ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Small Molecule Binding Sites on the Ras:SOS Complex Can Be Exploited for Inhibition of Ras Activation

View Author Information
AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom
*E-mail: [email protected]. Phone: +44 (0)1625 582 828.
Cite this: J. Med. Chem. 2015, 58, 5, 2265–2274
Publication Date (Web):February 19, 2015
https://doi.org/10.1021/jm501660t
Copyright © 2015 American Chemical Society

    Article Views

    6796

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (10 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Nuclear magnetic resonance KD determinations, mass spectrometry analysis of covalent adduction to proteins, crystallographic system Ras:Raf HTRF assays, MANT-dGDP nucleotide exchange assays, and compound synthesis. This material is available free of charge via the Internet at http://pubs.acs.org.

    Accession Codes

    PDB accession codes are the following: 4URU, 4URV, 4URW, 4URX, 4URY, 4URZ, 4US0, 4US1, 4US2.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 93 publications.

    1. Guangmei Luo, Bingrui Wang, Qiangqiang Hou, Xiaoxing Wu. Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. Journal of Medicinal Chemistry 2023, 66 (7) , 4324-4341. https://doi.org/10.1021/acs.jmedchem.2c01729
    2. Silong Zhang, Yu Zhang, Xin Chen, Juan Xu, Huaxiang Fang, Yuanyuan Li, Yi Liu, Huan He. Design and Structural Optimization of Orally Bioavailable SOS1 Inhibitors for the Treatment of KRAS-Driven Carcinoma. Journal of Medicinal Chemistry 2022, 65 (23) , 15856-15877. https://doi.org/10.1021/acs.jmedchem.2c01517
    3. Stefania Monteleone, Dmitri G. Fedorov, Andrea Townsend-Nicholson, Michelle Southey, Michael Bodkin, Alexander Heifetz. Hotspot Identification and Drug Design of Protein–Protein Interaction Modulators Using the Fragment Molecular Orbital Method. Journal of Chemical Information and Modeling 2022, 62 (16) , 3784-3799. https://doi.org/10.1021/acs.jcim.2c00457
    4. John M. Ketcham, Jacob Haling, Shilpi Khare, Vickie Bowcut, David M. Briere, Aaron C. Burns, Robin J. Gunn, Anthony Ivetac, Jon Kuehler, Svitlana Kulyk, Jade Laguer, J. David Lawson, Krystal Moya, Natalie Nguyen, Lisa Rahbaek, Barbara Saechao, Christopher R. Smith, Niranjan Sudhakar, Nicole C. Thomas, Laura Vegar, Darin Vanderpool, Xiaolun Wang, Larry Yan, Peter Olson, James G. Christensen, Matthew A. Marx. Design and Discovery of MRTX0902, a Potent, Selective, Brain-Penetrant, and Orally Bioavailable Inhibitor of the SOS1:KRAS Protein–Protein Interaction. Journal of Medicinal Chemistry 2022, 65 (14) , 9678-9690. https://doi.org/10.1021/acs.jmedchem.2c00741
    5. Gabriele Fumagalli, Rodrigo J. Carbajo, J. Willem M. Nissink, Jonathan Tart, Rongxuan Dou, Andrew P. Thomas, David R. Spring. Targeting a Novel KRAS Binding Site: Application of One-Component Stapling of Small (5–6-mer) Peptides. Journal of Medicinal Chemistry 2021, 64 (23) , 17287-17303. https://doi.org/10.1021/acs.jmedchem.1c01334
    6. Juergen Ramharter, Dirk Kessler, Peter Ettmayer, Marco H. Hofmann, Thomas Gerstberger, Michael Gmachl, Tobias Wunberg, Christiane Kofink, Michael Sanderson, Heribert Arnhof, Gerd Bader, Klaus Rumpel, Andreas Zöphel, Renate Schnitzer, Jark Böttcher, Jonathan C. O’Connell, Rachel L. Mendes, David Richard, Nikolai Pototschnig, Irene Weiner, Wolfgang Hela, Katja Hauer, Daniela Haering, Lyne Lamarre, Bernhard Wolkerstorfer, Christian Salamon, Patrick Werni, Silvia Munico-Martinez, Reiner Meyer, Matthew D. Kennedy, Norbert Kraut, Darryl B. McConnell. One Atom Makes All the Difference: Getting a Foot in the Door between SOS1 and KRAS. Journal of Medicinal Chemistry 2021, 64 (10) , 6569-6580. https://doi.org/10.1021/acs.jmedchem.0c01949
    7. Dhruba Sarkar, Edward T. Olejniczak, Jason Phan, Jesse A. Coker, Jiqing Sai, Allison Arnold, Yugandhar Beesetty, Alex G. Waterson, Stephen W. Fesik. Discovery of Sulfonamide-Derived Agonists of SOS1-Mediated Nucleotide Exchange on RAS Using Fragment-Based Methods. Journal of Medicinal Chemistry 2020, 63 (15) , 8325-8337. https://doi.org/10.1021/acs.jmedchem.0c00511
    8. Van A. Ngo, Sumantra Sarkar, Chris Neale, Angel E. Garcia. How Anionic Lipids Affect Spatiotemporal Properties of KRAS4B on Model Membranes. The Journal of Physical Chemistry B 2020, 124 (26) , 5434-5453. https://doi.org/10.1021/acs.jpcb.0c02642
    9. Jason G. Kettle, Sharan K. Bagal, Sue Bickerton, Michael S. Bodnarchuk, Jason Breed, Rodrigo J. Carbajo, Doyle J. Cassar, Atanu Chakraborty, Sabina Cosulich, Iain Cumming, Michael Davies, Andrew Eatherton, Laura Evans, Lyman Feron, Shaun Fillery, Emma S. Gleave, Frederick W. Goldberg, Stephanie Harlfinger, Lyndsey Hanson, Martin Howard, Rachel Howells, Anne Jackson, Paul Kemmitt, Jennifer K. Kingston, Scott Lamont, Hilary J. Lewis, Songlei Li, Libin Liu, Derek Ogg, Christopher Phillips, Radek Polanski, Graeme Robb, David Robinson, Sarah Ross, James M. Smith, Michael Tonge, Rebecca Whiteley, Junsheng Yang, Longfei Zhang, Xiliang Zhao. Structure-Based Design and Pharmacokinetic Optimization of Covalent Allosteric Inhibitors of the Mutant GTPase KRASG12C. Journal of Medicinal Chemistry 2020, 63 (9) , 4468-4483. https://doi.org/10.1021/acs.jmedchem.9b01720
    10. Kari Kopra, Emmiliisa Vuorinen, Maria Abreu-Blanco, Qi Wang, Ville Eskonen, William Gillette, Arto T. Pulliainen, Matthew Holderfield, Harri Härmä. Homogeneous Dual-Parametric-Coupled Assay for Simultaneous Nucleotide Exchange and KRAS/RAF-RBD Interaction Monitoring. Analytical Chemistry 2020, 92 (7) , 4971-4979. https://doi.org/10.1021/acs.analchem.9b05126
    11. Timothy R. Hodges, Jason R. Abbott, Andrew J. Little, Dhruba Sarkar, James M. Salovich, Jennifer E. Howes, Denis T. Akan, Jiqing Sai, Allison L. Arnold, Carrie Browning, Michael C. Burns, Tammy Sobolik, Qi Sun, Yugandhar Beesetty, Jesse A. Coker, Dirk Scharn, Heinz Stadtmueller, Olivia W. Rossanese, Jason Phan, Alex G. Waterson, Darryl B. McConnell, Stephen W. Fesik. Discovery and Structure-Based Optimization of Benzimidazole-Derived Activators of SOS1-Mediated Nucleotide Exchange on RAS. Journal of Medicinal Chemistry 2018, 61 (19) , 8875-8894. https://doi.org/10.1021/acs.jmedchem.8b01108
    12. Jason R. Abbott, Pratiq A. Patel, Jennifer E. Howes, Denis T. Akan, J. Phillip Kennedy, Michael C. Burns, Carrie F. Browning, Qi Sun, Olivia W. Rossanese, Jason Phan, Alex G. Waterson, Stephen W. Fesik. Discovery of Quinazolines That Activate SOS1-Mediated Nucleotide Exchange on RAS. ACS Medicinal Chemistry Letters 2018, 9 (9) , 941-946. https://doi.org/10.1021/acsmedchemlett.8b00296
    13. Jason R. Abbott, Timothy R. Hodges, R. Nathan Daniels, Pratiq A. Patel, J. Phillip Kennedy, Jennifer E. Howes, Denis T. Akan, Michael C. Burns, Jiqing Sai, Tammy Sobolik, Yugandhar Beesetty, Taekyu Lee, Olivia W. Rossanese, Jason Phan, Alex G. Waterson, Stephen W. Fesik. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling. Journal of Medicinal Chemistry 2018, 61 (14) , 6002-6017. https://doi.org/10.1021/acs.jmedchem.8b00360
    14. Andrea Scarpino, György G. Ferenczy, György M. Keserű. Comparative Evaluation of Covalent Docking Tools. Journal of Chemical Information and Modeling 2018, 58 (7) , 1441-1458. https://doi.org/10.1021/acs.jcim.8b00228
    15. Satoshi Sogabe, Yusuke Kamada, Masanori Miwa, Ayumu Niida, Tomoya Sameshima, Masahiro Kamaura, Kazuko Yonemori, Shigekazu Sasaki, Jun-ichi Sakamoto, and Kotaro Sakamoto . Crystal Structure of a Human K-Ras G12D Mutant in Complex with GDP and the Cyclic Inhibitory Peptide KRpep-2d. ACS Medicinal Chemistry Letters 2017, 8 (7) , 732-736. https://doi.org/10.1021/acsmedchemlett.7b00128
    16. Adam M. Levinson, John H. McGee, Andrew G. Roberts, Gardner S. Creech, Ting Wang, Michael T. Peterson, Ronald C. Hendrickson, Gregory L. Verdine, and Samuel J. Danishefsky . Total Chemical Synthesis and Folding of All-l and All-d Variants of Oncogenic KRas(G12V). Journal of the American Chemical Society 2017, 139 (22) , 7632-7639. https://doi.org/10.1021/jacs.7b02988
    17. Kari Kopra, Arjan J. van Adrichem, Outi M. H. Salo-Ahen, Juha Peltonen, Krister Wennerberg, and Harri Härmä . High-Throughput Dual Screening Method for Ras Activities and Inhibitors. Analytical Chemistry 2017, 89 (8) , 4508-4516. https://doi.org/10.1021/acs.analchem.6b04904
    18. Shaoyong Lu, Hyunbum Jang, Serena Muratcioglu, Attila Gursoy, Ozlem Keskin, Ruth Nussinov, and Jian Zhang . Ras Conformational Ensembles, Allostery, and Signaling. Chemical Reviews 2016, 116 (11) , 6607-6665. https://doi.org/10.1021/acs.chemrev.5b00542
    19. Amar Ajmal, Yasir Ali, Ajmal Khan, Abdul Wadood, Ashfaq Ur Rehman. Identification of novel peptide inhibitors for the KRas-G12C variant to prevent oncogenic signaling. Journal of Biomolecular Structure and Dynamics 2023, 41 (18) , 8866-8875. https://doi.org/10.1080/07391102.2022.2138550
    20. Yi Chen, Qiu-pei Liu, Hua Xie, Jian Ding. From bench to bedside: current development and emerging trend of KRAS-targeted therapy. Acta Pharmacologica Sinica 2023, 170 https://doi.org/10.1038/s41401-023-01194-4
    21. Xiaoyan Wang, Guanghui Cheng, Jingjie Zhao, Ping Gao, Haiting Mao, Chao Yuan, Jian Zhang. Discovering potential inhibitors of the YEATS domain of YEATS2 through virtual screening, molecular optimization and molecular dynamics simulations. New Journal of Chemistry 2023, 47 (42) , 19447-19460. https://doi.org/10.1039/D3NJ03738J
    22. Defa Wu, Yang Li, Lang Zheng, Huan Xiao, Liang Ouyang, Guan Wang, Qiu Sun. Small molecules targeting protein–protein interactions for cancer therapy. Acta Pharmaceutica Sinica B 2023, 13 (10) , 4060-4088. https://doi.org/10.1016/j.apsb.2023.05.035
    23. Manoj Kumar Pothuganti, Sayan Mitra, Pravin Iyer, Nagaraj Gowda. Recent Developments, Challenges and Opportunities in Targeting the KRAS Pathway. Letters in Drug Design & Discovery 2023, 20 (8) , 992-1004. https://doi.org/10.2174/1570180819666220704104028
    24. Huan He, Ruiqi Chen, Ziwei Wang, Luolong Qing, Yu Zhang, Yi Liu, Weidong Pan, Huaxiang Fang, Silong Zhang. Design of Orally-bioavailable Tetra-cyclic phthalazine SOS1 inhibitors with high selectivity against EGFR. Bioorganic Chemistry 2023, 136 , 106536. https://doi.org/10.1016/j.bioorg.2023.106536
    25. Abdul Rashid Issahaku, Elliasu Y. Salifu, Clement Agoni, Mohammed Issa Alahmdi, Nader E Abo‐Dya, Mahmoud E. S. Soliman, Mithun Rudrapal, Naresh Podila. Discovery of Potential KRAS‐SOS1 Inhibitors from South African Natural Compounds: An In silico Approach. ChemistrySelect 2023, 8 (24) https://doi.org/10.1002/slct.202300277
    26. Kevin Van holsbeeck, Baptiste Fischer, Simon Gonzalez, Charlène Gadais, Wim Versées, José C. Martins, Charlotte Martin, Alexandre Wohlkönig, Jan Steyaert, Steven Ballet. Nanobody Loop Mimetics Enhance Son of Sevenless 1‐Catalyzed Nucleotide Exchange on RAS**. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202219095
    27. Kevin Van holsbeeck, Baptiste Fischer, Simon Gonzalez, Charlène Gadais, Wim Versées, José C. Martins, Charlotte Martin, Alexandre Wohlkönig, Jan Steyaert, Steven Ballet. Nanobody Loop Mimetics Enhance Son of Sevenless 1‐Catalyzed Nucleotide Exchange on RAS**. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202219095
    28. Huan Xiao, Guan Wang, Min Zhao, Wen Shuai, Liang Ouyang, Qiu Sun. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets?. European Journal of Medicinal Chemistry 2023, 248 , 115104. https://doi.org/10.1016/j.ejmech.2023.115104
    29. Yuqing Xiong, Juan Zeng, Fei Xia, Qiang Cui, Xianming Deng, Xin Xu. Conformations and binding pockets of HRas and its guanine nucleotide exchange factors complexes in the guanosine triphosphate exchange process. Journal of Computational Chemistry 2022, 43 (13) , 906-916. https://doi.org/10.1002/jcc.26846
    30. Khuchtumur Bum‐Erdene, Mona K. Ghozayel, David Xu, Samy O. Meroueh. Covalent Fragment Screening Identifies Rgl2 RalGEF Cysteine for Targeted Covalent Inhibition of Ral GTPase Activation. ChemMedChem 2022, 17 (6) https://doi.org/10.1002/cmdc.202100750
    31. Kashif Haider, Anku Sharma, M Shahar Yar, Prasanna Anjaneyulu Yakkala, Syed Shafi, Ahmed Kamal. Novel approaches for the development of direct KRAS inhibitors: structural insights and drug design. Expert Opinion on Drug Discovery 2022, 17 (3) , 247-257. https://doi.org/10.1080/17460441.2022.2029842
    32. Roman Christian Hillig, Benjamin Bader. Targeting RAS oncogenesis with SOS1 inhibitors. 2022, 169-203. https://doi.org/10.1016/bs.acr.2021.07.001
    33. Walter V. Velasco, Marco Ramos-Castaneda, Michael J. Clowers, Shanshan Deng, Seyed Javad Moghaddam. KRAS: The Art of Understanding a Complex Gene. 2022, 876-888. https://doi.org/10.1016/B978-0-08-102723-3.00003-2
    34. Hai-feng Hu, Zeng Ye, Yi Qin, Xiao-wu Xu, Xian-jun Yu, Qi-feng Zhuo, Shun-rong Ji. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacologica Sinica 2021, 42 (11) , 1725-1741. https://doi.org/10.1038/s41401-020-00584-2
    35. Dirk Kessler, Daniel Gerlach, Norbert Kraut, Darryl B. McConnell. Targeting Son of Sevenless 1: The pacemaker of KRAS. Current Opinion in Chemical Biology 2021, 62 , 109-118. https://doi.org/10.1016/j.cbpa.2021.02.014
    36. Pingyuan Wang, Dharini van der Hoeven, Na Ye, Haiying Chen, Zhiqing Liu, Xiaoping Ma, Dina Montufar-Solis, Kristen M. Rehl, Kwang-Jin Cho, Sabita Thapa, Wei Chen, Ransome van der Hoeven, Jeffrey A. Frost, John F. Hancock, Jia Zhou. Scaffold repurposing of fendiline: Identification of potent KRAS plasma membrane localization inhibitors. European Journal of Medicinal Chemistry 2021, 217 , 113381. https://doi.org/10.1016/j.ejmech.2021.113381
    37. Michael S. Bodnarchuk, Doyle J. Cassar, Jason G. Kettle, Graeme Robb, Richard A. Ward. Drugging the undruggable: a computational chemist's view of KRAS G12C. RSC Medicinal Chemistry 2021, 12 (4) , 609-614. https://doi.org/10.1039/D1MD00055A
    38. Benjamin Diethelm‐Varela. Using NMR Spectroscopy in the Fragment‐Based Drug Discovery of Small‐Molecule Anticancer Targeted Therapies. ChemMedChem 2021, 16 (5) , 725-742. https://doi.org/10.1002/cmdc.202000756
    39. Maximilian Kramer-Drauberg, Chiara Ambrogio. Discoveries in the redox regulation of KRAS. The International Journal of Biochemistry & Cell Biology 2021, 131 , 105901. https://doi.org/10.1016/j.biocel.2020.105901
    40. Fernando C. Baltanás, Natasha Zarich, Jose M. Rojas-Cabañeros, Eugenio Santos. SOS GEFs in health and disease. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2020, 1874 (2) , 188445. https://doi.org/10.1016/j.bbcan.2020.188445
    41. Aron Ghimessy, Peter Radeczky, Viktoria Laszlo, Balazs Hegedus, Ferenc Renyi-Vamos, Janos Fillinger, Walter Klepetko, Christian Lang, Balazs Dome, Zsolt Megyesfalvi. Current therapy of KRAS-mutant lung cancer. Cancer and Metastasis Reviews 2020, 39 (4) , 1159-1177. https://doi.org/10.1007/s10555-020-09903-9
    42. Kinga Nyíri, Gergely Koppány, Beáta G. Vértessy. Structure-based inhibitor design of mutant RAS proteins—a paradigm shift. Cancer and Metastasis Reviews 2020, 39 (4) , 1091-1105. https://doi.org/10.1007/s10555-020-09914-6
    43. Zoltán Orgován, György M. Keserű. Small molecule inhibitors of RAS proteins with oncogenic mutations. Cancer and Metastasis Reviews 2020, 39 (4) , 1107-1126. https://doi.org/10.1007/s10555-020-09911-9
    44. S. G. Klochkov, M. E. Neganova, Yu. R. Aleksandrova. Promising Molecular Targets for Design of Antitumor Drugs Based on Ras Protein Signaling Cascades. Russian Journal of Bioorganic Chemistry 2020, 46 (6) , 891-902. https://doi.org/10.1134/S1068162020050118
    45. Jianzhong Chen, Wei Wang, Laixue Pang, Weiliang Zhu. Unveiling conformational dynamics changes of H-Ras induced by mutations based on accelerated molecular dynamics. Physical Chemistry Chemical Physics 2020, 22 (37) , 21238-21250. https://doi.org/10.1039/D0CP03766D
    46. Amanda R. Moore, Scott C. Rosenberg, Frank McCormick, Shiva Malek. RAS-targeted therapies: is the undruggable drugged?. Nature Reviews Drug Discovery 2020, 19 (8) , 533-552. https://doi.org/10.1038/s41573-020-0068-6
    47. Arsheed A. Ganaie, Hifzur R. Siddique, Ishfaq A. Sheikh, Aijaz Parray, Lei Wang, Jayanth Panyam, Peter W. Villalta, Yibin Deng, Badrinath R. Konety, Mohammad Saleem. A novel terpenoid class for prevention and treatment of KRAS ‐driven cancers: Comprehensive analysis using in situ, in vitro, and in vivo model systems. Molecular Carcinogenesis 2020, 59 (8) , 886-896. https://doi.org/10.1002/mc.23200
    48. Carla Mottini, Luca Cardone. Beyond the Genomic Mutation: Rethinking the Molecular Biomarkers of K-RAS Dependency in Pancreatic Cancers. International Journal of Molecular Sciences 2020, 21 (14) , 5023. https://doi.org/10.3390/ijms21145023
    49. Janine L. Gray, Frank von Delft, Paul E. Brennan. Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angewandte Chemie International Edition 2020, 59 (16) , 6342-6366. https://doi.org/10.1002/anie.201900585
    50. Janine L. Gray, Frank von Delft, Paul E. Brennan. Targeting der kleinen GTPasen über ihre regulatorischen Proteine. Angewandte Chemie 2020, 132 (16) , 6402-6428. https://doi.org/10.1002/ange.201900585
    51. Rachel Cooley, Neesha Kara, Ning Sze Hui, Jonathan Tart, Chloë Roustan, Roger George, David C. Hancock, Brock F. Binkowski, Keith V. Wood, Mohamed Ismail, Julian Downward. Development of a cell-free split-luciferase biochemical assay as a tool for screening for inhibitors of challenging protein-protein interaction targets. Wellcome Open Research 2020, 5 , 20. https://doi.org/10.12688/wellcomeopenres.15675.2
    52. Tyler E. Mattox, Xi Chen, Yulia Y. Maxuitenko, Adam B. Keeton, Gary A. Piazza. Exploiting RAS Nucleotide Cycling as a Strategy for Drugging RAS-Driven Cancers. International Journal of Molecular Sciences 2020, 21 (1) , 141. https://doi.org/10.3390/ijms21010141
    53. Raphael Gasper, Fred Wittinghofer. The Ras switch in structural and historical perspective. Biological Chemistry 2019, 401 (1) , 143-163. https://doi.org/10.1515/hsz-2019-0330
    54. Na Ye, Qingfeng Xu, Wanwan Li, Pingyuan Wang, Jia Zhou. Recent Advances in Developing K-Ras Plasma Membrane Localization Inhibitors. Current Topics in Medicinal Chemistry 2019, 19 (23) , 2114-2127. https://doi.org/10.2174/1568026619666190902145116
    55. Hai-Zhou Wu, Jia-Qi Xiao, Song-Shu Xiao, Yan Cheng. KRAS: A Promising Therapeutic Target for Cancer Treatment. Current Topics in Medicinal Chemistry 2019, 19 (23) , 2081-2097. https://doi.org/10.2174/1568026619666190905164144
    56. Asim K. Bera, Jia Lu, Thomas E. Wales, Sudershan Gondi, Deepak Gurbani, Andrew Nelson, John R. Engen, Kenneth D. Westover. Structural basis of the atypical activation mechanism of KRASV14I. Journal of Biological Chemistry 2019, 294 (38) , 13964-13972. https://doi.org/10.1074/jbc.RA119.009131
    57. Hetal Damani Shah, Dhananjaya Saranath, Soma Das, Prashant Kharkar, Anjali Karande. In‐silico identification of small molecules targeting H‐Ras and in‐vitro cytotoxicity with caspase‐mediated apoptosis in carcinoma cells. Journal of Cellular Biochemistry 2019, 120 (4) , 5519-5530. https://doi.org/10.1002/jcb.27836
    58. Abimael Cruz-Migoni, Peter Canning, Camilo E. Quevedo, Carole J. R. Bataille, Nicolas Bery, Ami Miller, Angela J. Russell, Simon E. V. Phillips, Stephen B. Carr, Terence H. Rabbitts. Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds. Proceedings of the National Academy of Sciences 2019, 116 (7) , 2545-2550. https://doi.org/10.1073/pnas.1811360116
    59. Roman C. Hillig, Brice Sautier, Jens Schroeder, Dieter Moosmayer, André Hilpmann, Christian M. Stegmann, Nicolas D. Werbeck, Hans Briem, Ulf Boemer, Joerg Weiske, Volker Badock, Julia Mastouri, Kirstin Petersen, Gerhard Siemeister, Jan D. Kahmann, Dennis Wegener, Niels Böhnke, Knut Eis, Keith Graham, Lars Wortmann, Franz von Nussbaum, Benjamin Bader. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proceedings of the National Academy of Sciences 2019, 116 (7) , 2551-2560. https://doi.org/10.1073/pnas.1812963116
    60. Feixiong Cheng, Han Liang, Atul J. Butte, Charis Eng, Ruth Nussinov, . Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacological Reviews 2019, 71 (1) , 1-19. https://doi.org/10.1124/pr.118.016253
    61. Camilo E. Quevedo, Abimael Cruz-Migoni, Nicolas Bery, Ami Miller, Tomoyuki Tanaka, Donna Petch, Carole J. R. Bataille, Lydia Y. W. Lee, Phillip S. Fallon, Hanna Tulmin, Matthias T. Ehebauer, Narcis Fernandez-Fuentes, Angela J. Russell, Stephen B. Carr, Simon E. V. Phillips, Terence H. Rabbitts. Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-05707-2
    62. Atanu Chakraborty, Emily Linnane, Sarah Ross. Ras proteins as therapeutic targets. Biochemical Society Transactions 2018, 46 (5) , 1303-1311. https://doi.org/10.1042/BST20170529
    63. Shubham Pant, Joleen Hubbard, Erika Martinelli, Tanios Bekaii-Saab. Clinical update on K-Ras targeted therapy in gastrointestinal cancers. Critical Reviews in Oncology/Hematology 2018, 130 , 78-91. https://doi.org/10.1016/j.critrevonc.2018.07.011
    64. Tsung-Jen Liao, Hyunbum Jang, David Fushman, Ruth Nussinov. Allosteric KRas4B Can Modulate SOS1 Fast and Slow Ras Activation Cycles. Biophysical Journal 2018, 115 (4) , 629-641. https://doi.org/10.1016/j.bpj.2018.07.016
    65. Gabrielle S. Wong, Jin Zhou, Jie Bin Liu, Zhong Wu, Xinsen Xu, Tianxia Li, David Xu, Steven E. Schumacher, Jens Puschhof, James McFarland, Charles Zou, Austin Dulak, Les Henderson, Peng Xu, Emily O’Day, Rachel Rendak, Wei-li Liao, Fabiola Cecchi, Todd Hembrough, Sarit Schwartz, Christopher Szeto, Anil K. Rustgi, Kwok-Kin Wong, J. Alan Diehl, Karin Jensen, Francesco Graziano, Annamaria Ruzzo, Shaunt Fereshetian, Philipp Mertins, Steven A. Carr, Rameen Beroukhim, Kenichi Nakamura, Eiji Oki, Masayuki Watanabe, Hideo Baba, Yu Imamura, Daniel Catenacci, Adam J. Bass. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nature Medicine 2018, 24 (7) , 968-977. https://doi.org/10.1038/s41591-018-0022-x
    66. Matthew Holderfield. Efforts to Develop KRAS Inhibitors. Cold Spring Harbor Perspectives in Medicine 2018, 8 (7) , a031864. https://doi.org/10.1101/cshperspect.a031864
    67. Jennifer E. Howes, Denis T. Akan, Michael C. Burns, Olivia W. Rossanese, Alex G. Waterson, Stephen W. Fesik. Small Molecule–Mediated Activation of RAS Elicits Biphasic Modulation of Phospho-ERK Levels that Are Regulated through Negative Feedback on SOS1. Molecular Cancer Therapeutics 2018, 17 (5) , 1051-1060. https://doi.org/10.1158/1535-7163.MCT-17-0666
    68. Michael C. Burns, Jennifer E. Howes, Qi Sun, Andrew J. Little, DeMarco V. Camper, Jason R. Abbott, Jason Phan, Taekyu Lee, Alex G. Waterson, Olivia W. Rossanese, Stephen W. Fesik. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling. Analytical Biochemistry 2018, 548 , 44-52. https://doi.org/10.1016/j.ab.2018.01.025
    69. Paul Morgan, Dean G. Brown, Simon Lennard, Mark J. Anderton, J. Carl Barrett, Ulf Eriksson, Mark Fidock, Bengt Hamrén, Anthony Johnson, Ruth E. March, James Matcham, Jerome Mettetal, David J. Nicholls, Stefan Platz, Steve Rees, Michael A. Snowden, Menelas N. Pangalos. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nature Reviews Drug Discovery 2018, 17 (3) , 167-181. https://doi.org/10.1038/nrd.2017.244
    70. Bing Xiong, Qi Wang, Jingkang Shen. Fragment-Based Drug Discovery for Developing Inhibitors of Protein-Protein Interactions. 2018, 135-176. https://doi.org/10.1007/978-981-13-0773-7_6
    71. Liyan Yue, Wei Wan, Pan Xu, Linjuan Li, Chen Wang, Yuanyuan Zhang, Heng Xu, Rukang Zhang, Junchi Hu, Wenchao Lu, Hao Jiang, Cheng Luo. Small Molecule Inhibitors Targeting New Targets of Protein-Protein Interactions. 2018, 179-211. https://doi.org/10.1007/978-981-13-0773-7_7
    72. Sandrine Guillard, Paulina Kolasinska-Zwierz, Judit Debreczeni, Jason Breed, Jing Zhang, Nicolas Bery, Rose Marwood, Jon Tart, Ross Overman, Pawel Stocki, Bina Mistry, Christopher Phillips, Terence Rabbitts, Ronald Jackson, Ralph Minter. Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms16111
    73. , , Amanda J. Price, Steven Howard, Benjamin D. Cons. Fragment-based drug discovery and its application to challenging drug targets. Essays in Biochemistry 2017, 61 (5) , 475-484. https://doi.org/10.1042/EBC20170029
    74. Chang Woo Han, Mi Suk Jeong, Se Bok Jang. Structure, signaling and the drug discovery of the Ras oncogene protein. BMB Reports 2017, 50 (7) , 355-360. https://doi.org/10.5483/BMBRep.2017.50.7.062
    75. Chen Wang, Jiehui Zhang, Jie Tang, Gang Zou. A Sequential Suzuki Coupling Approach to Unsymmetrical Aryl s ‐Triazines from Cyanuric Chloride. Advanced Synthesis & Catalysis 2017, 359 (14) , 2514-2519. https://doi.org/10.1002/adsc.201700260
    76. Miriam Schöpel, Veena Nambiar Potheraveedu, Thuraya Al-Harthy, Raid Abdel-Jalil, Rolf Heumann, Raphael Stoll. The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function. Biological Chemistry 2017, 398 (5-6) , 577-588. https://doi.org/10.1515/hsz-2016-0276
    77. Johanna M. Jansen, Charles Wartchow, Wolfgang Jahnke, Susan Fong, Tiffany Tsang, Keith Pfister, Tatiana Zavorotinskaya, Dirksen Bussiere, Jan Marie Cheng, Kenneth Crawford, Yumin Dai, Jeffrey Dove, Eric Fang, Yun Feng, Jean-Michel Florent, John Fuller, Alvar D. Gossert, Mohammad Hekmat-Nejad, Chrystèle Henry, Julia Klopp, William P. Lenahan, Andreas Lingel, Sylvia Ma, Arndt Meyer, Yuji Mishina, Jamie Narberes, Gwynn Pardee, Savithri Ramurthy, Sebastien Rieffel, Darrin Stuart, Sharadha Subramanian, Laura Tandeske, Stephania Widger, Armin Widmer, Aurelie Winterhalter, Isabel Zaror, Stephen Hardy, . Inhibition of prenylated KRAS in a lipid environment. PLOS ONE 2017, 12 (4) , e0174706. https://doi.org/10.1371/journal.pone.0174706
    78. Pablo Martín-Gago, Eyad K. Fansa, Christian H. Klein, Sandip Murarka, Petra Janning, Marc Schürmann, Malte Metz  , Shehab Ismail, Carsten Schultz-Fademrecht, Matthias Baumann, Philippe I. H. Bastiaens, Alfred Wittinghofer, Herbert Waldmann. A PDE6δ-KRas Inhibitor Chemotype with up to Seven H-Bonds and Picomolar Affinity that Prevents Efficient Inhibitor Release by Arl2. Angewandte Chemie 2017, 129 (9) , 2463-2468. https://doi.org/10.1002/ange.201610957
    79. Pablo Martín‐Gago, Eyad K. Fansa, Christian H. Klein, Sandip Murarka, Petra Janning, Marc Schürmann, Malte Metz  , Shehab Ismail, Carsten Schultz‐Fademrecht, Matthias Baumann, Philippe I. H. Bastiaens, Alfred Wittinghofer, Herbert Waldmann. A PDE6δ‐KRas Inhibitor Chemotype with up to Seven H‐Bonds and Picomolar Affinity that Prevents Efficient Inhibitor Release by Arl2. Angewandte Chemie International Edition 2017, 56 (9) , 2423-2428. https://doi.org/10.1002/anie.201610957
    80. I.R. Hardcastle. Protein–Protein Interaction Inhibitors in Cancer. 2017, 154-201. https://doi.org/10.1016/B978-0-12-409547-2.12392-3
    81. Candice Y. Wilson, Peter Tolias. Recent advances in cancer drug discovery targeting RAS. Drug Discovery Today 2016, 21 (12) , 1915-1919. https://doi.org/10.1016/j.drudis.2016.08.002
    82. Nora Rauch, Oleksii S Rukhlenko, Walter Kolch, Boris N Kholodenko. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Current Opinion in Structural Biology 2016, 41 , 151-158. https://doi.org/10.1016/j.sbi.2016.07.019
    83. Anibal Bueno, Ian Morilla, Diego Diez, Aurelio A. Moya-Garcia, José Lozano, Juan A.G. Ranea. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies. Oncotarget 2016, 7 (46) , 75810-75826. https://doi.org/10.18632/oncotarget.12416
    84. Jonathan M. L. Ostrem, Kevan M. Shokat. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nature Reviews Drug Discovery 2016, 15 (11) , 771-785. https://doi.org/10.1038/nrd.2016.139
    85. Daniel A. Erlanson, Stephen W. Fesik, Roderick E. Hubbard, Wolfgang Jahnke, Harren Jhoti. Twenty years on: the impact of fragments on drug discovery. Nature Reviews Drug Discovery 2016, 15 (9) , 605-619. https://doi.org/10.1038/nrd.2016.109
    86. Olga N. Ilinskaya, Indrabahadur Singh, Elena Dudkina, Vera Ulyanova, Airat Kayumov, Guillermo Barreto. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016, 1863 (7) , 1559-1567. https://doi.org/10.1016/j.bbamcr.2016.04.005
    87. Shaoyong Lu, Hyunbum Jang, Jian Zhang, Ruth Nussinov. Inhibitors of Ras-SOS Interactions. ChemMedChem 2016, 11 (8) , 814-821. https://doi.org/10.1002/cmdc.201500481
    88. Shaoyong Lu, Hyunbum Jang, Shuo Gu, Jian Zhang, Ruth Nussinov. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chemical Society Reviews 2016, 45 (18) , 4929-4952. https://doi.org/10.1039/C5CS00911A
    89. Uybach Vo, Navratna Vajpai, Liz Flavell, Romel Bobby, Alexander L. Breeze, Kevin J. Embrey, Alexander P. Golovanov. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. Journal of Biological Chemistry 2016, 291 (4) , 1703-1718. https://doi.org/10.1074/jbc.M115.691238
    90. Bingliang Fang. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochimica et Biophysica Sinica 2016, 48 (1) , 27-38. https://doi.org/10.1093/abbs/gmv090
    91. Philipp M. Cromm, Jochen Spiegel, Tom N. Grossmann, Herbert Waldmann. Direct Modulation of Small GTPase Activity and Function. Angewandte Chemie International Edition 2015, 54 (46) , 13516-13537. https://doi.org/10.1002/anie.201504357
    92. Philipp M. Cromm, Jochen Spiegel, Tom N. Grossmann, Herbert Waldmann. Direkte Modulation von Aktivität und Funktion kleiner GTPasen. Angewandte Chemie 2015, 127 (46) , 13718-13741. https://doi.org/10.1002/ange.201504357
    93. Thomas V. Magee. Progress in discovery of small-molecule modulators of protein–protein interactions via fragment screening. Bioorganic & Medicinal Chemistry Letters 2015, 25 (12) , 2461-2468. https://doi.org/10.1016/j.bmcl.2015.04.089

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect