ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Modeling of the Aryl Hydrocarbon Receptor (AhR) Ligand Binding Domain and Its Utility in Virtual Ligand Screening to Predict New AhR Ligands

View Author Information
Cancer Biology Laboratory
§ Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331
Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
*To whom correspondence should be addressed. Phone: 001-541-737-1799 E-mail: [email protected]
#Equally contributed to this work.
Cite this: J. Med. Chem. 2009, 52, 18, 5635–5641
Publication Date (Web):August 31, 2009
https://doi.org/10.1021/jm900199u
Copyright © 2009 American Chemical Society

    Article Views

    3659

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor; the AhR Per-AhR/Arnt-Sim (PAS) domain binds ligands. We developed homology models of the AhR PAS domain to characterize previously observed intra- and interspecies differences in ligand binding using molecular docking. In silico structure-based virtual ligand screening using our model resulted in the identification of pinocembrin and 5-hydroxy-7-methoxyflavone, which promoted nuclear translocation and transcriptional activation of AhR and AhR-dependent induction of endogenous target genes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Binding energy calculations from molecular docking of natural compounds database into mouse AhR ligand binding domain and activation of AhR transcription by compounds identified by virtual ligand screening to bind the AhR ligand binding pocket (Supplemental Table 1). 6-Hydroxy-7-methoxyflavone is an AhR antagonist (Supplemental Figure 1). Semi-quantitative polymerase chain reaction (Experimental Methods). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 113 publications.

    1. Li Lin, Yongmin Liu, Li Chen, Yue Dai, Yufeng Xia. Discovery of Norisoboldine Analogue III11 as a Novel and Potent Aryl Hydrocarbon Receptor Agonist for the Treatment of Ulcerative Colitis. Journal of Medicinal Chemistry 2023, 66 (10) , 6869-6888. https://doi.org/10.1021/acs.jmedchem.3c00287
    2. Aneta Grycová, Hansol Joo, Vítězslav Maier, Peter Illés, Barbora Vyhlídalová, Karolína Poulíková, Lucia Sládeková, Petr Nádvorník, Radim Vrzal, Lenka Zemánková, Petra Pečinková, Martin Poruba, Iveta Zapletalová, Rostislav Večeřa, Pavel Anzenbacher, Jiří Ehrmann, Peter Ondra, Jong-Wha Jung, Sridhar Mani, Zdeněk Dvořák. Targeting the Aryl Hydrocarbon Receptor with Microbial Metabolite Mimics Alleviates Experimental Colitis in Mice. Journal of Medicinal Chemistry 2022, 65 (9) , 6859-6868. https://doi.org/10.1021/acs.jmedchem.2c00208
    3. Ji-Hee Hwang, Kurunthachalam Kannan, Thomas J. Evans, Hisato Iwata, Eun-Young Kim. Assessment of Risks of Dioxins for Aryl Hydrocarbon Receptor-Mediated Effects in Polar Bear (Ursus maritimus) by in Vitro and in Silico Approaches. Environmental Science & Technology 2020, 54 (3) , 1770-1781. https://doi.org/10.1021/acs.est.9b05941
    4. Libe Aranguren-Abadía, Roger Lille-Langøy, Alexander K. Madsen, Sibel I. Karchner, Diana G. Franks, Fekadu Yadetie, Mark E. Hahn, Anders Goksøyr, Odd André Karlsen. Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. Environmental Science & Technology 2020, 54 (2) , 1033-1044. https://doi.org/10.1021/acs.est.9b05312
    5. Jon A. Doering, Reza Farmahin, Steve Wiseman, Shawn C. Beitel, Sean W. Kennedy, John P. Giesy, and Markus Hecker . Differences in Activation of Aryl Hydrocarbon Receptors of White Sturgeon Relative to Lake Sturgeon Are Predicted by Identities of Key Amino Acids in the Ligand Binding Domain. Environmental Science & Technology 2015, 49 (7) , 4681-4689. https://doi.org/10.1021/acs.est.5b00085
    6. Masashi Hirano, Ji-Hee Hwang, Hae-Jeong Park, Su-Min Bak, Hisato Iwata, and Eun-Young Kim . In Silico Analysis of the Interaction of Avian Aryl Hydrocarbon Receptors and Dioxins to Decipher Isoform-, Ligand-, and Species-Specific Activations. Environmental Science & Technology 2015, 49 (6) , 3795-3804. https://doi.org/10.1021/es505733f
    7. Roberto Nuti, Marco Gargaro, Davide Matino, Daniela Dolciami, Ursula Grohmann, Paolo Puccetti, Francesca Fallarino, and Antonio Macchiarulo . Ligand Binding and Functional Selectivity of l-Tryptophan Metabolites at the Mouse Aryl Hydrocarbon Receptor (mAhR). Journal of Chemical Information and Modeling 2014, 54 (12) , 3373-3383. https://doi.org/10.1021/ci5005459
    8. Camila Odio, Sarah A. Holzman, Michael S. Denison, Domenico Fraccalvieri, Laura Bonati, Diana G. Franks, Mark E. Hahn, and Wade H. Powell . Specific Ligand Binding Domain Residues Confer Low Dioxin Responsiveness to AHR1β of Xenopus laevis. Biochemistry 2013, 52 (10) , 1746-1754. https://doi.org/10.1021/bi301722k
    9. Domenico Fraccalvieri, Anatoly A. Soshilov, Sibel I. Karchner, Diana G. Franks, Alessandro Pandini, Laura Bonati, Mark E. Hahn, and Michael S. Denison . Comparative Analysis of Homology Models of the Ah Receptor Ligand Binding Domain: Verification of Structure–Function Predictions by Site-Directed Mutagenesis of a Nonfunctional Receptor. Biochemistry 2013, 52 (4) , 714-725. https://doi.org/10.1021/bi301457f
    10. Johannes Kirchmair, Mark J. Williamson, Jonathan D. Tyzack, Lu Tan, Peter J. Bond, Andreas Bender, and Robert C. Glen . Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms. Journal of Chemical Information and Modeling 2012, 52 (3) , 617-648. https://doi.org/10.1021/ci200542m
    11. Ilaria Motto, Annalisa Bordogna, Anatoly A. Soshilov, Michael S. Denison, and Laura Bonati . New Aryl Hydrocarbon Receptor Homology Model Targeted To Improve Docking Reliability. Journal of Chemical Information and Modeling 2011, 51 (11) , 2868-2881. https://doi.org/10.1021/ci2001617
    12. Laura Bonati, Stefano Motta, Lara Callea. The AhR Signaling Mechanism: A Structural Point of View. Journal of Molecular Biology 2024, 436 (3) , 168296. https://doi.org/10.1016/j.jmb.2023.168296
    13. Mei Wang, Na Luo, Yanpeng Gao, Guiying Li, Taicheng An. Pyrene and its derivatives increase lung adverse effects by activating aryl hydrocarbon receptor transcription. Science of The Total Environment 2024, , 170030. https://doi.org/10.1016/j.scitotenv.2024.170030
    14. Martha Cecilia Rosales-Hernández, Martiniano Bello, Jazziel Velazquez Toledano, Barbara Citlali Escudero Feregrino, José Correa Basurto, Leticia Guadalupe Fragoso Morales, Mónica Adriana Torres-Ramos. Molecular dynamics simulations depict structural motions of the whole human aryl hydrocarbon receptor influencing its binding of ligands and HSP90. Journal of Biomolecular Structure and Dynamics 2023, 41 (22) , 13138-13153. https://doi.org/10.1080/07391102.2023.2171132
    15. Hossam Kamli, Ahmad Shaikh, Mehedi Hasan Bappi, António Raposo, Md Faruque Ahmad, Fatema Akter Sonia, Md. Showkoth Akbor, Abdullah Al Shamsh Prottay, Sheila Alves Gonçalves, Isaac Moura Araújo, Henrique Douglas Melo Coutinho, Ehab Y. Elbendary, Linda Heejung Lho, Heesup Han, Muhammad Torequl Islam. Sclareol exerts synergistic antidepressant effects with quercetin and caffeine, possibly suppressing GABAergic transmission in chicks. Biomedicine & Pharmacotherapy 2023, 168 , 115768. https://doi.org/10.1016/j.biopha.2023.115768
    16. Caroline de Almeida Freitas Accioli, Michelle Sabrina da Silva, Bianca Aloise Maneira Corrêa Santos, Carlos Rangel Rodrigues. Aryl Hydrocarbon Receptor as a Therapeutical Target of Environmentally Induced Skin Conditions. Molecular Pharmacology 2023, 103 (5) , 255-265. https://doi.org/10.1124/molpharm.122.000627
    17. Daniel J. Elson, Siva K. Kolluri. Tumor-Suppressive Functions of the Aryl Hydrocarbon Receptor (AhR) and AhR as a Therapeutic Target in Cancer. Biology 2023, 12 (4) , 526. https://doi.org/10.3390/biology12040526
    18. Farag E.S. Mosa, Ayman O.S. El-Kadi, Khaled Barakat. In-depth analysis of the interactions of various aryl hydrocarbon receptor ligands from a computational perspective. Journal of Molecular Graphics and Modelling 2023, 118 , 108339. https://doi.org/10.1016/j.jmgm.2022.108339
    19. Amir Shadboorestan, Meriem Koual, Julien Dairou, Xavier Coumoul. The Role of the Kynurenine/AhR Pathway in Diseases Related to Metabolism and Cancer. International Journal of Tryptophan Research 2023, 16 https://doi.org/10.1177/11786469231185102
    20. Li Lin, Yue Dai, Yufeng Xia. An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. European Journal of Medicinal Chemistry 2022, 244 , 114845. https://doi.org/10.1016/j.ejmech.2022.114845
    21. Shuyan Dai, Lingzhi Qu, Jun Li, Ye Zhang, Longying Jiang, Hudie Wei, Ming Guo, Xiaojuan Chen, Yongheng Chen. Structural insight into the ligand binding mechanism of aryl hydrocarbon receptor. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33858-w
    22. Judith M. Vlaar, Anouska Borgman, Eric Kalkhoven, Denise Westland, Nicolle Besselink, Charles Shale, Bishoy M. Faltas, Peter Priestley, Ewart Kuijk, Edwin Cuppen. Recurrent exon-deleting activating mutations in AHR act as drivers of urinary tract cancer. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-14256-0
    23. Gang Cao, Hua Miao, Yan-ni Wang, Dan-qian Chen, Xia-qing Wu, Lin Chen, Yan Guo, Liang Zou, Nosratola D. Vaziri, Ping Li, Ying-yong Zhao. Intrarenal 1-methoxypyrene, an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice. Acta Pharmacologica Sinica 2022, 43 (11) , 2929-2945. https://doi.org/10.1038/s41401-022-00914-6
    24. Jessica L. Phillips, Christiane V. Löhr, Bach D. Nguyen, Andrew B. Buermeyer, Siva K. Kolluri. Loss of the aryl hydrocarbon receptor increases tumorigenesis in p53-deficient mice. Toxicology and Applied Pharmacology 2022, 454 , 116191. https://doi.org/10.1016/j.taap.2022.116191
    25. Daniel J. Elson, Bach D. Nguyen, Rhand Wood, Yi Zhang, Veronica Puig‐Sanvicens, Siva K. Kolluri. The cyclin‐dependent kinase inhibitor p27 Kip1 interacts with the aryl hydrocarbon receptor and negatively regulates its transcriptional activity. FEBS Letters 2022, 596 (16) , 2056-2071. https://doi.org/10.1002/1873-3468.14434
    26. Fabian Fischer, Giovanna Grigolon, Christoph Benner, Michael Ristow. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiological Reviews 2022, 102 (3) , 1449-1494. https://doi.org/10.1152/physrev.00017.2021
    27. Yuwei Song, Radomir M. Slominski, Shariq Qayyum, Tae-Kang Kim, Zorica Janjetovic, Chander Raman, Robert C. Tuckey, Yuhua Song, Andrzej T. Slominski. Molecular and structural basis of interactions of vitamin D3 hydroxyderivatives with aryl hydrocarbon receptor (AhR): An integrated experimental and computational study. International Journal of Biological Macromolecules 2022, 209 , 1111-1123. https://doi.org/10.1016/j.ijbiomac.2022.04.048
    28. Farag E.S. Mosa, Ayman O.S. El-Kadi, Khaled Barakat. Targeting the Aryl Hydrocarbon Receptor (AhR): A Review of the In-Silico Screening Approaches to Identify AhR Modulators. 2022https://doi.org/10.5772/intechopen.99228
    29. Samantha Faber, Tejas Lahoti, Ewan Taylor, Lauren Lewis, Jessica Sapiro, Vicencia Toledo Sales, Yvonne Dragan, Brandon Jeffy. Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022, 11 (10) , 1708. https://doi.org/10.3390/cells11101708
    30. Chun-Hua Lin, Chia-Cheng Chou, Yi-Hsuan Lee, Chia-Chi Hung. Curcumin Facilitates Aryl Hydrocarbon Receptor Activation to Ameliorate Inflammatory Astrogliosis. Molecules 2022, 27 (8) , 2507. https://doi.org/10.3390/molecules27082507
    31. Wanglong Zhang, Heidi Qunhui Xie, Yunping Li, Mingxi Zhou, Zhiguang Zhou, Renjun Wang, Mark E. Hahn, Bin Zhao. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. Journal of Hazardous Materials 2022, 426 , 128084. https://doi.org/10.1016/j.jhazmat.2021.128084
    32. Emmanuel Vazquez-Rivera, Brenda L. Rojas, Jessica C. Parrott, Anna L. Shen, Yongna Xing, Patrick R. Carney, Christopher A. Bradfield. The aryl hydrocarbon receptor as a model PAS sensor. Toxicology Reports 2022, 9 , 1-11. https://doi.org/10.1016/j.toxrep.2021.11.017
    33. Wei Du, Shengxiang Yin, Ying Zhou, Ruixia Hou, Zhaoyong Lv, Jialin Li, Li Li, Nan Qi, Bang-Ce Ye. Microbiota-Dependent Tryptophan Metabolite Alleviates High-Fat Diet-Induced Insulin Resistance Through Activation of Hepatic AhR/TSC2/mTORC1 Axis. SSRN Electronic Journal 2022, 23 https://doi.org/10.2139/ssrn.4063235
    34. Pei Long, Yong Li, Qing Wen, Maohua Huang, Songtao Li, Yuning Lin, Xiaojun Huang, Minfeng Chen, Jie Ouyang, Yunlin Ao, Qi Qi, Haipeng Zhang, Wencai Ye, Guohua Cheng, Xiaoqi Zhang, Dongmei Zhang. 3′-Oxo-tabernaelegantine A (OTNA) selectively relaxes pulmonary arteries by inhibiting AhR. Phytomedicine 2021, 92 , 153751. https://doi.org/10.1016/j.phymed.2021.153751
    35. Mosè Casalegno, Guido Raos, Guido Sello. Identification of viable TCDD access pathways to human AhR PAS-B ligand binding domain. Journal of Molecular Graphics and Modelling 2021, 105 , 107886. https://doi.org/10.1016/j.jmgm.2021.107886
    36. Jac M M J G Aarts, Gerrit M Alink, Henk J Franssen, Wil Roebroeks, . Evolution of Hominin Detoxification: Neanderthal and Modern Human Ah Receptor Respond Similarly to TCDD. Molecular Biology and Evolution 2021, 38 (4) , 1292-1305. https://doi.org/10.1093/molbev/msaa287
    37. Ziyue Kou, Wei Dai. Aryl hydrocarbon receptor: Its roles in physiology. Biochemical Pharmacology 2021, 185 , 114428. https://doi.org/10.1016/j.bcp.2021.114428
    38. Anne Stinn, Jens Furkert, Stefan H. E. Kaufmann, Pedro Moura-Alves, Michael Kolbe. Novel Method for Quantifying AhR-Ligand Binding Affinities Using Microscale Thermophoresis. Biosensors 2021, 11 (3) , 60. https://doi.org/10.3390/bios11030060
    39. Xingjian Xu, Igor Dikiy, Matthew R. Evans, Leandro P. Marcelino, Kevin H. Gardner. Fragile protein folds: sequence and environmental factors affecting the equilibrium of two interconverting, stably folded protein conformations. Magnetic Resonance 2021, 2 (1) , 63-76. https://doi.org/10.5194/mr-2-63-2021
    40. Prarthana Shankar, Subham Dasgupta, Mark E Hahn, Robyn L Tanguay. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicological Sciences 2020, 178 (2) , 215-238. https://doi.org/10.1093/toxsci/kfaa143
    41. Hua Miao, Gang Cao, Xia‐Qing Wu, Yuan‐Yuan Chen, Dan‐Qian Chen, Lin Chen, Nosratola D. Vaziri, Ya‐Long Feng, Wei Su, Yi Gao, Shougang Zhuang, Xiao‐Yong Yu, Li Zhang, Yan Guo, Ying‐Yong Zhao. Identification of endogenous 1‐aminopyrene as a novel mediator of progressive chronic kidney disease via aryl hydrocarbon receptor activation. British Journal of Pharmacology 2020, 177 (15) , 3415-3435. https://doi.org/10.1111/bph.15062
    42. Chenggang Gu, Jun Cai, Xiuli Fan, Yongrong Bian, Xinglun Yang, Qiying Xia, Cheng Sun, Xin Jiang. Theoretical investigation of AhR binding property with relevant structural requirements for AhR-mediated toxicity of polybrominated diphenyl ethers. Chemosphere 2020, 249 , 126554. https://doi.org/10.1016/j.chemosphere.2020.126554
    43. Jennifer R. Baker, Jennette A. Sakoff, Adam McCluskey. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Medicinal Research Reviews 2020, 40 (3) , 972-1001. https://doi.org/10.1002/med.21645
    44. Aleksandr A. Artyukov, Elena A. Zelepuga, Larisa N. Bogdanovich, Natalia M. Lupach, Vyacheslav L. Novikov, Tatyana A. Rutckova, Emma P. Kozlovskaya. Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets. Journal of Clinical Medicine 2020, 9 (5) , 1494. https://doi.org/10.3390/jcm9051494
    45. Jiaxuan Chen, Carolyn A. Haller, Finith E. Jernigan, Steffi K. Koerner, Daniel J. Wong, Yiqiang Wang, Jae Eun Cheong, Revanth Kosaraju, Julian Kwan, Diane D. Park, Beena Thomas, Swati Bhasin, Roberto C. De La Rosa, Alykhan M. Premji, Liying Liu, Eden Park, Alan C. Moss, Andrew Emili, Manoj Bhasin, Lijun Sun, Elliot L. Chaikof. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Science Advances 2020, 6 (3) https://doi.org/10.1126/sciadv.aay8230
    46. Daniela Dolciami, Marco Ballarotto, Marco Gargaro, Luisa Carlota López-Cara, Francesca Fallarino, Antonio Macchiarulo. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). European Journal of Medicinal Chemistry 2020, 185 , 111842. https://doi.org/10.1016/j.ejmech.2019.111842
    47. Ludovica Marinelli, Camille Martin-Gallausiaux, Jean-Marie Bourhis, Fabienne Béguet-Crespel, Hervé M. Blottière, Nicolas Lapaque. Identification of the novel role of butyrate as AhR ligand in human intestinal epithelial cells. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-37019-2
    48. Sara Giani Tagliabue, Samantha C. Faber, Stefano Motta, Michael S. Denison, Laura Bonati. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47138-z
    49. Su-Min Bak, Haruhiko Nakata, Dong-Hee Koh, Jean Yoo, Hisato Iwata, Eun-Young Kim. In vitro and in silico AHR assays for assessing the risk of heavy oil-derived polycyclic aromatic hydrocarbons in fish. Ecotoxicology and Environmental Safety 2019, 181 , 214-223. https://doi.org/10.1016/j.ecoenv.2019.06.008
    50. J. E. Vorontsova, R. O. Cherezov, B. A. Kuzin, O. B. Simonova. Aryl-Hydrocarbon Receptor as a Potential Target for Anticancer Therapy. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 2019, 13 (1) , 36-54. https://doi.org/10.1134/S1990750819010116
    51. Bendik C. Brinchmann, Eric Le Ferrec, William H. Bisson, Normand Podechard, Henrik S. Huitfeldt, Isabelle Gallais, Odile Sergent, Jørn A. Holme, Dominique Lagadic-Gossmann, Johan Øvrevik. Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochemical Pharmacology 2018, 158 , 1-12. https://doi.org/10.1016/j.bcp.2018.09.023
    52. Rahul Shinde, Tracy L. McGaha. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends in Immunology 2018, 39 (12) , 1005-1020. https://doi.org/10.1016/j.it.2018.10.010
    53. Kumaraswamy Naidu Chitrala, Xiaoming Yang, Prakash Nagarkatti, Mitzi Nagarkatti. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. BMC Structural Biology 2018, 18 (1) https://doi.org/10.1186/s12900-018-0095-2
    54. Jiajun Zhou, Qiang Zhang, Joseph E Henriquez, Robert B Crawford, Norbert E Kaminski. Lymphocyte-Specific Protein Tyrosine Kinase (LCK) is Involved in the Aryl Hydrocarbon Receptor-Mediated Impairment of Immunoglobulin Secretion in Human Primary B Cells. Toxicological Sciences 2018, 165 (2) , 322-334. https://doi.org/10.1093/toxsci/kfy133
    55. J.E. Vorontsova, R.O. Cherezov, B.A. Kuzin, O.B. Simonova. Aryl-hydrocarbon receptor as a potential target for anticancer therapy. Biomeditsinskaya Khimiya 2018, 64 (5) , 397-415. https://doi.org/10.18097/PBMC20186405397
    56. Agneta Rannug, Ulf Rannug. The tryptophan derivative 6-formylindolo[3,2- b ]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Critical Reviews in Toxicology 2018, 48 (7) , 555-574. https://doi.org/10.1080/10408444.2018.1493086
    57. Vadim Osadchiy, Jennifer S. Labus, Arpana Gupta, Jonathan Jacobs, Cody Ashe-McNalley, Elaine Y. Hsiao, Emeran A. Mayer, . Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLOS ONE 2018, 13 (8) , e0201772. https://doi.org/10.1371/journal.pone.0201772
    58. Un-Ho Jin, Hyejin Park, Xi Li, Laurie A Davidson, Clinton Allred, Bhimanagouda Patil, Guddadarangavva Jayaprakasha, Asuka A Orr, Leevin Mao, Robert S Chapkin, Arul Jayaraman, Phanourios Tamamis, Stephen Safe. Structure-Dependent Modulation of Aryl Hydrocarbon Receptor-Mediated Activities by Flavonoids. Toxicological Sciences 2018, 164 (1) , 205-217. https://doi.org/10.1093/toxsci/kfy075
    59. Gaston Otarola, Hector Castillo, Sylvain Marcellini. Aryl hydrocarbon receptor‐based bioassays for dioxin detection: Thinking outside the box. Journal of Applied Toxicology 2018, 38 (4) , 437-449. https://doi.org/10.1002/jat.3575
    60. A. Tkachenko, M. Bermudez, S. Irmer-Stooff, D. Genkinger, F. Henkler-Stephani, G. Wolber, A. Luch. Nuclear transport of the human aryl hydrocarbon receptor and subsequent gene induction relies on its residue histidine 291. Archives of Toxicology 2018, 92 (3) , 1151-1160. https://doi.org/10.1007/s00204-017-2129-0
    61. Daniela Dolciami, Marco Gargaro, Bruno Cerra, Giulia Scalisi, Luana Bagnoli, Giuseppe Servillo, Maria Agnese Della Fazia, Paolo Puccetti, Francisco J. Quintana, Francesca Fallarino, Antonio Macchiarulo. Binding Mode and Structure–Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist. ChemMedChem 2018, 13 (3) , 270-279. https://doi.org/10.1002/cmdc.201700669
    62. Seung-Hyeon Seok, Zhi-Xiong Ma, John B. Feltenberger, Hongbo Chen, Hui Chen, Cameron Scarlett, Ziqing Lin, Kenneth A. Satyshur, Marissa Cortopassi, Colin R. Jefcoate, Ying Ge, Weiping Tang, Christopher A. Bradfield, Yongna Xing. Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). Journal of Biological Chemistry 2018, 293 (6) , 1994-2005. https://doi.org/10.1074/jbc.RA117.000631
    63. Malin Larsson, Domenico Fraccalvieri, C. David Andersson, Laura Bonati, Anna Linusson, Patrik L. Andersson. Identification of potential aryl hydrocarbon receptor ligands by virtual screening of industrial chemicals. Environmental Science and Pollution Research 2018, 25 (3) , 2436-2449. https://doi.org/10.1007/s11356-017-0437-9
    64. Siva Kumar Kolluri, Un-Ho Jin, Stephen Safe. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Archives of Toxicology 2017, 91 (7) , 2497-2513. https://doi.org/10.1007/s00204-017-1981-2
    65. Anna C. Chlebowski, Gloria R. Garcia, Jane K. La Du, William H. Bisson, Lisa Truong, Staci L. Massey Simonich, Robert L. Tanguay. Mechanistic Investigations Into the Developmental Toxicity of Nitrated and Heterocyclic PAHs. Toxicological Sciences 2017, 157 (1) , 246-259. https://doi.org/10.1093/toxsci/kfx035
    66. Edmond F. O’Donnell, Hyo Sang Jang, Martin Pearce, Nancy I. Kerkvliet, Siva Kumar Kolluri. The aryl hydrocarbon receptor is required for induction of p21cip1/waf1 expression and growth inhibition by SU5416 in hepatoma cells. Oncotarget 2017, 8 (15) , 25211-25225. https://doi.org/10.18632/oncotarget.16056
    67. Hisamitsu Ide, Yan Lu, Jingsong Yu, Takahiro Noguchi, Mayuko Kanayama, Satoru Muto, Raizo Yamaguchi, Suguru Kawato, Shigeo Horie. Aryl hydrocarbon receptor signaling involved in the invasiveness of LNCaP cells. Human Cell 2017, 30 (2) , 133-139. https://doi.org/10.1007/s13577-016-0158-2
    68. Muhammad Yar, Lubna Shahzadi, Ariba Farooq, Saima Jalil Imran, José P. Cerón-Carrasco, Helena den-Haan, Sanjay Kumar, Jorge Peña-García, Horacio Pérez-Sánchez, Aneta Grycova, Zdenek Dvorak, Radim Vrzal. In vitro modulatory effects of functionalized pyrimidines and piperidine derivatives on Aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR) activities. Bioorganic Chemistry 2017, 71 , 285-293. https://doi.org/10.1016/j.bioorg.2017.02.013
    69. Laura Bonati, Dario Corrada, Sara Giani Tagliabue, Stefano Motta. Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms. Current Opinion in Toxicology 2017, 2 , 42-49. https://doi.org/10.1016/j.cotox.2017.01.011
    70. Yating Cheng, Un-Ho Jin, Laurie A. Davidson, Robert S. Chapkin, Arul Jayaraman, Phanourios Tamamis, Asuka Orr, Clint Allred, Michael S. Denison, Anatoly Soshilov, Evelyn Weaver, Stephen Safe. Editor’s Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure–Activity Relationships and Receptor Modeling. Toxicological Sciences 2017, 155 (2) , 458-473. https://doi.org/10.1093/toxsci/kfw230
    71. Xiaoxia Gao, Cen Xie, Yuanyuan Wang, Yuhong Luo, Tomoki Yagai, Dongxue Sun, Xuemei Qin, Kristopher W. Krausz, Frank J. Gonzalez. The antiandrogen flutamide is a novel aryl hydrocarbon receptor ligand that disrupts bile acid homeostasis in mice through induction of Abcc4. Biochemical Pharmacology 2016, 119 , 93-104. https://doi.org/10.1016/j.bcp.2016.08.021
    72. Paolo Cocci, Matteo Mozzicafreddo, Mauro Angeletti, Gilberto Mosconi, Francesco Alessandro Palermo. In silico prediction and in vivo analysis of antiestrogenic potential of 2-isopropylthioxanthone (2-ITX) in juvenile goldfish (Carassius auratus). Ecotoxicology and Environmental Safety 2016, 133 , 202-210. https://doi.org/10.1016/j.ecoenv.2016.07.021
    73. Bryan Mackowiak, Hongbing Wang. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2016, 1859 (9) , 1130-1140. https://doi.org/10.1016/j.bbagrm.2016.02.006
    74. In-Sung Kim, Ji-Hee Hwang, Masashi Hirano, Hisato Iwata, Eun-Young Kim. In vitro and in silico evaluation of transactivation potencies of avian AHR1 and AHR2 by endogenous ligands: Implications for the physiological role of avian AHR2. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2016, 187 , 1-9. https://doi.org/10.1016/j.cbpc.2016.03.011
    75. Karina Orlowska, Tomasz Molcan, Sylwia Swigonska, Agnieszka Sadowska, Monika Jablonska, Anna Nynca, Jan P. Jastrzebski, Renata E. Ciereszko. The tertiary structures of porcine AhR and ARNT proteins and molecular interactions within the TCDD/AhR/ARNT complex. Journal of Molecular Graphics and Modelling 2016, 67 , 119-126. https://doi.org/10.1016/j.jmgm.2016.05.012
    76. Dániel Szöllősi, Áron Erdei, Gergely Gyimesi, Csaba Magyar, Tamás Hegedűs, . Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR. PLOS ONE 2016, 11 (1) , e0146066. https://doi.org/10.1371/journal.pone.0146066
    77. Rebecca Justiniano, Georg T. Wondrak. The Aryl Hydrocarbon Receptor (AhR) as an Environmental Stress Sensor and Regulator of Skin Barrier Function: Molecular Mechanisms and Therapeutic Opportunities. 2016, 325-359. https://doi.org/10.1007/978-3-319-43157-4_16
    78. Thomas H. Thatcher, Marc A. Williams, Stephen J. Pollock, Claire E. McCarthy, Shannon H. Lacy, Richard P. Phipps, Patricia J. Sime. Endogenous ligands of the aryl hydrocarbon receptor regulate lung dendritic cell function. Immunology 2016, 147 (1) , 41-54. https://doi.org/10.1111/imm.12540
    79. D C Koch, H S Jang, E F O'Donnell, S Punj, P R Kopparapu, W H Bisson, N I Kerkvliet, S K Kolluri. Anti-androgen flutamide suppresses hepatocellular carcinoma cell proliferation via the aryl hydrocarbon receptor mediated induction of transforming growth factor-β1. Oncogene 2015, 34 (50) , 6092-6104. https://doi.org/10.1038/onc.2015.55
    80. Hamidullah, Rajeev Kumar, Karan Singh Saini, Amit Kumar, Sudhir Kumar, E. Ramakrishna, Rakesh Maurya, Rituraj Konwar, Naibedya Chattopadhyay. Quercetin-6-C-β-d-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor. Biochimie 2015, 119 , 68-79. https://doi.org/10.1016/j.biochi.2015.10.012
    81. Sunghwan Kim, Lianyi Han, Bo Yu, Volker D Hähnke, Evan E Bolton, Stephen H Bryant. PubChem structure–activity relationship (SAR) clusters. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0070-x
    82. Arden Perkins, Jessica Phillips, Nancy Kerkvliet, Robert Tanguay, Gary Perdew, Siva Kolluri, William Bisson. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain. Biology 2014, 3 (4) , 645-669. https://doi.org/10.3390/biology3040645
    83. Y Kang, H Nian, P Rajendran, E Kim, W M Dashwood, J T Pinto, L A Boardman, S N Thibodeau, P J Limburg, C V Löhr, W H Bisson, D E Williams, E Ho, R H Dashwood. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death & Disease 2014, 5 (10) , e1476-e1476. https://doi.org/10.1038/cddis.2014.422
    84. Cory V. Gerlach, Siba R. Das, David C. Volz, William H. Bisson, Siva K. Kolluri, Robert L. Tanguay. Mono-substituted isopropylated triaryl phosphate, a major component of Firemaster 550, is an AHR agonist that exhibits AHR-independent cardiotoxicity in zebrafish. Aquatic Toxicology 2014, 154 , 71-79. https://doi.org/10.1016/j.aquatox.2014.05.007
    85. Reza Farmahin, Doug Crump, Sean W. Kennedy. Sensitivity of avian species to the aryl hydrocarbon receptor ligand 6-formylindolo [3,2-b] carbazole (FICZ). Chemico-Biological Interactions 2014, 221 , 61-69. https://doi.org/10.1016/j.cbi.2014.07.009
    86. Roshni Panda, A Suneetha Susan Cleave, PK Suresh. In silico predictive studies of mAHR congener binding using homology modelling and molecular docking. Toxicology and Industrial Health 2014, 30 (8) , 765-776. https://doi.org/10.1177/0748233712463774
    87. Pedro Moura-Alves, Kellen Faé, Erica Houthuys, Anca Dorhoi, Annika Kreuchwig, Jens Furkert, Nicola Barison, Anne Diehl, Antje Munder, Patricia Constant, Tatsiana Skrahina, Ute Guhlich-Bornhof, Marion Klemm, Anne-Britta Koehler, Silke Bandermann, Christian Goosmann, Hans-Joachim Mollenkopf, Robert Hurwitz, Volker Brinkmann, Simon Fillatreau, Mamadou Daffe, Burkhard Tümmler, Michael Kolbe, Hartmut Oschkinat, Gerd Krause, Stefan H. E. Kaufmann. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 2014, 512 (7515) , 387-392. https://doi.org/10.1038/nature13684
    88. Marija Pinne, Judy L Raucy. Advantages of cell-based high-volume screening assays to assess nuclear receptor activation during drug discovery. Expert Opinion on Drug Discovery 2014, 9 (6) , 669-686. https://doi.org/10.1517/17460441.2014.913019
    89. Sumit Punj, Prasad Kopparapu, Hyo Sang Jang, Jessica L. Phillips, Jamie Pennington, Diana Rohlman, Edmond O’Donnell, Patrick L. Iversen, Siva Kumar Kolluri, Nancy I. Kerkvliet, . Benzimidazoisoquinolines: A New Class of Rapidly Metabolized Aryl Hydrocarbon Receptor (AhR) Ligands that Induce AhR-Dependent Tregs and Prevent Murine Graft-Versus-Host Disease. PLoS ONE 2014, 9 (2) , e88726. https://doi.org/10.1371/journal.pone.0088726
    90. E F O'Donnell, D C Koch, W H Bisson, H S Jang, S K Kolluri. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death & Disease 2014, 5 (1) , e1038-e1038. https://doi.org/10.1038/cddis.2013.549
    91. Jin-Seon Lee, Kohei Iwabuchi, Koji Nomaru, Nobumasa Nagahama, Eun-Young Kim, Hisato Iwata. Molecular and Functional Characterization of a Novel Aryl Hydrocarbon Receptor Isoform, AHR1β, in the Chicken (Gallus gallus). Toxicological Sciences 2013, 136 (2) , 450-466. https://doi.org/10.1093/toxsci/kft192
    92. Jintao Yuan, Yuepu Pu, Lihong Yin. Docking‐based three‐dimensional quantitative structure–activity relationship (3D‐QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls. Environmental Toxicology and Chemistry 2013, 32 (7) , 1453-1458. https://doi.org/10.1002/etc.2191
    93. Chin-Teng Chang, Hsin-Yu Chung, Hsiao-Ting Su, Hua-Pin Tseng, Wen-Shyong Tzou, Chin-Hwa Hu. Regulation of zebrafish CYP3A65 transcription by AHR2. Toxicology and Applied Pharmacology 2013, 270 (2) , 174-184. https://doi.org/10.1016/j.taap.2013.04.010
    94. Praveen Rajendran, Ariam I. Kidane, Tian-Wei Yu, Wan-Mohaiza Dashwood, William H. Bisson, Christiane V. Löhr, Emily Ho, David E. Williams, Roderick H. Dashwood. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics 2013, 8 (6) , 612-623. https://doi.org/10.4161/epi.24710
    95. Yongna Xing, Manabu Nukaya, Kenneth A. Satyshur, Li Jiang, Vitali Stanevich, Elif Nihal Korkmaz, Lisa Burdette, Gregory D. Kennedy, Qiang Cui, Christopher A. Bradfield. Identification of the Ah-Receptor Structural Determinants for Ligand Preferences. Toxicological Sciences 2012, 129 (1) , 86-97. https://doi.org/10.1093/toxsci/kfs194
    96. Edmond F. O’Donnell, Prasad Rao Kopparapu, Daniel C. Koch, Hyo Sang Jang, Jessica Lynne Phillips, Robert L. Tanguay, Nancy I. Kerkvliet, Siva Kumar Kolluri, . The Aryl Hydrocarbon Receptor Mediates Leflunomide-Induced Growth Inhibition of Melanoma Cells. PLoS ONE 2012, 7 (7) , e40926. https://doi.org/10.1371/journal.pone.0040926
    97. Britton C. Goodale, Jane K. La Du, William H. Bisson, Derek B. Janszen, Katrina M. Waters, Robert L. Tanguay, . AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish. PLoS ONE 2012, 7 (1) , e29346. https://doi.org/10.1371/journal.pone.0029346
    98. Eun-Young Choi, Hyosung Lee, R. W. Cameron Dingle, Kyung Bo Kim, Hollie I. Swanson. Development of Novel CH223191-Based Antagonists of the Aryl Hydrocarbon Receptor. Molecular Pharmacology 2012, 81 (1) , 3-11. https://doi.org/10.1124/mol.111.073643
    99. Thomas A. Gasiewicz, Ellen C. Henry. History of Research on the AHR. 2011, 1-32. https://doi.org/10.1002/9781118140574.ch1
    100. Danica DeGroot, Guochun He, Domenico Fraccalvieri, Laura Bonati, Allesandro Pandini, Michael S. Denison. AHR Ligands: Promiscuity in Binding and Diversity in Response. 2011, 63-79. https://doi.org/10.1002/9781118140574.ch4
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect