, Robert P. Sheridan, Vladimir Svetnik. Development and Evaluation of Conformal Prediction Methods for Quantitative Structure–Activity Relationship. ACS Omega 2024, 9
(27)
, 29478-29490. https://doi.org/10.1021/acsomega.4c02017
- Josef Kehrein, Alex Bunker, Robert Luxenhofer. POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles. Molecular Pharmaceutics 2024, 21
(7)
, 3356-3374. https://doi.org/10.1021/acs.molpharmaceut.4c00086
- Pieter B. Burger, Xiaohu Hu, Ilya Balabin, Morné Muller, Megan Stanley, Fourie Joubert, Thomas M. Kaiser. FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology. Journal of Chemical Information and Modeling 2024, 64
(9)
, 3812-3825. https://doi.org/10.1021/acs.jcim.4c00071
- Moritz Walter, Samuel J. Webb, Valerie J. Gillet. Interpreting Neural Network Models for Toxicity Prediction by Extracting Learned Chemical Features. Journal of Chemical Information and Modeling 2024, 64
(9)
, 3670-3688. https://doi.org/10.1021/acs.jcim.4c00127
- Boyang Ni, Haoying Wang, Huda Kadhim Salem Khalaf, Vincent Blay, Douglas R. Houston. AutoDock-SS: AutoDock for Multiconformational Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling 2024, 64
(9)
, 3779-3789. https://doi.org/10.1021/acs.jcim.4c00136
- Kewon Kim, Ahyoung Jang, Hochul Shin, Inhae Ye, Ji Eun Lee, Taeho Kim, Hwangseo Park, Sungwoo Hong. Concurrent Optimizations of Efficacy and Blood–Brain Barrier Permeability in New Macrocyclic LRRK2 Inhibitors for Potential Parkinson’s Disease Therapeutics. Journal of Medicinal Chemistry 2024, 67
(9)
, 7647-7662. https://doi.org/10.1021/acs.jmedchem.4c00520
- Jianing Fan, Shaohua Shi, Hong Xiang, Li Fu, Yanjing Duan, Dongsheng Cao, Hongwei Lu. Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods. Journal of Chemical Information and Modeling 2024, 64
(8)
, 3080-3092. https://doi.org/10.1021/acs.jcim.3c02030
- Lei Song, Huimin Zhu, Kaili Wang, Min Li. LGGA-MPP: Local Geometry-Guided Graph Attention for Molecular Property Prediction. Journal of Chemical Information and Modeling 2024, 64
(8)
, 3105-3113. https://doi.org/10.1021/acs.jcim.3c02058
- Vijay H. Masand, Sami A. Al-Hussain, Abdullah Y. Alzahrani, Aamal A. Al-Mutairi, Rania A. Hussien, Abdul Samad, Magdi E. A. Zaki. Estrogen Receptor Alpha Binders for Hormone-Dependent Forms of Breast Cancer: e-QSAR and Molecular Docking Supported by X-ray Resolved Structures. ACS Omega 2024, 9
(14)
, 16759-16774. https://doi.org/10.1021/acsomega.4c00906
- Kai Wang, Nicole Kim, Maryam Bagherian, Kai Li, Elysia Chou, Justin A. Colacino, Dana C. Dolinoy, Maureen A. Sartor. Gene Target Prediction of Environmental Chemicals Using Coupled Matrix–Matrix Completion. Environmental Science & Technology 2024, 58
(13)
, 5889-5898. https://doi.org/10.1021/acs.est.4c00458
- Sheikh Mokhlesur Rahman, Jiaqi Lan, Na Gou, Akram Alshawabkeh, April Z. Gu. In Vitro Biodescriptors Derived from Time Series Toxicogenomics Data in In Silico QSAR Improve the Phenotypic Toxicity Prediction. ACS ES&T Water 2024, 4
(3)
, 1094-1106. https://doi.org/10.1021/acsestwater.3c00350
- Meade Erickson, Gerardo Casañola-Martin, Yulun Han, Bakhtiyor Rasulev, Dmitri Kilin. Relationships between the Photodegradation Reaction Rate and Structural Properties of Polymer Systems. The Journal of Physical Chemistry B 2024, 128
(9)
, 2190-2200. https://doi.org/10.1021/acs.jpcb.3c06854
- Ajay Vikram Singh, Amruta Shelar, Mansi Rai, Peter Laux, Manali Thakur, Ievgen Dosnkyi, Giulia Santomauro, Alok Kumar Singh, Andreas Luch, Rajendra Patil, Joachim Bill. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. Journal of Agricultural and Food Chemistry 2024, 72
(6)
, 2835-2852. https://doi.org/10.1021/acs.jafc.3c06466
- Patrick L. Cahill, Lindon W. K. Moodie, Cora Hertzer, Emiliano Pinori, Henrik Pavia, Claire Hellio, Margaret A. Brimble, Johan Svenson. Creating New Antifoulants Using the Tools and Tactics of Medicinal Chemistry. Accounts of Chemical Research 2024, 57
(3)
, 399-412. https://doi.org/10.1021/acs.accounts.3c00733
- Christian Sandoval-Pauker, Sheng Yin, Alexandria Castillo, Neidy Ocuane, Diego Puerto-Diaz, Dino Villagrán. Computational Chemistry as Applied in Environmental Research: Opportunities and Challenges. ACS ES&T Engineering 2024, 4
(1)
, 66-95. https://doi.org/10.1021/acsestengg.3c00227
- Na Gao, Ye Yang, Zhiyuan Wang, Xin Guo, Siqi Jiang, Jisheng Li, Yufeng Hu, Zhichang Liu, Chunming Xu. Viscosity of Ionic Liquids: Theories and Models. Chemical Reviews 2024, 124
(1)
, 27-123. https://doi.org/10.1021/acs.chemrev.3c00339
- Srimai Vuppala, Ramesh Kumar Chitumalla, Seyong Choi, Taeho Kim, Hwangseo Park, Joonkyung Jang. Machine Learning-Assisted Computational Screening of Adhesive Molecules Derived from Dihydroxyphenyl Alanine. ACS Omega 2024, 9
(1)
, 994-1000. https://doi.org/10.1021/acsomega.3c07208
- Chakradhar Guntuboina, Adrita Das, Parisa Mollaei, Seongwon Kim, Amir Barati Farimani. PeptideBERT: A Language Model Based on Transformers for Peptide Property Prediction. The Journal of Physical Chemistry Letters 2023, 14
(46)
, 10427-10434. https://doi.org/10.1021/acs.jpclett.3c02398
- Thalea Schlender, Markus Viljanen, Jan N. van Rijn, Felix Mohr, Willie JGM. Peijnenburg, Holger H. Hoos, Emiel Rorije, Albert Wong. The Bigger Fish: A Comparison of Meta-Learning QSAR Models on Low-Resourced Aquatic Toxicity Regression Tasks. Environmental Science & Technology 2023, 57
(46)
, 17818-17830. https://doi.org/10.1021/acs.est.3c00334
- Xuelian Jia, Tong Wang, Hao Zhu. Advancing Computational Toxicology by Interpretable Machine Learning. Environmental Science & Technology 2023, 57
(46)
, 17690-17706. https://doi.org/10.1021/acs.est.3c00653
- Kerstin von Borries, Hanna Holmquist, Marissa Kosnik, Katie V. Beckwith, Olivier Jolliet, Jonathan M. Goodman, Peter Fantke. Potential for Machine Learning to Address Data Gaps in Human Toxicity and Ecotoxicity Characterization. Environmental Science & Technology 2023, 57
(46)
, 18259-18270. https://doi.org/10.1021/acs.est.3c05300
- Nishant SarkarJonathan M. Stokes. PRACTICAL APPLICATIONS OF MACHINE LEARNING FOR ANTI-INFECTIVE DRUG DISCOVERY. , 345-375. https://doi.org/10.1021/mc-2023-vol58.ch14
- Hyuna Kwon, Zulfikhar A. Ali, Bryan M. Wong. Harnessing Semi-Supervised Machine Learning to Automatically Predict Bioactivities of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology Letters 2023, 10
(11)
, 1017-1022. https://doi.org/10.1021/acs.estlett.2c00530
- Xiaodan Yin, Xiaorui Wang, Yuquan Li, Jike Wang, Yuwei Wang, Yafeng Deng, Tingjun Hou, Huanxiang Liu, Pei Luo, Xiaojun Yao. CODD-Pred: A Web Server for Efficient Target Identification and Bioactivity Prediction of Small Molecules. Journal of Chemical Information and Modeling 2023, 63
(20)
, 6169-6176. https://doi.org/10.1021/acs.jcim.3c00685
- Arkaprava Banerjee, Kunal Roy. Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure–Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients. Chemical Research in Toxicology 2023, 36
(9)
, 1518-1531. https://doi.org/10.1021/acs.chemrestox.3c00155
- Lincoln Mtemeri, David P. Hickey. Model-Driven Design of Redox Mediators: Quantifying the Impact of Quinone Structure on Bioelectrocatalytic Activity with Glucose Oxidase. The Journal of Physical Chemistry B 2023, 127
(36)
, 7685-7693. https://doi.org/10.1021/acs.jpcb.3c03740
- Barmak Mostofian, Holli-Joi Martin, Asghar Razavi, Shivam Patel, Bryce Allen, Woody Sherman, Jesus A Izaguirre. Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods. Journal of Chemical Information and Modeling 2023, 63
(17)
, 5408-5432. https://doi.org/10.1021/acs.jcim.3c00603
- Moayad Alnammi, Shengchao Liu, Spencer S. Ericksen, Gene E. Ananiev, Andrew F. Voter, Song Guo, James L. Keck, F. Michael Hoffmann, Scott A. Wildman, Anthony Gitter. Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical Libraries. Journal of Chemical Information and Modeling 2023, 63
(17)
, 5513-5528. https://doi.org/10.1021/acs.jcim.3c00912
- Xiao Liu, Yu Gu, Mengxian Yu, Qingzhu Jia, Yin-Ning Zhou, Fangyou Yan, Qiang Wang. Norm Indices-Driven Robust QSPR Model for Mining Temperature-Dependent Properties of Ionic Liquids. ACS Sustainable Chemistry & Engineering 2023, 11
(36)
, 13429-13440. https://doi.org/10.1021/acssuschemeng.3c03436
- Silong Zhai, Yahong Tan, Chengyun Zhang, Christopher John Hipolito, Lulu Song, Cheng Zhu, Youming Zhang, Hongliang Duan, Yizhen Yin. PepScaf: Harnessing Machine Learning with In Vitro Selection toward De Novo Macrocyclic Peptides against IL-17C/IL-17RE Interaction. Journal of Medicinal Chemistry 2023, 66
(16)
, 11187-11200. https://doi.org/10.1021/acs.jmedchem.3c00627
- Krishnendu Sinha, Nabanita Ghosh, Parames C. Sil. A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies. Chemical Research in Toxicology 2023, 36
(8)
, 1174-1205. https://doi.org/10.1021/acs.chemrestox.2c00375
- Yuwei Miao, Hehuan Ma, Junzhou Huang. Recent Advances in Toxicity Prediction: Applications of Deep Graph Learning. Chemical Research in Toxicology 2023, 36
(8)
, 1206-1226. https://doi.org/10.1021/acs.chemrestox.2c00384
- Raymond Lui, Davy Guan, Slade Matthews. Mechanistic Task Groupings Enhance Multitask Deep Learning of Strain-Specific Ames Mutagenicity. Chemical Research in Toxicology 2023, 36
(8)
, 1248-1254. https://doi.org/10.1021/acs.chemrestox.2c00385
- Yuxiang Chen, Chuanlei Liu, Yang An, Yue Lou, Yang Zhao, Cheng Qian, Hao Jiang, Kongguo Wu, Benxian Shen, Xianghui Zhang, Fahai Cao, Di Wu, Hui Sun. Intelligent Molecular Identification Approach to High-Efficiency Solvents for Organosulfide Capture Using the Active Machine Learning Framework. Energy & Fuels 2023, 37
(16)
, 12123-12135. https://doi.org/10.1021/acs.energyfuels.3c01525
- Tobias D. Muellers, Predrag V. Petrovic, Julie B. Zimmerman, Paul T. Anastas. Toward Property-Based Regulation. Environmental Science & Technology 2023, 57
(32)
, 11718-11730. https://doi.org/10.1021/acs.est.3c00643
- Feyza Kelleci̇ Çeli̇k, Gül Karaduman. Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach. Journal of Chemical Information and Modeling 2023, 63
(15)
, 4602-4614. https://doi.org/10.1021/acs.jcim.3c00687
- Mehrad Ansari, Andrew D. White. Serverless Prediction of Peptide Properties with Recurrent Neural Networks. Journal of Chemical Information and Modeling 2023, 63
(8)
, 2546-2553. https://doi.org/10.1021/acs.jcim.2c01317
- Elena Lo Piparo, Nicolas Christinat, Flavia Badoud. From Structural Alerts to Signature Fragment Alerts: A Case Study on Pyrrolizidine Alkaloids. Chemical Research in Toxicology 2023, 36
(2)
, 213-229. https://doi.org/10.1021/acs.chemrestox.2c00292
- Jakub Kostal, Adelina Voutchkova-Kostal. Quantum-Mechanical Approach to Predicting the Carcinogenic Potency of N-Nitroso Impurities in Pharmaceuticals. Chemical Research in Toxicology 2023, 36
(2)
, 291-304. https://doi.org/10.1021/acs.chemrestox.2c00380
- Weimin Zhu, Yi Zhang, Duancheng Zhao, Jianrong Xu, Ling Wang. HiGNN: A Hierarchical Informative Graph Neural Network for Molecular Property Prediction Equipped with Feature-Wise Attention. Journal of Chemical Information and Modeling 2023, 63
(1)
, 43-55. https://doi.org/10.1021/acs.jcim.2c01099
- Yue Jian, Yuyang Wang, Amir Barati Farimani. Predicting CO2 Absorption in Ionic Liquids with Molecular Descriptors and Explainable Graph Neural Networks. ACS Sustainable Chemistry & Engineering 2022, 10
(50)
, 16681-16691. https://doi.org/10.1021/acssuschemeng.2c05985
- Maywan Hariono, Dominikus B. E. Wijaya, Teddy Chandra, Nico Frederick, Agnes B. Putri, Erlia Herawati, Luthfi A. Warastika, Merry Permatasari, Agata D. A. Putri, Satrio Ardyantoro. A Decade of Indonesian Atmosphere in Computer-Aided Drug Design. Journal of Chemical Information and Modeling 2022, 62
(21)
, 5276-5288. https://doi.org/10.1021/acs.jcim.1c00607
- Donghui Huo, Shiyu Wang, Yue Kong, Zijian Qin, Aixia Yan. Discovery of Novel Epidermal Growth Factor Receptor (EGFR) Inhibitors Using Computational Approaches. Journal of Chemical Information and Modeling 2022, 62
(21)
, 5149-5164. https://doi.org/10.1021/acs.jcim.1c00884
- Michelle J. Botha, Stewart B. Kirton. In Silico Investigations into the Selectivity of Psychoactive and New Psychoactive Substances in Monoamine Transporters. ACS Omega 2022, 7
(43)
, 38311-38321. https://doi.org/10.1021/acsomega.2c02714
- Hugo Bellamy, Abbi Abdel Rehim, Oghenejokpeme I. Orhobor, Ross King. Batched Bayesian Optimization for Drug Design in Noisy Environments. Journal of Chemical Information and Modeling 2022, 62
(17)
, 3970-3981. https://doi.org/10.1021/acs.jcim.2c00602
- Anna A. Rzepiela, Lauren A. Viarengo-Baker, Victor Tatarskii, Roman Kombarov, Adrian Whitty. Conformational Effects on the Passive Membrane Permeability of Synthetic Macrocycles. Journal of Medicinal Chemistry 2022, 65
(15)
, 10300-10317. https://doi.org/10.1021/acs.jmedchem.1c02090
- Atsushi Matsumoto, Hiroyuki Adachi, Ichiro Terashima, Yukifumi Uesono. Escaping from the Cutoff Paradox by Accumulating Long-Chain Alcohols in the Cell Membrane. Journal of Medicinal Chemistry 2022, 65
(15)
, 10471-10480. https://doi.org/10.1021/acs.jmedchem.2c00629
- Reza Aalizadeh, Varvara Nikolopoulou, Nikiforos A. Alygizakis, Nikolaos S. Thomaidis. First Novel Workflow for Semiquantification of Emerging Contaminants in Environmental Samples Analyzed by Gas Chromatography–Atmospheric Pressure Chemical Ionization–Quadrupole Time of Flight–Mass Spectrometry. Analytical Chemistry 2022, 94
(27)
, 9766-9774. https://doi.org/10.1021/acs.analchem.2c01432
- Seid Hamzic, Richard Lewis, Sandrine Desrayaud, Cihan Soylu, Mike Fortunato, Grégori Gerebtzoff, Raquel Rodríguez-Pérez. Predicting In Vivo Compound Brain Penetration Using Multi-task Graph Neural Networks. Journal of Chemical Information and Modeling 2022, 62
(13)
, 3180-3190. https://doi.org/10.1021/acs.jcim.2c00412
- Joshua E. Hochuli, Sankalp Jain, Cleber Melo-Filho, Zoe L. Sessions, Tesia Bobrowski, Jun Choe, Johnny Zheng, Richard Eastman, Daniel C. Talley, Ganesha Rai, Anton Simeonov, Alexander Tropsha, Eugene N. Muratov, Bolormaa Baljinnyam, Alexey V. Zakharov. Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV-2 Agents. ACS Pharmacology & Translational Science 2022, 5
(7)
, 468-478. https://doi.org/10.1021/acsptsci.2c00049
- Tuan H. Nguyen, Lam H. Nguyen, Thanh N. Truong. Application of Machine Learning in Developing Quantitative Structure–Property Relationship for Electronic Properties of Polyaromatic Compounds. ACS Omega 2022, 7
(26)
, 22879-22888. https://doi.org/10.1021/acsomega.2c02650
- Jaeseong Jeong, Jinhee Choi. Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications. Environmental Science & Technology 2022, 56
(12)
, 7532-7543. https://doi.org/10.1021/acs.est.1c07413
- Zhengguo Cai, Martina Zafferani, Olanrewaju M. Akande, Amanda E. Hargrove. Quantitative Structure–Activity Relationship (QSAR) Study Predicts Small-Molecule Binding to RNA Structure. Journal of Medicinal Chemistry 2022, 65
(10)
, 7262-7277. https://doi.org/10.1021/acs.jmedchem.2c00254
- Katherine S. Lim, Andrew G. Reidenbach, Bruce K. Hua, Jeremy W. Mason, Christopher J. Gerry, Paul A. Clemons, Connor W. Coley. Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function. Journal of Chemical Information and Modeling 2022, 62
(10)
, 2316-2331. https://doi.org/10.1021/acs.jcim.2c00041
- Timothy B. Dunn, Gustavo M. Seabra, Taewon David Kim, K. Eurídice Juárez-Mercado, Chenglong Li, José L. Medina-Franco, Ramón Alain Miranda-Quintana. Diversity and Chemical Library Networks of Large Data Sets. Journal of Chemical Information and Modeling 2022, 62
(9)
, 2186-2201. https://doi.org/10.1021/acs.jcim.1c01013
- Heather L. Ciallella, Daniel P. Russo, Swati Sharma, Yafan Li, Eddie Sloter, Len Sweet, Heng Huang, Hao Zhu. Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data. Environmental Science & Technology 2022, 56
(9)
, 5984-5998. https://doi.org/10.1021/acs.est.2c01040
- Sergey M. Ivanov, Alexey A. Lagunin, Dmitry A. Filimonov, Vladimir V. Poroikov. Relationships between the Structure and Severe Drug-Induced Liver Injury for Low, Medium, and High Doses of Drugs. Chemical Research in Toxicology 2022, 35
(3)
, 402-411. https://doi.org/10.1021/acs.chemrestox.1c00307
- Katrina W. Lexa, Kevin M. Belyk, Jeremy Henle, Bangping Xiang, Robert P. Sheridan, Scott E. Denmark, Rebecca T. Ruck, Edward C. Sherer. Application of Machine Learning and Reaction Optimization for the Iterative Improvement of Enantioselectivity of Cinchona-Derived Phase Transfer Catalysts. Organic Process Research & Development 2022, 26
(3)
, 670-682. https://doi.org/10.1021/acs.oprd.1c00155
- MeloMarcelo C.R.Postdoctoral FellowMarcelo.
Melo@pennmedicine. upenn. eduMaaschJacqueline R. M. A.PhD studentjam887@cornell. eduFuente-NunezCesar de laPresidential Assistant Professorcfuente@upenn. eduDr. Monica Berrondo, CEO Macromoltek, Marina E. Michaud, PhD student, Emory University. Machine Learning for Drug Discovery. 2022https://doi.org/10.1021/acsinfocus.7e5017 - Botian Ding, Yuandong Yu, Sheng Geng, Benguo Liu, Youjin Hao, Guizhao Liang. Computational Methods for the Interaction between Cyclodextrins and Natural Compounds: Technology, Benefits, Limitations, and Trends. Journal of Agricultural and Food Chemistry 2022, 70
(8)
, 2466-2482. https://doi.org/10.1021/acs.jafc.1c07018
- Alejandro Varela-Rial, Iain Maryanow, Maciej Majewski, Stefan Doerr, Nikolai Schapin, José Jiménez-Luna, Gianni De Fabritiis. PlayMolecule Glimpse: Understanding Protein–Ligand Property Predictions with Interpretable Neural Networks. Journal of Chemical Information and Modeling 2022, 62
(2)
, 225-231. https://doi.org/10.1021/acs.jcim.1c00691
- Eva Hesping, Ming Jang Chua, Marc Pflieger, Yunan Qian, Lilong Dong, Prabhakar Bachu, Ligong Liu, Thomas Kurz, Gillian M. Fisher, Tina S. Skinner-Adams, Robert C. Reid, David P. Fairlie, Katherine T. Andrews, Alain-Dominique J.P. Gorse. QSAR Classification Models for Prediction of Hydroxamate Histone Deacetylase Inhibitor Activity against Malaria Parasites. ACS Infectious Diseases 2022, 8
(1)
, 106-117. https://doi.org/10.1021/acsinfecdis.1c00355
- Kevin DeBoyace, Mustafa Bookwala, Ira S. Buckner, Deliang Zhou, Peter L. D. Wildfong. Interpreting the Physicochemical Meaning of a Molecular Descriptor Which Is Predictive of Amorphous Solid Dispersion Formation in Polyvinylpyrrolidone Vinyl Acetate. Molecular Pharmaceutics 2022, 19
(1)
, 303-317. https://doi.org/10.1021/acs.molpharmaceut.1c00783
- Hyun Kil Shin. Topological Distance-Based Electron Interaction Tensor to Apply a Convolutional Neural Network on Drug-like Compounds. ACS Omega 2021, 6
(51)
, 35757-35768. https://doi.org/10.1021/acsomega.1c05693
- Souvik Banerjee, Shalini Yadav, Sourav Banerjee, Sayo O. Fakayode, Jyothi Parvathareddy, Walter Reichard, Surekha Surendranathan, Foyez Mahmud, Ryan Whatcott, Joshua Thammathong, Bernd Meibohm, Duane D. Miller, Colleen B. Jonsson, Kshatresh Dutta Dubey. Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and In Vitro Study. Journal of Chemical Information and Modeling 2021, 61
(11)
, 5469-5483. https://doi.org/10.1021/acs.jcim.1c00524
- Yun Hao, Jason H. Moore. TargetTox: A Feature Selection Pipeline for Identifying Predictive Targets Associated with Drug Toxicity. Journal of Chemical Information and Modeling 2021, 61
(11)
, 5386-5394. https://doi.org/10.1021/acs.jcim.1c00733
- Michele Gandolfi, Michele Ceotto. Unsupervised Machine Learning Neural Gas Algorithm for Accurate Evaluations of the Hessian Matrix in Molecular Dynamics. Journal of Chemical Theory and Computation 2021, 17
(11)
, 6733-6746. https://doi.org/10.1021/acs.jctc.1c00707
- Victor O. Gawriljuk, Phyo Phyo Kyaw Zin, Ana C. Puhl, Kimberley M. Zorn, Daniel H. Foil, Thomas R. Lane, Brett Hurst, Tatyana Almeida Tavella, Fabio Trindade Maranhão Costa, Premkumar Lakshmanane, Jean Bernatchez, Andre S. Godoy, Glaucius Oliva, Jair L. Siqueira-Neto, Peter B. Madrid, Sean Ekins. Machine Learning Models Identify Inhibitors of SARS-CoV-2. Journal of Chemical Information and Modeling 2021, 61
(9)
, 4224-4235. https://doi.org/10.1021/acs.jcim.1c00683
- Philippe Gantzer, Benoit Creton, Carlos Nieto-Draghi. Comparisons of Molecular Structure Generation Methods Based on Fragment Assemblies and Genetic Graphs. Journal of Chemical Information and Modeling 2021, 61
(9)
, 4245-4258. https://doi.org/10.1021/acs.jcim.1c00803
- Stefanie Lorenz, Ann-Kathrin Amsel, Neele Puhlmann, Marco Reich, Oliver Olsson, Klaus Kümmerer. Toward Application and Implementation of in Silico Tools and Workflows within Benign by Design Approaches. ACS Sustainable Chemistry & Engineering 2021, 9
(37)
, 12461-12475. https://doi.org/10.1021/acssuschemeng.1c03070
- Souvik Banerjee, Foyez Mahmud, Shanshan Deng, Lingling Ma, Mi-Kyung Yun, Sayo O. Fakayode, Kinsie E. Arnst, Lei Yang, Hao Chen, Zhongzhi Wu, Pradeep B. Lukka, Keyur Parmar, Bernd Meibohm, Stephen W. White, Yuxi Wang, Wei Li, Duane D. Miller. X-ray Crystallography-Guided Design, Antitumor Efficacy, and QSAR Analysis of Metabolically Stable Cyclopenta-Pyrimidinyl Dihydroquinoxalinone as a Potent Tubulin Polymerization Inhibitor. Journal of Medicinal Chemistry 2021, 64
(17)
, 13072-13095. https://doi.org/10.1021/acs.jmedchem.1c01202
- Ava P. Soleimany, Alexander Amini, Samuel Goldman, Daniela Rus, Sangeeta N. Bhatia, Connor W. Coley. Evidential Deep Learning for Guided Molecular Property Prediction and Discovery. ACS Central Science 2021, 7
(8)
, 1356-1367. https://doi.org/10.1021/acscentsci.1c00546
- Reza Aalizadeh, Nikiforos A. Alygizakis, Emma L. Schymanski, Martin Krauss, Tobias Schulze, María Ibáñez, Andrew D. McEachran, Alex Chao, Antony J. Williams, Pablo Gago-Ferrero, Adrian Covaci, Christoph Moschet, Thomas M. Young, Juliane Hollender, Jaroslav Slobodnik, Nikolaos S. Thomaidis. Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening. Analytical Chemistry 2021, 93
(33)
, 11601-11611. https://doi.org/10.1021/acs.analchem.1c02348
- Pietro G.A. Aronica, Lauren M. Reid, Nirali Desai, Jianguo Li, Stephen J. Fox, Shilpa Yadahalli, Jonathan W. Essex, Chandra S. Verma. Computational Methods and Tools in Antimicrobial Peptide Research. Journal of Chemical Information and Modeling 2021, 61
(7)
, 3172-3196. https://doi.org/10.1021/acs.jcim.1c00175
- Edward Price, J. Cory Kalvass, David DeGoey, Balakrishna Hosmane, Stella Doktor, Kelly Desino. Global Analysis of Models for Predicting Human Absorption: QSAR, In Vitro, and Preclinical Models. Journal of Medicinal Chemistry 2021, 64
(13)
, 9389-9403. https://doi.org/10.1021/acs.jmedchem.1c00669
- Daiguo Deng, Xiaowei Chen, Ruochi Zhang, Zengrong Lei, Xiaojian Wang, Fengfeng Zhou. XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties. Journal of Chemical Information and Modeling 2021, 61
(6)
, 2697-2705. https://doi.org/10.1021/acs.jcim.0c01489
- Melanie T. Odenkirk, David M. Reif, Erin S. Baker. Multiomic Big Data Analysis Challenges: Increasing Confidence in the Interpretation of Artificial Intelligence Assessments. Analytical Chemistry 2021, 93
(22)
, 7763-7773. https://doi.org/10.1021/acs.analchem.0c04850
- Tarek Lemaoui, Farah Abu Hatab, Ahmad S. Darwish, Ayoub Attoui, Nour El Houda Hammoudi, Ghaiath Almustafa, Mohamed Benaicha, Yacine Benguerba, Inas M. Alnashef. Molecular-Based Guide to Predict the pH of Eutectic Solvents: Promoting an Efficient Design Approach for New Green Solvents. ACS Sustainable Chemistry & Engineering 2021, 9
(17)
, 5783-5808. https://doi.org/10.1021/acssuschemeng.0c07367
- Andrzej M. Żurański, Jesus I. Martinez Alvarado, Benjamin J. Shields, Abigail G. Doyle. Predicting Reaction Yields via Supervised Learning. Accounts of Chemical Research 2021, 54
(8)
, 1856-1865. https://doi.org/10.1021/acs.accounts.0c00770
- Jacob Werth, Matthew S. Sigman. Linear Regression Model Development for Analysis of Asymmetric Copper-Bisoxazoline Catalysis. ACS Catalysis 2021, 11
(7)
, 3916-3922. https://doi.org/10.1021/acscatal.1c00531
- Andrew L. Ferguson, Rama Ranganathan. 100th Anniversary of Macromolecular Science Viewpoint: Data-Driven Protein Design. ACS Macro Letters 2021, 10
(3)
, 327-340. https://doi.org/10.1021/acsmacrolett.0c00885
- Dion Awfa, Mohamed Ateia, David Mendoza, Chihiro Yoshimura. Application of Quantitative Structure–Property Relationship Predictive Models to Water Treatment: A Critical Review. ACS ES&T Water 2021, 1
(3)
, 498-517. https://doi.org/10.1021/acsestwater.0c00206
- Kelvin Cooper, Christopher Baddeley, Bernie French, Katherine Gibson, James Golden, Thiam Lee, Sadrach Pierre, Brent Weiss, Jason Yang. Novel Development of Predictive Feature Fingerprints to Identify Chemistry-Based Features for the Effective Drug Design of SARS-CoV-2 Target Antagonists and Inhibitors Using Machine Learning. ACS Omega 2021, 6
(7)
, 4857-4877. https://doi.org/10.1021/acsomega.0c05303
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.