ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Modulation of the Transient Receptor Potential Vanilloid Channel TRPV4 by 4α-Phorbol Esters: A Structure−Activity Study

View Author Information
KU Leuven, Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, bus 802, Leuven, Belgium, Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Via Bovio 9, 28100 Novara, Italy, Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, 13 Universitetsparken, 2100 Copenhagen Ø, Denmark
* To whom correspondence should be addressed. For B.N.: phone, +32 16 34 5937; fax, 32 16 34 5991; E-mail, [email protected]. For G.A.: phone, +39 0321375744; fax, +39 0321375621; E-mail, [email protected]
†KU Leuven, Department of Molecular Cell Biology, Laboratory Ion Channel Research.
§Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen.
‡Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche.
Cite this: J. Med. Chem. 2009, 52, 9, 2933–2939
Publication Date (Web):April 10, 2009
https://doi.org/10.1021/jm9001007
Copyright © 2009 American Chemical Society

    Article Views

    1981

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (443 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The mechanism of activation of the transient receptor potential vanilloid 4 (TRPV4) channel by 4α-phorbol esters was investigated by combining information from chemical modification of 4α-phorbol-didecanoate (4α-PDD, 2a), site-directed mutagenesis, Ca2+ imaging, and electrophysiology. Binding of 4α-phorbol esters occurs in a loop in the TM3−TM4 domain of TRPV4 that is analogous to the capsaicin binding site of TRPV1, and the ester decoration of ring C and the A,B ring junction are critical for activity. The lipophilic ester groups on ring C serve mainly as a steering element, affecting the orientation of the diterpenoid core into the ligand binding pocket, while the nature of the A,B ring junction plays an essential role in the Ca2+-dependence of the TRPV4 response. Taken together, our results show that 4α-phorbol is a useful template to investigate the molecular details of TRPV4 activation by small molecules and obtain information for the rational design of structurally simpler ligands for this ion channel.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Full spectroscopic data for all final products. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 53 publications.

    1. Tomas Zimmermann, Henrik Franzyk, Søren Brøgger Christensen. Phorbol Rearrangements. Journal of Natural Products 2018, 81 (9) , 2134-2137. https://doi.org/10.1021/acs.jnatprod.8b00607
    2. Saner Poplata, Andreas Tröster, You-Quan Zou, and Thorsten Bach . Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions. Chemical Reviews 2016, 116 (17) , 9748-9815. https://doi.org/10.1021/acs.chemrev.5b00723
    3. Svilen P. Simeonov, João P. M. Nunes, Krassimira Guerra, Vanya B. Kurteva, and Carlos A. M. Afonso . Synthesis of Chiral Cyclopentenones. Chemical Reviews 2016, 116 (10) , 5744-5893. https://doi.org/10.1021/cr500504w
    4. Hong-Bing Wang, Xiao-Yang Wang, Li-Ping Liu, Guo-Wei Qin, and Ting-Guo Kang . Tigliane Diterpenoids from the Euphorbiaceae and Thymelaeaceae Families. Chemical Reviews 2015, 115 (9) , 2975-3011. https://doi.org/10.1021/cr200397n
    5. Mengmeng Shen, Yawei Tu, Guanqun Xie, Qingsheng Niu, Hui Mao, Tingting Xie, Robert A. Flowers, II, Xin Lv, and Xiaoxia Wang . Allylsamarium Bromide-Mediated Cascade Cyclization of Homoallylic Esters. Synthesis of 2-(2-Hydroxyalkyl)cyclopropanols and 2-(2-Hydroxyethyl)bicyclo[2.1.1]hexan-1-ols. The Journal of Organic Chemistry 2015, 80 (1) , 52-61. https://doi.org/10.1021/jo501797w
    6. Peter Forgo, Dóra Rédei, Zsanett Hajdu, Pál Szabó, László Szabó, and Judit Hohmann . Unusual Tigliane Diterpenes from Euphorbia grandicornis. Journal of Natural Products 2011, 74 (4) , 639-643. https://doi.org/10.1021/np100673s
    7. Alberto Pagani, Carmen Navarrete, Bernd L. Fiebich, Eduardo Muñoz and Giovanni Appendino. Synthesis and Biological Evaluation of 12-Aminoacylphorboids. Journal of Natural Products 2010, 73 (3) , 447-451. https://doi.org/10.1021/np9006553
    8. Kouharu Otsuki, Wei Li. Tigliane and daphnane diterpenoids from Thymelaeaceae family: chemistry, biological activity, and potential in drug discovery. Journal of Natural Medicines 2023, 77 (4) , 625-643. https://doi.org/10.1007/s11418-023-01713-x
    9. Mohit Kumar, Md. Kamaruz Zaman, Sanghita Das, Danswrang Goyary, Manash Pratim Pathak, Pronobesh Chattopadhyay. Transient Receptor Potential Vanilloid (TRPV4) channel inhibition: A novel promising approach for the treatment of lung diseases. Biomedicine & Pharmacotherapy 2023, 163 , 114861. https://doi.org/10.1016/j.biopha.2023.114861
    10. Ammar Boudaka, Makoto Tominaga. Physiological and Pathological Significance of Esophageal TRP Channels: Special Focus on TRPV4 in Esophageal Epithelial Cells. International Journal of Molecular Sciences 2022, 23 (9) , 4550. https://doi.org/10.3390/ijms23094550
    11. Suhasini Rajan, Christian Schremmer, Jonas Weber, Philipp Alt, Fabienne Geiger, Alexander Dietrich. Ca2+ Signaling by TRPV4 Channels in Respiratory Function and Disease. Cells 2021, 10 (4) , 822. https://doi.org/10.3390/cells10040822
    12. Sebastien Chaigne, Guillaume Cardouat, Julien Louradour, Fanny Vaillant, Sabine Charron, Frederic Sacher, Thomas Ducret, Romain Guinamard, Edward Vigmond, Thomas Hof. Transient receptor potential vanilloid 4 channel participates in mouse ventricular electrical activity. American Journal of Physiology-Heart and Circulatory Physiology 2021, 320 (3) , H1156-H1169. https://doi.org/10.1152/ajpheart.00497.2020
    13. Trine L. Toft-Bertelsen, Nanna MacAulay. TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel. Cells 2021, 10 (1) , 165. https://doi.org/10.3390/cells10010165
    14. Brianna D. Guarino, Sailaja Paruchuri, Charles K. Thodeti. The role of TRPV4 channels in ocular function and pathologies. Experimental Eye Research 2020, 201 , 108257. https://doi.org/10.1016/j.exer.2020.108257
    15. Satyanarayana Achanta, Sven‐Eric Jordt. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Annals of the New York Academy of Sciences 2020, 1480 (1) , 73-103. https://doi.org/10.1111/nyas.14472
    16. Masakazu Atobe. Activation of Transient Receptor Potential Vanilloid (TRPV) 4 as a Therapeutic Strategy in Osteoarthritis. Current Topics in Medicinal Chemistry 2019, 19 (24) , 2254-2267. https://doi.org/10.2174/1568026619666191010162850
    17. Alexander Dietrich. Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals 2019, 12 (1) , 23. https://doi.org/10.3390/ph12010023
    18. Amanda H. Klein. The orotrigeminal system. 2019, 205-216. https://doi.org/10.1016/B978-0-444-63855-7.00013-7
    19. Brett Boonen, Yeranddy Alpizar, Victor Meseguer, Karel Talavera. TRP Channels as Sensors of Bacterial Endotoxins. Toxins 2018, 10 (8) , 326. https://doi.org/10.3390/toxins10080326
    20. Alexander Dietrich, Dirk Steinritz, Thomas Gudermann. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017, 67 , 123-137. https://doi.org/10.1016/j.ceca.2017.04.005
    21. Megan S. Grace, Sara J. Bonvini, Maria G. Belvisi, Peter McIntyre. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacology & Therapeutics 2017, 177 , 9-22. https://doi.org/10.1016/j.pharmthera.2017.02.019
    22. Naoki Tsuno, Akira Yukimasa, Osamu Yoshida, Shinji Suzuki, Hiromi Nakai, Tomoyuki Ogawa, Motohiro Fujiu, Kenji Takaya, Azusa Nozu, Hiroki Yamaguchi, Hidetoshi Matsuda, Satoko Funaki, Natsue Yamanada, Miki Tanimura, Daiki Nagamatsu, Toshiyuki Asaki, Narumi Horita, Miyuki Yamamoto, Mikie Hinata, Masahiko Soga, Masayuki Imai, Yasuhide Morioka, Toshiyuki Kanemasa, Gaku Sakaguchi, Yasuyoshi Iso. Pharmacological evaluation of novel (6-aminopyridin-3-yl)(4-(pyridin-2-yl)piperazin-1-yl) methanone derivatives as TRPV4 antagonists for the treatment of pain. Bioorganic & Medicinal Chemistry 2017, 25 (7) , 2177-2190. https://doi.org/10.1016/j.bmc.2017.02.047
    23. François Seghers, Xavier Yerna, Nadège Zanou, Olivier Devuyst, Rudi Vennekens, Bernd Nilius, Philippe Gailly. TRPV4 participates in pressure‐induced inhibition of renin secretion by juxtaglomerular cells. The Journal of Physiology 2016, 594 (24) , 7327-7340. https://doi.org/10.1113/JP273595
    24. Thomas Dalsgaard, Swapnil K. Sonkusare, Cory Teuscher, Matthew E. Poynter, Mark T. Nelson. Pharmacological inhibitors of TRPV4 channels reduce cytokine production, restore endothelial function and increase survival in septic mice. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep33841
    25. John P. M. White, Mario Cibelli, Laszlo Urban, Bernd Nilius, J. Graham McGeown, Istvan Nagy. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiological Reviews 2016, 96 (3) , 911-973. https://doi.org/10.1152/physrev.00016.2015
    26. Zhi-Liang Wei, Margaret T. Nguyen, Donogh J.R. O’Mahony, Alejandra Acevedo, Sheila Zipfel, Qingling Zhang, Luna Liu, Michelle Dourado, Candace Chi, Victor Yip, Jeff DeFalco, Amy Gustafson, Daniel E. Emerling, Michael G. Kelly, John Kincaid, Fabien Vincent, Matthew A.J. Duncton. Identification of orally-bioavailable antagonists of the TRPV4 ion-channel. Bioorganic & Medicinal Chemistry Letters 2015, 25 (18) , 4011-4015. https://doi.org/10.1016/j.bmcl.2015.06.098
    27. Neil M. Goldenberg, Krishnan Ravindran, Wolfgang M. Kuebler. TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn-Schmiedeberg's Archives of Pharmacology 2015, 388 (4) , 421-436. https://doi.org/10.1007/s00210-014-1058-1
    28. Jie Wang, Xiao-Wei Wang, Yang Zhang, Cui-Ping Yin, Shou-Wei Yue. Ca2+ influx mediates the TRPV4–NO pathway in neuropathic hyperalgesia following chronic compression of the dorsal root ganglion. Neuroscience Letters 2015, 588 , 159-165. https://doi.org/10.1016/j.neulet.2015.01.010
    29. Matthew A.J. Duncton. Small Molecule Agonists and Antagonists of TRPV4. 2015, 205-219. https://doi.org/10.1016/B978-0-12-420024-1.00012-6
    30. Asia Fernández-Carvajal, Gregorio Fernández-Ballester, Rosario González-Muñiz, Antonio Ferrer-Montiel. Pharmacology of TRP Channels. 2015, 41-71. https://doi.org/10.1007/978-3-319-18705-1_2
    31. Bernd Nilius, Arpad Szallasi, . Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacological Reviews 2014, 66 (3) , 676-814. https://doi.org/10.1124/pr.113.008268
    32. Yosuke Kaneko, Arpad Szallasi. Transient receptor potential (TRP) channels: a clinical perspective. British Journal of Pharmacology 2014, 171 (10) , 2474-2507. https://doi.org/10.1111/bph.12414
    33. Anna Garcia-Elias, Sanela Mrkonjić, Carole Jung, Carlos Pardo-Pastor, Rubén Vicente, Miguel A. Valverde. The TRPV4 Channel. 2014, 293-319. https://doi.org/10.1007/978-3-642-54215-2_12
    34. Michael Schaefer. TRPs: Modulation by Drug-Like Compounds. 2014, 1077-1106. https://doi.org/10.1007/978-3-319-05161-1_15
    35. Jeremy M. Sullivan, Thomas E. Lloyd, Charlotte J. Sumner. Hereditary Channelopathies Caused by TRPV4 Mutations. 2014, 413-440. https://doi.org/10.1007/978-3-642-40282-1_21
    36. Ulrich Wissenbach. Pharmacology of TRPV Channels. 2014, 549-575. https://doi.org/10.1007/978-3-642-40282-1_27
    37. Bernd Nilius, Thomas Voets. The puzzle of TRPV4 channelopathies. EMBO reports 2013, 14 (2) , 152-163. https://doi.org/10.1038/embor.2012.219
    38. Kevin S. Thorneloe, Mui Cheung, Weike Bao, Hasan Alsaid, Stephen Lenhard, Ming-Yuan Jian, Melissa Costell, Kristeen Maniscalco-Hauk, John A. Krawiec, Alan Olzinski, Earl Gordon, Irina Lozinskaya, Lou Elefante, Pu Qin, Daniel S. Matasic, Chris James, James Tunstead, Brian Donovan, Lorena Kallal, Anna Waszkiewicz, Kalindi Vaidya, Elizabeth A. Davenport, Jonathan Larkin, Mark Burgert, Linda N. Casillas, Robert W. Marquis, Guosen Ye, Hilary S. Eidam, Krista B. Goodman, John R. Toomey, Theresa J. Roethke, Beat M. Jucker, Christine G. Schnackenberg, Mary I. Townsley, John J. Lepore, Robert N. Willette. An Orally Active TRPV4 Channel Blocker Prevents and Resolves Pulmonary Edema Induced by Heart Failure. Science Translational Medicine 2012, 4 (159) https://doi.org/10.1126/scitranslmed.3004276
    39. Liping Ning, Chuanwei Wang, Xinli Ding, Yang Zhang, Xuping Wang, Shouwei Yue. Functional interaction of TRPV4 channel protein with annexin A2 in DRG. Neurological Research 2012, 34 (7) , 685-693. https://doi.org/10.1179/1743132812Y.0000000065
    40. Makoto Suzuki, Astuko Mizuno. The Molecular Mechanism of Multifunctional Mechano-Gated Channel TRPV4. 2012, 103-157. https://doi.org/10.1007/978-94-007-5073-9_4
    41. Fabien Vincent, Matthew A. J. Duncton. TRPV4 and Drug Discovery. 2012, 257-270. https://doi.org/10.1007/978-1-62703-077-9_13
    42. Maarten Gees, Grzegorz Owsianik, Bernd Nilius, Thomas Voets. TRP Channels. 2012, 563-608. https://doi.org/10.1002/cphy.c110026
    43. R. L. Baylie, J. E. Brayden. TRPV channels and vascular function. Acta Physiologica 2011, 203 (1) , 99-116. https://doi.org/10.1111/j.1748-1716.2010.02217.x
    44. Stephen Loukin, Zhenwei Su, Ching Kung, . Increased Basal Activity Is a Key Determinant in the Severity of Human Skeletal Dysplasia Caused by TRPV4 Mutations. PLoS ONE 2011, 6 (5) , e19533. https://doi.org/10.1371/journal.pone.0019533
    45. Roberta Zaninetti, Alessandra Fornarelli, Monica Ciarletta, Dmitry Lim, Antonio Caldarelli, Tracey Pirali, Anna Cariboni, Grzegorz Owsianik, Bernd Nilius, Pier Luigi Canonico, Carla Distasi, Armando A. Genazzani. Activation of TRPV4 channels reduces migration of immortalized neuroendocrine cells. Journal of Neurochemistry 2011, 116 (4) , 606-615. https://doi.org/10.1111/j.1471-4159.2010.07144.x
    46. Irina Vetter, Richard J. Lewis. Natural Product Ligands of TRP Channels. 2011, 41-85. https://doi.org/10.1007/978-94-007-0265-3_3
    47. Bernd Nilius, Grzegorz Owsianik. The transient receptor potential family of ion channels. Genome Biology 2011, 12 (3) , 218. https://doi.org/10.1186/gb-2011-12-3-218
    48. Emilie D'Aldebert, Nicolas Cenac, Perrine Rousset, Laurence Martin, Corinne Rolland, Kevin Chapman, Janick Selves, Laurent Alric, Jean–Pierre Vinel, Nathalie Vergnolle. Transient Receptor Potential Vanilloid 4 Activated Inflammatory Signals by Intestinal Epithelial Cells and Colitis in Mice. Gastroenterology 2011, 140 (1) , 275-285.e3. https://doi.org/10.1053/j.gastro.2010.09.045
    49. Yalda Shokoohinia, Seyed-Ebrahim Sajjadi, Behzad Zolfaghari, Giuseppina Chianese, Giovanni Appendino, Orazio Taglialatela-Scafati. Diterpenoid (poly)esters and a ring A-seco-phorboid from the aerial parts of Euphorbia macroclada Boiss. Fitoterapia 2010, 81 (7) , 884-890. https://doi.org/10.1016/j.fitote.2010.05.015
    50. Wouter Everaerts, Bernd Nilius, Grzegorz Owsianik. The vanilloid transient receptor potential channel TRPV4: From structure to disease. Progress in Biophysics and Molecular Biology 2010, 103 (1) , 2-17. https://doi.org/10.1016/j.pbiomolbio.2009.10.002
    51. Long-Jun Wu, Tara-Beth Sweet, David E. Clapham. International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family. Pharmacological Reviews 2010, 62 (3) , 381-404. https://doi.org/10.1124/pr.110.002725
    52. Wouter Everaerts, Joris Vriens, Grzegorz Owsianik, Giovanni Appendino, Thomas Voets, Dirk De Ridder, Bernd Nilius. Functional characterization of transient receptor potential channels in mouse urothelial cells. American Journal of Physiology-Renal Physiology 2010, 298 (3) , F692-F701. https://doi.org/10.1152/ajprenal.00599.2009
    53. Rajagopal Bakthavatchalam, S. David Kimball. Modulators of Transient Receptor Potential Ion Channels. 2010, 37-53. https://doi.org/10.1016/S0065-7743(10)45003-4

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect