ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Carbamates with Differential Mechanism of Inhibition Toward Acetylcholinesterase and Butyrylcholinesterase

View Author Information
Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
* To whom correspondence should be addressed. Phone: 902-473-2490. Fax: 902-473-7133. E-mail: [email protected]. Address: Room 1308, Camp Hill Veterans’ Memorial Building 1, 5955 Veterans’ Memorial Lane, Halifax, Nova Scotia, Canada, B3H 2E1.
†Department of Medicine (Neurology), Dalhousie University.
‡Department of Anatomy and Neurobiology, Dalhousie University.
§Department of Chemistry, Mount Saint Vincent University.
∥Eppley Institute, University of Nebraska Medical Center.
Cite this: J. Med. Chem. 2008, 51, 14, 4200–4212
Publication Date (Web):June 21, 2008
https://doi.org/10.1021/jm8002075
Copyright © 2008 American Chemical Society

    Article Views

    2977

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (714 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Most carbamates are pseudoirreversible inhibitors of cholinesterases. Phenothiazine carbamates exhibit this inhibition of acetylcholinesterase but produce reversible inhibition of butyrylcholinesterase, suggesting that they do not form a covalent bond with the catalytic serine. This atypical inhibition is attributable to π−π interaction of the phenothiazine moiety with F329 and Y332 in butyrylcholinesterase. These residues are in a helical segment, referred to here as the E-helix because it contains E325 of the catalytic triad. The involvement of the E-helix in phenothiazine carbamate reversible inhibition of butyrylcholinesterase is confirmed using mutants of this enzyme at A328, F329, or Y332 that show typical pseudoirreversible inhibition. Thus, in addition to various domains of the butyrylcholinesterase active site gorge, such as the peripheral anionic site and the π-cationic site of the Ω-loop, the E-helix represents a domain that could be exploited for development of specific inhibitors to treat dementias.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Tables of purity and HPLC chromatograms of all the synthesized compounds.This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 119 publications.

    1. Marianna Kocsis, Sándor B. Ötvös, Gergely F. Samu, Zsolt Fogarassy, Béla Pécz, Ákos Kukovecz, Zoltán Kónya, Pál Sipos, István Pálinkó, Gábor Varga. Copper-Loaded Layered Bismuth Subcarbonate—Efficient Multifunctional Heterogeneous Catalyst for Concerted C–S/C–N Heterocyclization. ACS Applied Materials & Interfaces 2021, 13 (36) , 42650-42661. https://doi.org/10.1021/acsami.1c09234
    2. Qinghua Chen, Rong Xie, Huanhuan Jia, Jialu Sun, Guangpeng Lu, Huanfeng Jiang, Min Zhang. Access to Phenothiazine Derivatives via Iodide-Mediated Oxidative Three-Component Annulation Reaction. The Journal of Organic Chemistry 2020, 85 (8) , 5629-5637. https://doi.org/10.1021/acs.joc.0c00562
    3. Matthias Hoffmann, Carina Stiller, Erik Endres, Matthias Scheiner, Sandra Gunesch, Christoph Sotriffer, Tangui Maurice, Michael Decker. Highly Selective Butyrylcholinesterase Inhibitors with Tunable Duration of Action by Chemical Modification of Transferable Carbamate Units Exhibit Pronounced Neuroprotective Effect in an Alzheimer’s Disease Mouse Model. Journal of Medicinal Chemistry 2019, 62 (20) , 9116-9140. https://doi.org/10.1021/acs.jmedchem.9b01012
    4. Dawid Panek, Anna Więckowska, Jakub Jończyk, Justyna Godyń, Marek Bajda, Tomasz Wichur, Anna Pasieka, Damijan Knez, Anja Pišlar, Jan Korabecny, Ondrej Soukup, Vendula Sepsova, Raimon Sabaté, Janko Kos, Stanislav Gobec, Barbara Malawska. Design, Synthesis, and Biological Evaluation of 1-Benzylamino-2-hydroxyalkyl Derivatives as New Potential Disease-Modifying Multifunctional Anti-Alzheimer’s Agents. ACS Chemical Neuroscience 2018, 9 (5) , 1074-1094. https://doi.org/10.1021/acschemneuro.7b00461
    5. Urban Košak, Boris Brus, Damijan Knez, Simon Žakelj, Jurij Trontelj, Anja Pišlar, Roman Šink, Marko Jukič, Marko Živin, Adrian Podkowa, Florian Nachon, Xavier Brazzolotto, Jure Stojan, Janko Kos, Nicolas Coquelle, Kinga Sałat, Jacques-Philippe Colletier, and Stanislav Gobec . The Magic of Crystal Structure-Based Inhibitor Optimization: Development of a Butyrylcholinesterase Inhibitor with Picomolar Affinity and in Vivo Activity. Journal of Medicinal Chemistry 2018, 61 (1) , 119-139. https://doi.org/10.1021/acs.jmedchem.7b01086
    6. Shiping Yang, Boya Feng, and Yudong Yang . Rh(III)-Catalyzed Direct ortho-Chalcogenation of Phenols and Anilines. The Journal of Organic Chemistry 2017, 82 (23) , 12430-12438. https://doi.org/10.1021/acs.joc.7b02221
    7. Ya-mei Lin, Guo-ping Lu, Rong-kang Wang, and Wen-bin Yi . Radical Route to 1,4-Benzothiazine Derivatives from 2-Aminobenzenethiols and Ketones under Transition-Metal-Free Conditions. Organic Letters 2016, 18 (24) , 6424-6427. https://doi.org/10.1021/acs.orglett.6b03324
    8. Edgar Sawatzky, Sarah Wehle, Beata Kling, Jan Wendrich, Gerhard Bringmann, Christoph A. Sotriffer, Jörg Heilmann, and Michael Decker . Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode. Journal of Medicinal Chemistry 2016, 59 (5) , 2067-2082. https://doi.org/10.1021/acs.jmedchem.5b01674
    9. Jinjin Chen, Guozheng Li, Yanjun Xie, Yunfeng Liao, Fuhong Xiao, and Guo-Jun Deng . Four-Component Approach to N-Substituted Phenothiazines under Transition-Metal-Free Conditions. Organic Letters 2015, 17 (23) , 5870-5873. https://doi.org/10.1021/acs.orglett.5b03058
    10. Ian R. Macdonald, Earl Martin, Terrone L. Rosenberry, and Sultan Darvesh . Probing the Peripheral Site of Human Butyrylcholinesterase. Biochemistry 2012, 51 (36) , 7046-7053. https://doi.org/10.1021/bi300955k
    11. Ming-Chen Lin, Gin-Zen Lin, Yu-Fong Shen, Shuo-Yung Jian, Dean-Kuo Hsieh, James Lin, and Gialih Lin . Synthesis and Evaluation of a New Series of Tri-, Di-, and Mono-N-alkylcarbamylphloroglucinols as Bulky Inhibitors of Acetylcholinesterase. Chemical Research in Toxicology 2012, 25 (7) , 1462-1471. https://doi.org/10.1021/tx300119a
    12. Ian W. Wyman and Donal H. Macartney. Host−Guest Complexes and Pseudorotaxanes of Cucurbit[7]uril with Acetylcholinesterase Inhibitors. The Journal of Organic Chemistry 2009, 74 (21) , 8031-8038. https://doi.org/10.1021/jo901861e
    13. Muhammad H. Alu'datt, Taha Rababah, Mohammad N. Alhamad, Sana Gammoh, Doa'a Al-U'datt, Khaled Kanakri, Mohammad Alrosan, Stan Kubow, Wesam Al Khateeb. Pesticides Residues in Food Safety and Security. 2024, 633-649. https://doi.org/10.1016/B978-0-12-822521-9.00183-0
    14. Andre Stefanus Panggabean, Ismail Setyopranoto, Arjanto Ramadian Wicaksono, Alfian Rismawan, Ery Kus Dwianingsih, Whisnu Nalendra Tama, Abdul Gofir, Cempaka Thursina Srie Setyaningrum, Sri Sutarni, Ahmad Asmedi, Aulia Fitri Rhamadianti, Rheza Gandi Bawono, Rusdy Ghazali Malueka. Neuropathy caused by pesticide exposure on farmers in Ngablak District, Magelang, Central Java, Indonesia: An electroneuromyography study. Toxicology Reports 2023, 11 , 330-338. https://doi.org/10.1016/j.toxrep.2023.09.020
    15. Asma Gholami, Dariush Minai-Tehrani, Leif A. Eriksson. In silico and in vitro studies confirm Ondansetron as a novel acetylcholinesterase and butyrylcholinesterase inhibitor. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-022-27149-z
    16. Bishwajit Das, Durjoy Majumder. A molecular docking-based comparative assessment of various anticholinergic drugs as antidotes to different nerve agent poisoning. Journal of Biomolecular Structure and Dynamics 2023, 41 (16) , 7809-7820. https://doi.org/10.1080/07391102.2022.2125904
    17. Dane Sands, Andrew Davis, Scott Banfield, Ian R. Pottie, Sultan Darvesh. Solvents and detergents compatible with enzyme kinetic studies of cholinesterases. Chemico-Biological Interactions 2023, 383 , 110667. https://doi.org/10.1016/j.cbi.2023.110667
    18. Leysan Vasileva, Gulnara Gaynanova, Farida Valeeva, Elvira Romanova, Rais Pavlov, Denis Kuznetsov, Grigory Belyaev, Irina Zueva, Anna Lyubina, Alexandra Voloshina, Konstantin Petrov, Lucia Zakharova. Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments. International Journal of Molecular Sciences 2023, 24 (15) , 12312. https://doi.org/10.3390/ijms241512312
    19. Ju-Zhao Liu, Le-Le Wen, Xiao-Li Tian, Yu-Jie Fu, Qi Cui. An efficient two-step approach for the preparative separation and purification of eight polyphenols from Hibiscus manihot L. flower with high-speed countercurrent chromatography. Arabian Journal of Chemistry 2023, 16 (6) , 104791. https://doi.org/10.1016/j.arabjc.2023.104791
    20. Yuying Wang, Lin Long, Quanwei Yu, Honghua Zhang, Xuelin Li, Linsheng Zhuo, Shuzhi Wang, Zhen Wang. Discovery of carbamate-based salicylic acid derivatives as novel cholinesterase inhibitor. Journal of Molecular Structure 2023, 1276 , 134804. https://doi.org/10.1016/j.molstruc.2022.134804
    21. Shanping Chen, Zhuoqin Li, Kai Hu, Wei Feng, Guojiang Mao, Fuhong Xiao, Guo-Jun Deng. Three-component selective synthesis of phenothiazines and bis-phenothiazines under metal-free conditions. Organic & Biomolecular Chemistry 2023, 21 (9) , 1920-1926. https://doi.org/10.1039/D3OB00055A
    22. Khalid A. Agha, Nader E. Abo-Dya, Abdul Rashid Issahaku, Clement Agoni, Mahmoud E. S. Soliman, Eatedal H. Abdel-Aal, Zakaria K. Abdel-Samii, Tarek S. Ibrahim. Novel Sunifiram-carbamate hybrids as potential dual acetylcholinesterase inhibitor and NMDAR co-agonist: simulation-guided analogue design and pharmacological screening. Journal of Enzyme Inhibition and Medicinal Chemistry 2022, 37 (1) , 1241-1256. https://doi.org/10.1080/14756366.2022.2068147
    23. Hassan Nour, Oussama Abchir, Salah Belaidi, Samir Chtita. Research of new acetylcholinesterase inhibitors based on QSAR and molecular docking studies of benzene-based carbamate derivatives. Structural Chemistry 2022, 33 (6) , 1935-1946. https://doi.org/10.1007/s11224-022-01966-4
    24. Honghua Zhang, Yuying Wang, Yuqing Wang, Xuelin Li, Shuzhi Wang, Zhen Wang. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. European Journal of Medicinal Chemistry 2022, 240 , 114606. https://doi.org/10.1016/j.ejmech.2022.114606
    25. Dongdong Chen, Yannan Bai, Qi Cheng, Jingwei Li, Zongbo Tong, Jianfeng Hou, Tao Liu, Yuqi Guo, Xiaolin Tang, Xue Yang, Xufeng Yang. Domino synthetic strategy for tetrahydrothiophene derivatives from 2-acetylfuran/2-acetylthiophene, benzaldehydes, and sulfur powder. Arabian Journal of Chemistry 2022, 15 (9) , 104097. https://doi.org/10.1016/j.arabjc.2022.104097
    26. Honghua Zhang, Yuying Wang, Dan Liu, Junfang Li, Yiyue Feng, Yingmei Lu, Gaofeng Yin, Zhao Li, Tao Shi, Zhen Wang. Carbamate-based N-Substituted tryptamine derivatives as novel pleiotropic molecules for Alzheimer's disease. Bioorganic Chemistry 2022, 125 , 105844. https://doi.org/10.1016/j.bioorg.2022.105844
    27. Shalini Nagabooshanam, Souradeep Roy, Shikha Wadhwa, Ashish Mathur, Satheesh Krishnamurthy, Lalit Mohan Bharadwaj. Ultra-Sensitive Immuno-Sensing Platform Based on Gold-Coated Interdigitated Electrodes for the Detection of Parathion. Surfaces 2022, 5 (1) , 165-175. https://doi.org/10.3390/surfaces5010009
    28. Aijaz Ahmad Malik, Suvash Chandra Ojha, Nalini Schaduangrat, Chanin Nantasenamat. ABCpred: a webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Molecular Diversity 2022, 26 (1) , 467-487. https://doi.org/10.1007/s11030-021-10292-6
    29. Rabail Ujan, Pervaiz Ali Channar, Ali Bahadur, Qamar Abbas, Mazloom Shah, S.G. Rashid, Shahid Iqbal, Aamer Saeed, Hisham S.M. Abd-Rabboh, Hussain Raza, Mubashir Hassan, Ali Nawaz Siyal, Parvez Ali Mahesar, Bhajan Lal, Kashif Ali Channar, Bilal Ahmad Khan, Muhammad Nawaz, Muhammad Shahid Riaz Rajoka, Jung Min Kim. Synthesis, kinetics and biological assay of some novel aryl bis-thioureas: A potential drug candidates for Alzheimer's disease. Journal of Molecular Structure 2021, 1246 , 131136. https://doi.org/10.1016/j.molstruc.2021.131136
    30. Shuaizhang Li, Andrew J. Li, Jameson Travers, Tuan Xu, Srilatha Sakamuru, Carleen Klumpp-Thomas, Ruili Huang, Menghang Xia. Identification of Compounds for Butyrylcholinesterase Inhibition. SLAS Discovery 2021, 26 (10) , 1355-1364. https://doi.org/10.1177/24725552211030897
    31. Soon Jian Gan, Yong Qi Leong, Muhammad Fakrul Hakim bin Barhanuddin, Siew Tung Wong, Shew Fung Wong, Joon Wah Mak, Rohani Binti Ahmad. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasites & Vectors 2021, 14 (1) https://doi.org/10.1186/s13071-021-04785-4
    32. Katrina L. Forrestall, Darcy E. Burley, Meghan K. Cash, Ian R. Pottie, Sultan Darvesh. Phenothiazines as dual inhibitors of SARS-CoV-2 main protease and COVID-19 inflammation. Canadian Journal of Chemistry 2021, 99 (10) , 801-811. https://doi.org/10.1139/cjc-2021-0139
    33. Shuaizhang Li, Jinghua Zhao, Ruili Huang, Jameson Travers, Carleen Klumpp-Thomas, Wenbo Yu, Alexander D. MacKerell, Srilatha Sakamuru, Masato Ooka, Fengtian Xue, Nisha S. Sipes, Jui-Hua Hsieh, Kristen Ryan, Anton Simeonov, Michael F. Santillo, Menghang Xia. Profiling the Tox21 Chemical Collection for Acetylcholinesterase Inhibition. Environmental Health Perspectives 2021, 129 (4) https://doi.org/10.1289/EHP6993
    34. Shuaishuai Xing, Qi Li, Baichen Xiong, Yao Chen, Feng Feng, Wenyuan Liu, Haopeng Sun. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Medicinal Research Reviews 2021, 41 (2) , 858-901. https://doi.org/10.1002/med.21745
    35. Ana Matošević, Andreja Radman Kastelic, Ana Mikelić, Antonio Zandona, Maja Katalinić, Ines Primožič, Anita Bosak, Tomica Hrenar. Quinuclidine-Based Carbamates as Potential CNS Active Compounds. Pharmaceutics 2021, 13 (3) , 420. https://doi.org/10.3390/pharmaceutics13030420
    36. Anandha Rao Ravula, Suresh Yenugu. Pyrethroid based pesticides – chemical and biological aspects. Critical Reviews in Toxicology 2021, 51 (2) , 117-140. https://doi.org/10.1080/10408444.2021.1879007
    37. Shalini Mani, Anvi Jain, Aaru Gulati, Sakshi Tyagi, Km Vaishali Pal, Himanshi Jaiswal, Manisha Singh. Oxidative Stress: A Potential Link Between Pesticide Exposure and Early-Life Neurological Disorders. 2021, 209-251. https://doi.org/10.1007/978-3-030-83446-3_10
    38. Ma'mon M. Hatmal, Omar Abuyaman, Mutasem Taha. Docking-generated multiple ligand poses for bootstrapping bioactivity classifying Machine Learning: Repurposing covalent inhibitors for COVID-19-related TMPRSS2 as case study. Computational and Structural Biotechnology Journal 2021, 19 , 4790-4824. https://doi.org/10.1016/j.csbj.2021.08.023
    39. Sheunopa C. Mzezewa, Sylvester I. Omoruyi, Luke S. Zondagh, Sarel F. Malan, Okobi E. Ekpo, Jacques Joubert. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer’s disease agents. Journal of Enzyme Inhibition and Medicinal Chemistry 2021, 36 (1) , 1606-1620. https://doi.org/10.1080/14756366.2021.1913137
    40. 润 焦. Study on the Structural Modification of Fluorinated Drugs and the Stability of Ciprofloxacin Hydrochloride. Hans Journal of Chemical Engineering and Technology 2021, 11 (06) , 352-357. https://doi.org/10.12677/HJCET.2021.116045
    41. Akid Haris, Noreen Nordin, Nur Azizah Mustapa, Suraya Abd. Sani, Mohd Yunus Shukor, Mohd Khalizan Sabullah. Profiling of Cholinesterase Extracted from The Brain Tissue of Diodon hystrix and Its Inhibition Reaction Towards Carbamates. Pertanika Journal of Science and Technology 2020, 28 (S2) https://doi.org/10.47836/pjst.28.s2.08
    42. Fengtian Wu. The synthesis of N ‐containing heterocyclic compounds catalyzed by copper/ L ‐proline. Applied Organometallic Chemistry 2020, 34 (12) https://doi.org/10.1002/aoc.5975
    43. Ana Matošević, Anita Bosak. Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Archives of Industrial Hygiene and Toxicology 2020, 71 (4) , 285-299. https://doi.org/10.2478/aiht-2020-71-3466
    44. Miroslav Pohanka. Inhibitors of Cholinesterases in Pharmacology: the Current Trends. Mini-Reviews in Medicinal Chemistry 2020, 20 (15) , 1532-1542. https://doi.org/10.2174/1389557519666191018170908
    45. Shalini Nagabooshanam, Alishba T. John, Shikha Wadhwa, Ashish Mathur, Satheesh Krishnamurthy, Lalit M. Bharadwaj. Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates. Food Chemistry 2020, 323 , 126784. https://doi.org/10.1016/j.foodchem.2020.126784
    46. Vinay Kumar, Priyanka De, Probir Kumar Ojha, Achintya Saha, Kunal Roy. A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. Current Topics in Medicinal Chemistry 2020, 20 (18) , 1601-1627. https://doi.org/10.2174/1568026620666200616142753
    47. Miroslav Pohanka. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Current Medicinal Chemistry 2020, 27 (18) , 2994-3011. https://doi.org/10.2174/0929867326666190130161202
    48. Anna Hudcová, Aleš Kroutil, Renata Kubínová, Adriana D. Garro, Lucas J. Gutierrez, Daniel Enriz, Michal Oravec, Jozef Csöllei. Arylaminopropanone Derivatives as Potential Cholinesterase Inhibitors: Synthesis, Docking Study and Biological Evaluation. Molecules 2020, 25 (7) , 1751. https://doi.org/10.3390/molecules25071751
    49. Praveen P.N. Rao, Amy Trinh Pham, Arash Shakeri. Discovery of small molecules for the treatment of Alzheimer’s disease. 2020, 289-322. https://doi.org/10.1016/B978-0-12-818349-6.00011-X
    50. Shalini Nagabooshanam, Souradeep Roy, Ashish Mathur, Irani Mukherjee, Satheesh Krishnamurthy, Lalit M. Bharadwaj. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-56510-y
    51. Yasemin Dundar, Ozge Kuyrukcu, Gokcen Eren, F. Sezer Senol Deniz, Tijen Onkol, Ilkay Erdogan Orhan. Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorganic Chemistry 2019, 92 , 103304. https://doi.org/10.1016/j.bioorg.2019.103304
    52. H. Shekhar, Manoj Kumar. Studies on phase diagram, thermodynamic stability and interfacial structure of solid dispersions of phenothiazine-adipic acid drug system. Molecular Crystals and Liquid Crystals 2019, 689 (1) , 60-71. https://doi.org/10.1080/15421406.2019.1669294
    53. Galina F. Makhaeva, Elena F. Shevtsova, Natalia P. Boltneva, Sofya V. Lushchekina, Nadezhda V. Kovaleva, Elena V. Rudakova, Sergey O. Bachurin, Rudy J. Richardson. Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer's disease. Chemico-Biological Interactions 2019, 308 , 224-234. https://doi.org/10.1016/j.cbi.2019.05.020
    54. Shuo Zhou, Yaxia Yuan, Fang Zheng, Chang-Guo Zhan. Structure-based virtual screening leading to discovery of highly selective butyrylcholinesterase inhibitors with solanaceous alkaloid scaffolds. Chemico-Biological Interactions 2019, 308 , 372-376. https://doi.org/10.1016/j.cbi.2019.05.051
    55. Umit M. Kocyigit, Yakup Budak, Meliha Burcu Gürdere, Neşe Dürü, Parham Taslimi, İlhami Gülçin, Mustafa Ceylan. Synthesis and investigation of anticancer, antibacterial activities and carbonic anhydrase, acetylcholinesterase inhibition profiles of novel (3aR,4S,7R,7aS)-2-[4-[1-acetyl-5-(aryl/heteroaryl)-4,5-dihydro-1H-pyrazol-3-yl]phenyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-diones. Monatshefte für Chemie - Chemical Monthly 2019, 150 (4) , 721-731. https://doi.org/10.1007/s00706-019-2350-z
    56. Martin Krátký, Šárka Štěpánková, Katarína Vorčáková, Jarmila Vinšová. Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Bioorganic Chemistry 2018, 80 , 668-673. https://doi.org/10.1016/j.bioorg.2018.07.017
    57. John EH Tattersall. Anticholinesterase toxicity. Current Opinion in Physiology 2018, 4 , 49-56. https://doi.org/10.1016/j.cophys.2018.05.005
    58. Nguyen Thanh Tam, Håkan Berg, Nguyen Van Cong. Evaluation of the joint toxicity of chlorpyrifos ethyl and fenobucarb on climbing perch (Anabas testudineus) from rice fields in the Mekong Delta, Vietnam. Environmental Science and Pollution Research 2018, 25 (14) , 13226-13234. https://doi.org/10.1007/s11356-016-6980-y
    59. Cengiz Sarikurkcu, Bulent Kirkan, Mehmet Sabih Ozer, Olcay Ceylan, Nurdan Atilgan, Mustafa Cengiz, Bektas Tepe. Chemical characterization and biological activity of Onosma gigantea extracts. Industrial Crops and Products 2018, 115 , 323-329. https://doi.org/10.1016/j.indcrop.2018.02.040
    60. Giuseppina De Simone, Andrea Angeli, Murat Bozdag, Claudiu T. Supuran, Jean-Yves Winum, Simona Maria Monti, Vincenzo Alterio. Inhibition of carbonic anhydrases by a substrate analog: benzyl carbamate directly coordinates the catalytic zinc ion mimicking bicarbonate binding. Chemical Communications 2018, 54 (73) , 10312-10315. https://doi.org/10.1039/C8CC05755A
    61. Yakup Budak, Umit M. Kocyigit, Meliha Burcu Gürdere, Kezban Özcan, Parham Taslimi, İlhami Gülçin, Mustafa Ceylan. Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4,5-dihydropyrazol and pyrazolyl-thiazole derivatives containing methanoisoindol-1,3-dion unit. Synthetic Communications 2017, 47 (24) , 2313-2323. https://doi.org/10.1080/00397911.2017.1373406
    62. Fabiana Pandolfi, Daniela De Vita, Martina Bortolami, Antonio Coluccia, Roberto Di Santo, Roberta Costi, Vincenza Andrisano, Francesco Alabiso, Christian Bergamini, Romana Fato, Manuela Bartolini, Luigi Scipione. New pyridine derivatives as inhibitors of acetylcholinesterase and amyloid aggregation. European Journal of Medicinal Chemistry 2017, 141 , 197-210. https://doi.org/10.1016/j.ejmech.2017.09.022
    63. Terrone Rosenberry, Xavier Brazzolotto, Ian Macdonald, Marielle Wandhammer, Marie Trovaslet-Leroy, Sultan Darvesh, Florian Nachon. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017, 22 (12) , 2098. https://doi.org/10.3390/molecules22122098
    64. Francesca Malvano, Donatella Albanese, Roberto Pilloton, Marisa Di Matteo, Alessio Crescitelli. A New Label-Free Impedimetric Affinity Sensor Based on Cholinesterases for Detection of Organophosphorous and Carbamic Pesticides in Food Samples: Impedimetric Versus Amperometric Detection. Food and Bioprocess Technology 2017, 10 (10) , 1834-1843. https://doi.org/10.1007/s11947-017-1955-7
    65. Jiri Kudr, Yazan Haddad, Lukas Richtera, Zbynek Heger, Mirko Cernak, Vojtech Adam, Ondrej Zitka. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7 (9) , 243. https://doi.org/10.3390/nano7090243
    66. Haroon Mehfooz, Aamer Saeed, Anamika Sharma, Fernando Albericio, Fayaz Larik, Farukh Jabeen, Pervaiz Channar, Ulrich Flörke. Dual Inhibition of AChE and BChE with the C-5 Substituted Derivative of Meldrum’s Acid: Synthesis, Structure Elucidation, and Molecular Docking Studies. Crystals 2017, 7 (7) , 211. https://doi.org/10.3390/cryst7070211
    67. Rona Ramsay, Keith Tipton. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules 2017, 22 (7) , 1192. https://doi.org/10.3390/molecules22071192
    68. Y. AaminaNaaz, Subramaniyan Sathiyaraj, Sundararaj Kalaimani, A. Sultan Nasar, A. SubbiahPandi. Crystal structure of phenyl N -(3,5-dimethylphenyl)carbamate. Acta Crystallographica Section E Crystallographic Communications 2017, 73 (6) , 849-852. https://doi.org/10.1107/S2056989017006922
    69. Qi Li, Hongyu Yang, Yao Chen, Haopeng Sun. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. European Journal of Medicinal Chemistry 2017, 132 , 294-309. https://doi.org/10.1016/j.ejmech.2017.03.062
    70. Chiew San Fang, Kyung Hwan Oh, Jin Kyoon Park, Haesik Yang. Rapid and Sensitive Electrochemical Detection of Carbaryl Based on Enzyme Inhibition and Thiocholine Oxidation Mediated by a Ruthenium(III) Complex. Electroanalysis 2017, 29 (2) , 339-344. https://doi.org/10.1002/elan.201600308
    71. Belma Zengin Kurt, Isil Gazioglu, Aydan Dag, Ramin Ekhteiari Salmas, Gülru Kayık, Serdar Durdagi, Fatih Sonmez. Synthesis, anticholinesterase activity and molecular modeling study of novel carbamate-substituted thymol/carvacrol derivatives. Bioorganic & Medicinal Chemistry 2017, 25 (4) , 1352-1363. https://doi.org/10.1016/j.bmc.2016.12.037
    72. Sumitra Arora, Sahil Balotra, Gunjan Pandey, Anu Kumar. Binary combinations of organophosphorus and synthetic pyrethroids are more potent acetylcholinesterase inhibitors than organophosphorus and carbamate mixtures: An in vitro assessment. Toxicology Letters 2017, 268 , 8-16. https://doi.org/10.1016/j.toxlet.2016.12.009
    73. Modesto de Candia, Giorgia Zaetta, Nunzio Denora, Domenico Tricarico, Maria Majellaro, Saverio Cellamare, Cosimo D. Altomare. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. European Journal of Medicinal Chemistry 2017, 125 , 288-298. https://doi.org/10.1016/j.ejmech.2016.09.037
    74. Tao Liu, Jun Tian, Wen-Chao Gao, Hong-Hong Chang, Qiang Liu, Xing Li, Wen-Long Wei. Intermolecular sulfenoamination of alkenes with sulfonamides and N-sulfanylsuccinimides to access β-sulfonylamino sulfides and dihydrobenzothiazines. Organic & Biomolecular Chemistry 2017, 15 (28) , 5983-5992. https://doi.org/10.1039/C7OB01225J
    75. Lu Zhang, Xin Huang, Shan Zhen, Jing Zhao, Heng Li, Bingxin Yuan, Guanyu Yang. Pd-Catalyzed double N-arylation of primary amines to synthesize phenoxazines and phenothiazines. Organic & Biomolecular Chemistry 2017, 15 (30) , 6306-6309. https://doi.org/10.1039/C7OB01540B
    76. Wenjuan Liu, Hao Min, Xiaoming Zhu, Guobo Deng, Yun Liang. Copper-catalyzed highly selective synthesis of 2-benzyl- and 2-benzylidene-substituted benzo[ b ]thiazinones from 2-iodophenylcinnamamides and potassium sulfide. Organic & Biomolecular Chemistry 2017, 15 (46) , 9804-9808. https://doi.org/10.1039/C7OB02585H
    77. Parham Taslimi, Afsun Sujayev, Sevgi Mamedova, Pınar Kalın, İlhami Gulçin, Nastaran Sadeghian, Sukru Beydemir, O. Irfan Kufrevioglu, Saleh H. Alwasel, Vagif Farzaliyev, Sabir Mamedov. Synthesis and bioactivity of several new hetaryl sulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry 2017, 32 (1) , 137-145. https://doi.org/10.1080/14756366.2016.1238367
    78. Adam Kostelnik, Alexander Cegan, Miroslav Pohanka. Anti-Parkinson Drug Biperiden Inhibits Enzyme Acetylcholinesterase. BioMed Research International 2017, 2017 , 1-5. https://doi.org/10.1155/2017/2532764
    79. Urban Košak, Boris Brus, Damijan Knez, Roman Šink, Simon Žakelj, Jurij Trontelj, Anja Pišlar, Jasna Šlenc, Martina Gobec, Marko Živin, Larisa Tratnjek, Martina Perše, Kinga Sałat, Adrian Podkowa, Barbara Filipek, Florian Nachon, Xavier Brazzolotto, Anna Więckowska, Barbara Malawska, Jure Stojan, Irena Mlinarič Raščan, Janko Kos, Nicolas Coquelle, Jacques-Philippe Colletier, Stanislav Gobec. Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep39495
    80. Emin Garibov, Parham Taslimi, Afsun Sujayev, Zeynebe Bingol, Songul Çetinkaya, İlhami Gulçin, Sukru Beydemir, Vagif Farzaliyev, Saleh H. Alwasel, Claudiu T. Supuran. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. Journal of Enzyme Inhibition and Medicinal Chemistry 2016, 31 (sup3) , 1-9. https://doi.org/10.1080/14756366.2016.1198901
    81. Miroslav Pohanka. Electrochemical Biosensors based on Acetylcholinesterase and Butyrylcholinesterase. A Review. International Journal of Electrochemical Science 2016, 11 (9) , 7440-7452. https://doi.org/10.20964/2016.09.16
    82. Alexey D. Strelnik, Alexey S. Petukhov, Irina V. Zueva, Vladimir V. Zobov, Konstantin A. Petrov, Evgeny E. Nikolsky, Konstantin V. Balakin, Sergey O. Bachurin, Yurii G. Shtyrlin. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile. Bioorganic & Medicinal Chemistry Letters 2016, 26 (16) , 4092-4094. https://doi.org/10.1016/j.bmcl.2016.06.070
    83. Edgar Sawatzky, Ehab Al‐Momani, Ryohei Kobayashi, Takahiro Higuchi, Samuel Samnick, Michael Decker. A Novel Way To Radiolabel Human Butyrylcholinesterase for Positron Emission Tomography through Irreversible Transfer of the Radiolabeled Moiety. ChemMedChem 2016, 11 (14) , 1540-1550. https://doi.org/10.1002/cmdc.201600223
    84. Matthew K. Brittain, Kevin G. McGarry, Robert A. Moyer, Michael C. Babin, David A. Jett, Gennady E. Platoff, David T. Yeung. Efficacy of Recommended Prehospital Human Equivalent Doses of Atropine and Pralidoxime Against the Toxic Effects of Carbamate Poisoning in the Hartley Guinea Pig. International Journal of Toxicology 2016, 35 (3) , 344-357. https://doi.org/10.1177/1091581816638086
    85. Alsu R. Mukhametshina, Svetlana V. Fedorenko, Irina V. Zueva, Konstantin A. Petrov, Patrick Masson, Irek R. Nizameev, Asiya R. Mustafina, Oleg G. Sinyashin. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine. Biosensors and Bioelectronics 2016, 77 , 871-878. https://doi.org/10.1016/j.bios.2015.10.059
    86. Ian R. Macdonald, G. Andrew Reid, Ian R. Pottie, Earl Martin, Sultan Darvesh. Synthesis and Preliminary Evaluation of Phenyl 4- 123 I-Iodophenylcarbamate for Visualization of Cholinesterases Associated with Alzheimer Disease Pathology. Journal of Nuclear Medicine 2016, 57 (2) , 297-302. https://doi.org/10.2967/jnumed.115.162032
    87. Julia G. Elistratova, Asiya R. Mustafina, Konstantin A. Brylev, Konstantin A. Petrov, Michael A. Shestopalov, Yuri V. Mironov, Vasily M. Babaev, Ildar K. Rizvanov, Patrick Masson, Oleg G. Sinyashin. Sensing activity of cholinesterases through a luminescence response of the hexarhenium cluster complex [{Re 6 S 8 }(OH) 6 ] 4−. The Analyst 2016, 141 (13) , 4204-4210. https://doi.org/10.1039/C6AN00581K
    88. Jaya Saxena, David Meloni, Mou-Tuan Huang, Diane E. Heck, Jeffrey D. Laskin, Ned D. Heindel, Sherri C. Young. Ethynylphenyl carbonates and carbamates as dual-action acetylcholinesterase inhibitors and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters 2015, 25 (23) , 5609-5612. https://doi.org/10.1016/j.bmcl.2015.10.039
    89. Gary Tin, Tarek Mohamed, Nyasha Gondora, Michael A. Beazely, Praveen P. N. Rao. Tricyclic phenothiazine and phenoselenazine derivatives as potential multi-targeting agents to treat Alzheimer's disease. MedChemComm 2015, 6 (11) , 1930-1941. https://doi.org/10.1039/C5MD00274E
    90. Galina F. Makhaeva, Sofya V. Lushchekina, Natalia P. Boltneva, Vladimir B. Sokolov, Vladimir V. Grigoriev, Olga G. Serebryakova, Ekaterina A. Vikhareva, Alexey Yu. Aksinenko, George E. Barreto, Gjumrakch Aliev, Sergey O. Bachurin. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep13164
    91. Manas K. Ghorai, Masthanvali Sayyad, Yerramsetti Nanaji, Sourita Jana. A Synthetic Route to Chiral Dihydrobenzothiazines through Ring Opening of Activated Aziridines with 2‐Halothiophenols/Copper‐Powder‐Mediated C−N Cyclization. Chemistry – An Asian Journal 2015, 10 (7) , 1480-1489. https://doi.org/10.1002/asia.201500153
    92. Karan Singh Chahal, Atish Prakash, Abu Bakar Abdul Majeed. The role of multifunctional drug therapy against carbamate induced neuronal toxicity during acute and chronic phase in rats. Environmental Toxicology and Pharmacology 2015, 40 (1) , 220-229. https://doi.org/10.1016/j.etap.2015.06.002
    93. Rajamani Raja, Subramaniyan Sathiyaraj, B. Mohamad Ali, A. Sultan Nasar. Crystal structures of 4-chlorophenyl N -(3,5-dinitrophenyl)carbamate and phenyl N -(3,5-dinitrophenyl)carbamate. Acta Crystallographica Section E Crystallographic Communications 2015, 71 (7) , 744-747. https://doi.org/10.1107/S2056989015010245
    94. Shyh-Ying Chiou, Tzu-Ting Weng, Gin-Zen Lin, Ren-Jie Lu, Shuo-Yung Jian, Gialih Lin. Molecular docking of different inhibitors and activators to butyrylcholinesterase. Journal of Biomolecular Structure and Dynamics 2015, 33 (3) , 563-572. https://doi.org/10.1080/07391102.2014.896749
    95. T. Godet-Bar, J.-C. Leprêtre, O. Le Bacq, J.-Y. Sanchez, A. Deronzier, A. Pasturel. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes. Phys. Chem. Chem. Phys. 2015, 17 (38) , 25283-25296. https://doi.org/10.1039/C5CP01495F
    96. Mauricio Maldonado-Domínguez, David Alavez-Rosas, Humberto Aguilar, José Manuel Méndez-Stivalet, Margarita Romero-Ávila, Blas Flores-Pérez, Froylán Ibarra, Yazmín Alcalá-Canto, Yolanda Vera-Montenegro, Héctor García-Ortega. Design, synthesis, in vitro evaluation and preliminary SAR studies of N-(2-(heteroaryloxy)propyl)phenothiazines against Rhipicephalus microplus cattle tick. Bioorganic & Medicinal Chemistry Letters 2014, 24 (14) , 3069-3072. https://doi.org/10.1016/j.bmcl.2014.05.023
    97. Mauricio Alcolea-Palafox, Paloma Posada-Moreno, Ismael Ortuño-Soriano, José L. Pacheco-del-Cerro, Carmen Martínez-Rincón, Dolores Rodríguez-Martínez, Lara Pacheco-Cuevas. Research Strategies Developed for the Treatment of Alzheimer’s Disease. Reversible and Pseudo-Irreversible Inhibitors of Acetylcholinesterase: Structure-Activity Relationships and Drug Design. 2014, 426-477. https://doi.org/10.1016/B978-0-12-803959-5.50008-8
    98. Sultan Darvesh, Ian R. Macdonald, Earl Martin. Selectivity of phenothiazine cholinesterase inhibitors for neurotransmitter systems. Bioorganic & Medicinal Chemistry Letters 2013, 23 (13) , 3822-3825. https://doi.org/10.1016/j.bmcl.2013.04.082
    99. María Cuartero, María Soledad García, Francisco García-Cánovas, Joaquín Ángel Ortuño. New approach for the potentiometric-enzymatic assay of reversible-competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and its determination in pharmaceuticals and human urine. Talanta 2013, 110 , 8-14. https://doi.org/10.1016/j.talanta.2013.03.022
    100. Miroslav Pohanka. Acetylcholinesterase inhibitors: a patent review (2008 – present). Expert Opinion on Therapeutic Patents 2012, 22 (8) , 871-886. https://doi.org/10.1517/13543776.2012.701620
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect