ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Structure−Activity Relationship for Antineoplastic Imidazoacridinones: Synthesis and Antileukemic Activity in Vivo

View Author Information
Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdansk, 80952 Gdansk, Poland, and Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy
Cite this: J. Med. Chem. 1996, 39, 5, 1028–1032
Publication Date (Web):March 1, 1996
https://doi.org/10.1021/jm950564r
Copyright © 1996 American Chemical Society

    Article Views

    260

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Synthesis of several new 5-amino-substituted derivatives of 5-amino-6H-imidazo[4,5,1-de]acridin-6-one bearing in the benzene ring OH, OCH3, CH3, tert-butyl, or OCH2O groups is described. 8-OH-Substituted compounds or double-substituted 7-OH-10-OCH3 compounds demonstrated potent in vivo activity against murine P388 leukemia. The highest activity was exhibited by 5-[[2-[[2-(diethylamino)ethyl]amino]ethyl]amino]-8-hydroxy-6H-imidazo[4,5,1-de]acridin-6-one (4c).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Technical University of Gdansk.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     University of Camerino.

     Abstract published in Advance ACS Abstracts, January 15, 1996.

    Cited By

    This article is cited by 44 publications.

    1. Christian Bailly . Contemporary Challenges in the Design of Topoisomerase II Inhibitors for Cancer Chemotherapy. Chemical Reviews 2012, 112 (7) , 3611-3640. https://doi.org/10.1021/cr200325f
    2. Xianyong Bu,, Leslie W. Deady,, Graeme J. Finlay,, Bruce C. Baguley, and, William A. Denny. Synthesis and Cytotoxic Activity of 7-Oxo-7H-dibenz[f,ij]isoquinoline and 7-Oxo-7H-benzo[e]perimidine Derivatives. Journal of Medicinal Chemistry 2001, 44 (12) , 2004-2014. https://doi.org/10.1021/jm010041l
    3. Zahra Sabri, Nasrin Shadjou, Mehdi Mahmoudian. Accelerated synthesis of 1,8-dioxo-octahydroxanthene and 1,8-dioxo-decahydroacridine derivatives using dendritic mesoporous nanosilica functionalized by hexamethylenetetramine: a novel nanocatalyst. RSC Advances 2024, 14 (4) , 2633-2651. https://doi.org/10.1039/D3RA07629F
    4. Vaishali N. Rathod, Nilam D. Bansode, Premkumar B. Thombre, Machhindra K. Lande. Efficient one‐pot synthesis of polyhydroquinoline derivatives through the Hantzsch condensation using IRMOF‐3 as heterogeneous and reusable catalyst. Journal of the Chinese Chemical Society 2021, 68 (4) , 601-609. https://doi.org/10.1002/jccs.202000303
    5. Anna Mieszkowska, Anna M. Nowicka, Agata Kowalczyk, Agnieszka Potęga, Monika Pawłowska, Michał Kosno, Ewa Augustin, Zofia Mazerska. Metabolic Profiles of New Unsymmetrical Bisacridine Antitumor Agents in Electrochemical and Enzymatic Noncellular Systems and in Tumor Cells. Pharmaceuticals 2021, 14 (4) , 317. https://doi.org/10.3390/ph14040317
    6. Aparna Das, Ram Naresh Yadav, Bimal Krishna Banik. Ascorbic Acid-mediated Reactions in Organic Synthesis. Current Organocatalysis 2020, 7 (3) , 212-241. https://doi.org/10.2174/2213337207999200726231300
    7. Ewa Paluszkiewicz, Barbara Horowska, Barbara Borowa-Mazgaj, Grażyna Peszyńska-Sularz, Jolanta Paradziej-Łukowicz, Ewa Augustin, Jerzy Konopa, Zofia Mazerska. Design, synthesis and high antitumor potential of new unsymmetrical bisacridine derivatives towards human solid tumors, specifically pancreatic cancers and their unique ability to stabilize DNA G-quadruplexes. European Journal of Medicinal Chemistry 2020, 204 , 112599. https://doi.org/10.1016/j.ejmech.2020.112599
    8. Agnieszka Potęga, Dorota Garwolińska, Anna M. Nowicka, Michał Fau, Agata Kot-Wasik, Zofia Mazerska. Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry. Xenobiotica 2019, 49 (8) , 922-934. https://doi.org/10.1080/00498254.2018.1524946
    9. Pravin N. Chavan, Dattatraya N. Pansare, Rohini N. Shelke. Eco‐friendly, ultrasound‐assisted, and facile synthesis of one‐pot multicomponent reaction of acridine‐1,8(2H,5H)‐diones in an aqueous solvent. Journal of the Chinese Chemical Society 2019, 66 (8) , 822-828. https://doi.org/10.1002/jccs.201800411
    10. Rajesh Kumar, Sarita Sharma, Deonandan Prasad. Acridones. 2018, 53-132. https://doi.org/10.1016/B978-0-08-102083-8.00003-0
    11. Tomasz Laskowski, Julia Borzyszkowska, Jakub Grynda, Jan Mazerski. C-1311 (Symadex), a potential anti-cancer drug, intercalates into DNA between A and G moieties. NMR-derived and MD-refined stereostructure of the d(GAGGCCTC) 2 :C-1311 complex. Journal of Molecular Structure 2017, 1141 , 357-367. https://doi.org/10.1016/j.molstruc.2017.03.115
    12. Sandeep S. Kahandal, Anand S. Burange, Sandip R. Kale, Pepijn Prinsen, Rafael Luque, Radha V. Jayaram. An efficient route to 1,8-dioxo-octahydroxanthenes and -decahydroacridines using a sulfated zirconia catalyst. Catalysis Communications 2017, 97 , 138-145. https://doi.org/10.1016/j.catcom.2017.03.017
    13. Imène Sehout, Raouf Boulcina, Boudjemaa Boumoud, Taous Boumoud, Abdelmadjid Debache. Solvent-free synthesis of polyhydroquinoline and 1,8-dioxodecahydroacridine derivatives through the Hantzsch reaction catalyzed by a natural organic acid: A green method. Synthetic Communications 2017, 47 (12) , 1185-1191. https://doi.org/10.1080/00397911.2017.1316406
    14. Shaaban K. Mohamed, Necmi Dege, Mehmet Akkurt, Omyma A. Abd Allah, Mustafa R. Albayati. Ethyl 2-[9-(5-bromo-2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-decahydroacridin-10-yl]acetate. IUCrData 2017, 2 (4) https://doi.org/10.1107/S2414314617005739
    15. Karolina Kamińska, Elżbieta Wojaczyńska, Joanna Wietrzyk, Eliza Turlej, Agnieszka Błażejczyk, Robert Wieczorek. Synthesis, structure and antiproliferative activity of chiral polyamines based on a 2-azanorbornane skeleton. Tetrahedron: Asymmetry 2016, 27 (16) , 753-758. https://doi.org/10.1016/j.tetasy.2016.06.009
    16. Agnieszka Potęga, Barbara Fedejko-Kap, Zofia Mazerska. Imidazoacridinone antitumor agent C-1311 as a selective mechanism-based inactivator of human cytochrome P450 1A2 and 3A4 isoenzymes. Pharmacological Reports 2016, 68 (4) , 663-670. https://doi.org/10.1016/j.pharep.2016.02.003
    17. Tomasz Laskowski, Jacek Czub, Paweł Sowiński, Jan Mazerski. Intercalation complex of imidazoacridinone C-1311, a potential anticancer drug, with DNA helix d(CGATCG) 2 : stereostructural studies by 2D NMR spectroscopy. Journal of Biomolecular Structure and Dynamics 2016, 34 (3) , 653-663. https://doi.org/10.1080/07391102.2015.1049552
    18. Nourallah Hazeri, Amin Masoumnia, Malek Taher Mghsoodlou, Sajjad Salahi, Mehrnoosh Kangani, Samira Kianpour, Shiva Kiaee, Jasem Abonajmi. Acetic acid as an efficient catalyst for synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. Research on Chemical Intermediates 2015, 41 (7) , 4123-4131. https://doi.org/10.1007/s11164-013-1516-2
    19. Aleksandra Taraszkiewicz, Grzegorz Szewczyk, Tadeusz Sarna, Krzysztof P. Bielawski, Joanna Nakonieczna, . Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation. PLOS ONE 2015, 10 (6) , e0129301. https://doi.org/10.1371/journal.pone.0129301
    20. Masoud Nasr-Esfahani, Morteza Montazerozohori, Tooba Abdizadeh. Nanorod vanadatesulfuric acid (VSA NRs)-catalyzed green synthesis of hexahydroacridine-1,8-diones in solvent-free conditions. Comptes Rendus. Chimie 2015, 18 (5) , 547-553. https://doi.org/10.1016/j.crci.2014.07.010
    21. Binoyargha Dam, Sibaji Nandi, Amarta Kumar Pal. An efficient ‘on-water’ synthesis of 1,4-dihydropyridines using Fe3O4@SiO2 nanoparticles as a reusable catalyst. Tetrahedron Letters 2014, 55 (38) , 5236-5240. https://doi.org/10.1016/j.tetlet.2014.08.002
    22. Monika Pawłowska, Ewa Augustin, Zofia Mazerska. CYP3A4 overexpression enhances apoptosis induced by anticancer agent imidazoacridinone C-1311, but does not change the metabolism of C-1311 in CHO cells. Acta Pharmacologica Sinica 2014, 35 (1) , 98-112. https://doi.org/10.1038/aps.2013.132
    23. Abdul Rajack, K. Yuvaraju, Ch. Praveen, Y.L.N. Murthy. A facile synthesis of 3,4-dihydropyrimidinones/thiones and novel N-dihydro pyrimidinone-decahydroacridine-1,8-diones catalyzed by cellulose sulfuric acid. Journal of Molecular Catalysis A: Chemical 2013, 370 , 197-204. https://doi.org/10.1016/j.molcata.2013.01.003
    24. Monika Pawlowska, Rong Chu, Barbara Fedejko-Kap, Ewa Augustin, Zofia Mazerska, Anna Radominska-Pandya, Timothy C. Chambers. Metabolic Transformation of Antitumor Acridinone C-1305 but Not C-1311 via Selective Cellular Expression of UGT1A10 Increases Cytotoxic Response: Implications for Clinical Use. Drug Metabolism and Disposition 2013, 41 (2) , 414-421. https://doi.org/10.1124/dmd.112.047811
    25. Heshmatollah Alinezhad, Sahar Mohseni Tavakkoli. Efficient and Convenient Synthesis of 1,8-Dioxodecahydroacridine Derivatives Using Cu-Doped ZnO Nanocrystalline Powder as a Catalyst under Solvent-Free Conditions. The Scientific World Journal 2013, 2013 , 1-9. https://doi.org/10.1155/2013/575636
    26. Mei Hong, Guomin Xiao. FSG-Hf(NPf2)4 catalyzed, environmentally benign synthesis of 1,8-dioxo-decahydroaridines in water–ethanol. Journal of Fluorine Chemistry 2012, 144 , 7-9. https://doi.org/10.1016/j.jfluchem.2012.09.006
    27. Marcin Koba, Tomasz Bączek. Importance of some classes of molecular descriptors on classification of antitumor acridinones using factor analysis. Medicinal Chemistry Research 2012, 21 (10) , 2854-2862. https://doi.org/10.1007/s00044-011-9816-9
    28. Ali Javid, Amir Khojastehnezhad, Majid Heravi, Fatemeh F. Bamoharram. Silica-Supported Preyssler Nanoparticles Catalyzed Simple and Efficient One-Pot Synthesis of 1,8-Dioxodecahydroacridines in Aqueous Media. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2012, 42 (1) , 14-17. https://doi.org/10.1080/15533174.2011.609221
    29. Marcin Koba, Tomasz Bączek. Physicochemical interaction of antitumor acridinone derivatives with DNA in view of QSAR studies. Medicinal Chemistry Research 2011, 20 (8) , 1385-1393. https://doi.org/10.1007/s00044-010-9487-y
    30. Agnieszka Potega, Emilia Dabrowska, Magdalena Niemira, Agata Kot-Wasik, Sebastien Ronseaux, Colin J. Henderson, C. Roland Wolf, Zofia Mazerska. The Imidazoacridinone Antitumor Drug, C-1311, Is Metabolized by Flavin Monooxygenases but Not by Cytochrome P450s. Drug Metabolism and Disposition 2011, 39 (8) , 1423-1432. https://doi.org/10.1124/dmd.111.038984
    31. George Kolokythas, Konstantinos Daniilides, Nicole Pouli, Panagiotis Marakos, Harris Pratsinis, Dimitris Kletsas. Design, synthesis, and cytotoxic activity evaluation of new linear pyranoxanthone aminoderivatives. Journal of Heterocyclic Chemistry 2011, 48 (4) , 927-935. https://doi.org/10.1002/jhet.670
    32. N. A. Pelevin, Yu. D. Markovich, G. V. Nazarov, S. E. Galan, T. N. Kudryavtseva, M. I. Brylev. The rate of cyclization of 2′- and 4′-substituted diphenylamine-2-carboxylic acids in sulfuric acid as a function of the electronic properties of substituents. Russian Chemical Bulletin 2011, 60 (3) , 590-592. https://doi.org/10.1007/s11172-011-0092-0
    33. K.A. Nolan, M.P. Humphries, R.A. Bryce, I.J. Stratford. Imidazoacridin-6-ones as novel inhibitors of the quinone oxidoreductase NQO2. Bioorganic & Medicinal Chemistry Letters 2010, 20 (9) , 2832-2836. https://doi.org/10.1016/j.bmcl.2010.03.051
    34. Mazaahir Kidwai, Divya Bhatnagar. Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1,8-diones in PEG. Tetrahedron Letters 2010, 51 (20) , 2700-2703. https://doi.org/10.1016/j.tetlet.2010.03.033
    35. Jagan Reddy Etukala, J. S. Yadav. Synthesis of 1‐(phenylsulfanyl/phenoxy)‐3 H ‐naptho[1,2,3‐ de ]quinoline‐2,7‐diones. Heteroatom Chemistry 2008, 19 (2) , 221-227. https://doi.org/10.1002/hc.20399
    36. Anna M. Nowicka, Ewelina Zabost, Mikolaj Donten, Zofia Mazerska, Zbigniew Stojek. Spectroelectroanalytical Properties of Antitumor Agent C‐1311. Electroanalysis 2007, 19 (2-3) , 214-219. https://doi.org/10.1002/elan.200603713
    37. Myriam Ouberai, Christian Asche, Danièle Carrez, Alain Croisy, Pascal Dumy, Martine Demeunynck. 3,4-Dihydro-1H-[1,3]oxazino[4,5-c]acridines as a new family of cytotoxic drugs. Bioorganic & Medicinal Chemistry Letters 2006, 16 (17) , 4641-4643. https://doi.org/10.1016/j.bmcl.2006.05.101
    38. René Csuk, Alexander Barthel, Christian Raschke. Convenient access to substituted acridines by a Buchwald–Hartwig amination. Tetrahedron 2004, 60 (27) , 5737-5750. https://doi.org/10.1016/j.tet.2004.05.013
    39. Martine Demeunynck. Antitumour acridines. Expert Opinion on Therapeutic Patents 2004, 14 (1) , 55-70. https://doi.org/10.1517/13543776.14.1.55
    40. Zofia Mazerska, Paweł Sowiński, Jerzy Konopa. Molecular mechanism of the enzymatic oxidation investigated for imidazoacridinone antitumor drug, C-1311. Biochemical Pharmacology 2003, 66 (9) , 1727-1736. https://doi.org/10.1016/S0006-2952(03)00477-5
    41. Zofia Mazerska, Agnieszka Zon, Zbigniew Stojek. Electrochemical formation of the adduct between antitumor agent C-1311 and DNA nucleoside dG. Electrochemistry Communications 2003, 5 (9) , 770-775. https://doi.org/10.1016/S1388-2481(03)00181-4
    42. Zofia Mazerska, Silvia Zamponi, Roberto Marassi, Paweł Sowiński, Jerzy Konopa. The products of electro- and photochemical oxidation of 2-hydroxyacridinone, the reference compound of antitumor imidazoacridinone derivatives. Journal of Electroanalytical Chemistry 2002, 521 (1-2) , 144-154. https://doi.org/10.1016/S0022-0728(02)00673-3
    43. Zofia Mazerska, Katarzyna Gorlewska, Agnieszka Kraciuk, Jerzy Konopa. The relevance of enzymatic oxidation by horseradish peroxidase to antitumour potency of imidazoacridinone derivatives. Chemico-Biological Interactions 1998, 115 (1) , 1-22. https://doi.org/10.1016/S0009-2797(98)00042-8
    44. W. M. CHOLODY, B. HOROWSKA, J. PARADZIEJ‐LUKOWICZ, S. MARTELLI, J. KONOPA. ChemInform Abstract: Structure‐Activity Relationship for Antineoplastic Imidazoacridinones: Synthesis and Antileukemic Activity in vivo.. ChemInform 1996, 27 (27) https://doi.org/10.1002/chin.199627168

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect