ACS Publications. Most Trusted. Most Cited. Most Read
2-Substituted (2SR)-2-Amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as Potent and Selective Antagonists of Group II Metabotropic Glutamate Receptors. 2. Effects of Aromatic Substitution, Pharmacological Characterization, and Bioavailability
My Activity
    Article

    2-Substituted (2SR)-2-Amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as Potent and Selective Antagonists of Group II Metabotropic Glutamate Receptors. 2. Effects of Aromatic Substitution, Pharmacological Characterization, and Bioavailability
    Click to copy article linkArticle link copied!

    View Author Information
    Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285
    Lilly Development Centre S.A., Parc Scientifique de Louvain-la-Neuve, Rue Granbonpre, 11, 1348 Mont Saint-Guibert, Belgium
    Other Access OptionsSupporting Information (1)

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 1998, 41, 3, 358–378
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm970498o
    Published January 14, 1998
    Copyright © 1998 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    In this paper we describe the synthesis of a series of α-substituted analogues of the potent and selective group II metabotropic glutamate receptor (mGluR) agonist (1S,1‘S,2‘S)-carboxycyclopropylglycine (2, L-CCG 1). Incorporation of a substituent on the amino acid carbon converted the agonist 2 into an antagonist. All of the compounds were prepared and tested as a series of four isomers, i.e., two racemic diastereomers. On the basis of the improvement in affinity realized for the α-phenylethyl analogue 3, in this paper we explored the effects of substitution on the aromatic ring as a strategy to increase the affinity of these compounds for group II mGluRs. Affinity for group II mGluRs was measured using [3H]glutamic acid (Glu) binding in rat forebrain membranes. Antagonist activity was confirmed for these compounds by measuring their ability to antagonize (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced inhibition of forskolin stimulated cyclic-AMP in RGT cells transfected with human mGluR2 and mGluR3. Meta substitution on the aromatic ring of 3 with a variety of substituents, both electron donating (e.g., methyl, hydroxy, amino, methoxy, phenyl, phenoxy) and electron withdrawing (e.g., fluorine, chlorine, bromine, carboxy, trifluoromethyl) gave from 1.5- to 4.5-fold increases in affinity. Substitution with p-fluorine, as in 97 (IC50 = 0.022 ± 0.002), was the exception. Here, a greater increase in affinity was realized than for either the ortho- or meta-substituted analogues; 97 was the most potent compound resulting from monosubstitution of the aromatic. At best, only modest increases in affinity were realized for certain compounds bearing either two chlorines or two fluorines, and two methoxy groups gave no improvement in affinity (all examined in a variety of substitution patterns). Three amino acids, 4, 5, and 104, were resolved into their four constituent isomers, and affinity and functional activity for group II mGluRs was found to reside solely in the S,S,S-isomers of each, consistent with 1. With an IC50 = 2.9 ± 0.6 nM, the resolved xanthylmethyl compound 168 was the most potent compound from this SAR. Amino acid 168 demonstrated high plasma levels following intraperitoneal (ip) administration and readily penetrated into the brain. This compound, however, had only limited (∼5%) oral bioavailability. Systemic administration of 168 protected mice from limbic seizures produced by the mGluR agonist 3,5-dihydroxyphenylglycine, with an ED50 = 31 mg/kg (ip, 60 min preinjection). Thus, 168 represents a valuable tool to study the role of group II mGluRs in disease.

    Copyright © 1998 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Address correspondence to:  Paul L. Ornstein, Lilly Research Laboratories, Lilly Corporate Center, DC 0510, Indianapolis, IN 46285. Phone:  317-276-3226. Fax:  317-276-7600. E-mail:  ornstein  paul@ lilly.com.

    Supporting Information Available

    Click to copy section linkSection link copied!

    A list of all of the names of the amino acids prepared in this paper and 1H NMR spectra for compounds 165, 166, 177, 178, 189, and 190 (11 pages). Ordering information is given on any current masthead page.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 90 publications.

    1. Sergio A. Alonso de Diego, María Lourdes Linares, Aránzazu García Molina, Ana Isabel de Lucas, Alcira del Cerro, Jose Manuel Alonso, Luc Ver Donck, Jose María Cid, Andrés A. Trabanco, Michiel Van Gool. Discovery of 6,7-Dihydropyrazolo[1,5-a]pyrazin-4(5H)-one Derivatives as mGluR2 Negative Allosteric Modulators with In Vivo Activity in a Rodent’s Model of Cognition. Journal of Medicinal Chemistry 2024, 67 (17) , 15569-15585. https://doi.org/10.1021/acs.jmedchem.4c01227
    2. Christian B. M. Poulie, Na Liu, Anders A. Jensen, Lennart Bunch. Design, Synthesis, and Pharmacological Characterization of Heterobivalent Ligands for the Putative 5-HT2A/mGlu2 Receptor Complex. Journal of Medicinal Chemistry 2020, 63 (17) , 9928-9949. https://doi.org/10.1021/acs.jmedchem.0c01058
    3. James A. Monn, Steven S. Henry, Steven M. Massey, David K. Clawson, Qi Chen, Benjamin A. Diseroad, Rajni M. Bhardwaj, Shane Atwell, Frances Lu, Jing Wang, Marijane Russell, Beverly A. Heinz, Xu-shan Wang, Joan H. Carter, Brian G. Getman, Kofi Adragni, Lisa M. Broad, Helene E. Sanger, Daniel Ursu, John T. Catlow, Steven Swanson, Bryan G. Johnson, David B. Shaw, David L. McKinzie, Junliang Hao. Synthesis and Pharmacological Characterization of C4β-Amide-Substituted 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1S,2S,4S,5R,6S)-2-Amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2794193), a Highly Potent and Selective mGlu3 Receptor Agonist. Journal of Medicinal Chemistry 2018, 61 (6) , 2303-2328. https://doi.org/10.1021/acs.jmedchem.7b01481
    4. Enza Lacivita, Roberto Perrone, Lucia Margari, and Marcello Leopoldo . Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. Journal of Medicinal Chemistry 2017, 60 (22) , 9114-9141. https://doi.org/10.1021/acs.jmedchem.7b00965
    5. Mark A. T. Blaskovich . Unusual Amino Acids in Medicinal Chemistry. Journal of Medicinal Chemistry 2016, 59 (24) , 10807-10836. https://doi.org/10.1021/acs.jmedchem.6b00319
    6. Mark D. Chappell, Renhua Li, Stephon C. Smith, Bruce A. Dressman, Eric G. Tromiczak, Allie E. Tripp, Maria-Jesus Blanco, Tatiana Vetman, Steven J. Quimby, James Matt, Thomas C. Britton, Adam M. Fivush, Jeffrey M. Schkeryantz, Daniel Mayhugh, Jon A. Erickson, Mark G. Bures, Carlos Jaramillo, Mercedes Carpintero, José Eugenio de Diego, Mario Barberis, Susana Garcia-Cerrada, José F. Soriano, Stephen Antonysamy, Shane Atwell, Iain MacEwan, Bradley Condon, Christine Sougias, Jing Wang, Aiping Zhang, Kris Conners, Chris Groshong, Stephen R. Wasserman, John W. Koss, Jeffrey M. Witkin, Xia Li, Carl Overshiner, Keith A. Wafford, Wesley Seidel, Xu-Shan Wang, Beverly A. Heinz, Steven Swanson, John T. Catlow, David W. Bedwell, James A. Monn, Charles H. Mitch, and Paul L. Ornstein . Discovery of (1S,2R,3S,4S,5R,6R)-2-Amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid Hydrochloride (LY3020371·HCl): A Potent, Metabotropic Glutamate 2/3 Receptor Antagonist with Antidepressant-Like Activity. Journal of Medicinal Chemistry 2016, 59 (24) , 10974-10993. https://doi.org/10.1021/acs.jmedchem.6b01119
    7. Craig W. Lindsley, Kyle A. Emmitte, Corey R. Hopkins, Thomas M. Bridges, Karen J. Gregory, Colleen M. Niswender, and P. Jeffrey Conn . Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chemical Reviews 2016, 116 (11) , 6707-6741. https://doi.org/10.1021/acs.chemrev.5b00656
    8. Andrew S. Felts, Alice L. Rodriguez, Katrina A. Smith, Julie L. Engers, Ryan D. Morrison, Frank W. Byers, Anna L. Blobaum, Charles W. Locuson, Sichen Chang, Daryl F. Venable, Colleen M. Niswender, J. Scott Daniels, P. Jeffrey Conn, Craig W. Lindsley, and Kyle A. Emmitte . Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as Selective Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 2. Journal of Medicinal Chemistry 2015, 58 (22) , 9027-9040. https://doi.org/10.1021/acs.jmedchem.5b01371
    9. Julie L. Engers, Alice L. Rodriguez, Leah C. Konkol, Ryan D. Morrison, Analisa D. Thompson, Frank W. Byers, Anna L. Blobaum, Sichen Chang, Daryl F. Venable, Matthew T. Loch, Colleen M. Niswender, J. Scott Daniels, Carrie K. Jones, P. Jeffrey Conn, Craig W. Lindsley, and Kyle A. Emmitte . Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents. Journal of Medicinal Chemistry 2015, 58 (18) , 7485-7500. https://doi.org/10.1021/acs.jmedchem.5b01005
    10. Farina Brackmann and, Armin de Meijere. Natural Occurrence, Syntheses, and Applications of Cyclopropyl-Group-Containing α-Amino Acids. 2. 3,4- and 4,5-Methanoamino Acids. Chemical Reviews 2007, 107 (11) , 4538-4583. https://doi.org/10.1021/cr0784083
    11. Thorsten Wilhelm and, Mark Lautens. Palladium-Catalyzed Alkylation−Hydride Reduction Sequence:  Synthesis of Meta-Substituted Arenes. Organic Letters 2005, 7 (18) , 4053-4056. https://doi.org/10.1021/ol051628n
    12. Subhash P. Chavan,, Pallavi Sharma,, Rasapalli Sivappa,, Mohan M. Bhadbhade,, Rajesh G. Gonnade, and, Uttam R. Kalkote. Enantioselective Synthesis of l-CCG-I. The Journal of Organic Chemistry 2003, 68 (17) , 6817-6819. https://doi.org/10.1021/jo0345188
    13. Barry M. Trost,, Janet L. Gunzner,, Olivier Dirat, and, Young H. Rhee. Callipeltoside A: Total Synthesis, Assignment of the Absolute and Relative Configuration, and Evaluation of Synthetic Analogues. Journal of the American Chemical Society 2002, 124 (35) , 10396-10415. https://doi.org/10.1021/ja0205232
    14. Joan Rifé and, Rosa M. Ortuño, , Gilles A. Lajoie. Stereoselective Synthesis of l-2-(Carboxycyclopropyl)glycines via Stereocontrolled 1,3-Dipolar Cycloadditions of Diazomethane on Z- and E-3,4-l-Didehydroglutamates OBO Esters. The Journal of Organic Chemistry 1999, 64 (24) , 8958-8961. https://doi.org/10.1021/jo991066j
    15. Yajie Jiang, Manshu Zou, Tingting Ren, Yuhong Wang. Are mGluR2/3 Inhibitors Potential Compounds for Novel Antidepressants?. Cellular and Molecular Neurobiology 2023, 43 (5) , 1931-1940. https://doi.org/10.1007/s10571-022-01310-8
    16. Si Han Li, Khaled S. Abd-Elrahman, Stephen S.G. Ferguson. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacology & Therapeutics 2022, 239 , 108275. https://doi.org/10.1016/j.pharmthera.2022.108275
    17. Alshaima’a M. Qunies, Kyle A. Emmitte. Negative allosteric modulators of group II metabotropic glutamate receptors: A patent review (2015 – present). Expert Opinion on Therapeutic Patents 2021, 7 , 1-22. https://doi.org/10.1080/13543776.2021.1903431
    18. Cynthia Kwan, Imane Frouni, Stephen G. Nuara, Sébastien Belliveau, Woojin Kang, Adjia Hamadjida, Dominique Bédard, Francis Beaudry, Michel Panisset, Jim C. Gourdon, Philippe Huot. Combined 5-HT2A and mGlu2 modulation for the treatment of dyskinesia and psychosis in Parkinson's disease. Neuropharmacology 2021, 186 , 108465. https://doi.org/10.1016/j.neuropharm.2021.108465
    19. Linjing Mu, Simon M. Ametamey. Current Radioligands for the PET Imaging of Metabotropic Glutamate Receptors. 2021, 427-481. https://doi.org/10.1007/978-3-030-53176-8_13
    20. Jeffrey M. Witkin. mGlu2/3 receptor antagonism: A mechanism to induce rapid antidepressant effects without ketamine-associated side-effects. Pharmacology Biochemistry and Behavior 2020, 190 , 172854. https://doi.org/10.1016/j.pbb.2020.172854
    21. Jaclyn N. Highland, Panos Zanos, Polymnia Georgiou, Todd D. Gould. Group II metabotropic glutamate receptor blockade promotes stress resilience in mice. Neuropsychopharmacology 2019, 44 (10) , 1788-1796. https://doi.org/10.1038/s41386-019-0380-1
    22. Tyler W. McCullock, Paul J. Kammermeier. Target validation: Weak selectivity of LY 341495 for mG luR2 over mG luR4 makes glutamate a less selective agonist. Pharmacology Research & Perspectives 2019, 7 (3) https://doi.org/10.1002/prp2.471
    23. Shigeyuki Chaki, Kenichi Fukumoto. Role of Serotonergic System in the Antidepressant Actions of mGlu2/3 Receptor Antagonists: Similarity to Ketamine. International Journal of Molecular Sciences 2019, 20 (6) , 1270. https://doi.org/10.3390/ijms20061270
    24. Kenneth J. O’Riordan, Neng-Wei Hu, Michael J. Rowan. Physiological activation of mGlu5 receptors supports the ion channel function of NMDA receptors in hippocampal LTD induction in vivo. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-22768-x
    25. Yuhua Ran, Zengliang Jin, Xiaofei Chen, Nan Zhao, Xinxin Fang, Liming Zhang, Youzhi Zhang, Yunfeng Li. Hypidone Hydrochloride (YL-0919) Produces a Fast-Onset Reversal of the Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure. Frontiers in Cellular Neuroscience 2018, 12 https://doi.org/10.3389/fncel.2018.00395
    26. Kenichi Fukumoto, Michihiko Iijima, Takeo Funakoshi, Shigeyuki Chaki. 5-HT1A receptor stimulation in the medial prefrontal cortex mediates the antidepressant effects of mGlu2/3 receptor antagonist in mice. Neuropharmacology 2018, 137 , 96-103. https://doi.org/10.1016/j.neuropharm.2018.05.001
    27. Kenneth J. O’Riordan, Neng-Wei Hu, Michael J. Rowan. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus. Cell Reports 2018, 22 (8) , 2053-2065. https://doi.org/10.1016/j.celrep.2018.01.085
    28. JM Witkin, JA Monn, J Li, B Johnson, DL McKinzie, X-S Wang, BA Heinz, R Li, PL Ornstein, SC Smith, CH Mitch, DO Calligaro, S Swanson, D Allen, K Phillips, G Gilmour. Preclinical predictors that the orthosteric mGlu2/3 receptor antagonist LY3020371 will not engender ketamine-associated neurotoxic, motor, cognitive, subjective, or abuse-liability-related effects. Pharmacology Biochemistry and Behavior 2017, 155 , 43-55. https://doi.org/10.1016/j.pbb.2017.03.001
    29. Jeffrey M. Witkin, Paul L. Ornstein, Charles H. Mitch, Renhua Li, Stephon C. Smith, Beverly A. Heinz, Xu-Shan Wang, Chuanxi Xiang, Joan H. Carter, Wesley H. Anderson, Xia Li, Lisa M. Broad, Francesca Pasqui, Stephen M. Fitzjohn, Helen E. Sanger, Jodi L. Smith, John Catlow, Steven Swanson, James A. Monn. In vitro pharmacological and rat pharmacokinetic characterization of LY3020371, a potent and selective mGlu 2/3 receptor antagonist. Neuropharmacology 2017, 115 , 100-114. https://doi.org/10.1016/j.neuropharm.2015.12.021
    30. Sylvain Celanire, Iyassu Sebhat, Juergen Wichmann, Stanislas Mayer, Stephan Schann, Silvia Gatti. Novel metabotropic glutamate receptor 2/3 antagonists and their therapeutic applications: a patent review (2005 – present). Expert Opinion on Therapeutic Patents 2015, 25 (1) , 69-90. https://doi.org/10.1517/13543776.2014.983899
    31. . References. 2014, 290-333. https://doi.org/10.1002/9781118943670.refs
    32. Hiroyuki Koike, Shigeyuki Chaki. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behavioural Brain Research 2014, 271 , 111-115. https://doi.org/10.1016/j.bbr.2014.05.065
    33. Yu-Wen Chen, Hui-Ching Lin, Ming-Chong Ng, Ya-Hsin Hsiao, Chao-Chuan Wang, Po-Wu Gean, Po See Chen. Activation of mGluR2/3 underlies the effects of N-acetylcystein on amygdala-associated autism-like phenotypes in a valproate-induced rat model of autism. Frontiers in Behavioral Neuroscience 2014, 8 https://doi.org/10.3389/fnbeh.2014.00219
    34. Jason M Dwyer, Ashley E Lepack, Ronald S Duman. mGluR2/3 blockade produces rapid and long-lasting reversal of anhedonia caused by chronic stress exposure. Journal of Molecular Psychiatry 2013, 1 (1) https://doi.org/10.1186/2049-9256-1-15
    35. Hiroyuki Koike, Kenichi Fukumoto, Michihiko Iijima, Shigeyuki Chaki. Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behavioural Brain Research 2013, 238 , 48-52. https://doi.org/10.1016/j.bbr.2012.10.023
    36. Yuji Odagaki, Masakazu Kinoshita, Ryoichi Toyoshima. Group II metabotropic glutamate receptor-mediated activation of G-proteins in rat hippocampal and striatal membranes. Neuroscience Letters 2013, 539 , 22-26. https://doi.org/10.1016/j.neulet.2013.01.033
    37. Hidayat Hussain, Ivan R. Green, Karsten Krohn, Ishtiaq Ahmed. Advances in the total synthesis of biologically important callipeltosides: a review. Natural Product Reports 2013, 30 (5) , 640. https://doi.org/10.1039/c3np20110d
    38. Pradeep Kumar, Abhishek Dubey, Anand Harbindu. Enantio- and diastereocontrolled conversion of chiral epoxides to trans-cyclopropane carboxylates: application to the synthesis of cascarillic acid, grenadamide and l -(−)-CCG-II. Organic & Biomolecular Chemistry 2012, 10 (34) , 6987-6994. https://doi.org/10.1039/C2OB25622C
    39. Nikolaos Pitsikas, Eleanna Kaffe, Athina Markou. The metabotropic glutamate 2/3 receptor antagonist LY341495 differentially affects recognition memory in rats. Behavioural Brain Research 2012, 230 (2) , 374-379. https://doi.org/10.1016/j.bbr.2012.02.027
    40. Ji-Quan Wang, Zhaoda Zhang, Darshini Kuruppu, Anna-Liisa Brownell. Radiosynthesis of PET radiotracer as a prodrug for imaging group II metabotropic glutamate receptors in vivo. Bioorganic & Medicinal Chemistry Letters 2012, 22 (5) , 1958-1962. https://doi.org/10.1016/j.bmcl.2012.01.039
    41. Hiroyuki Koike, Michihiko Iijima, Shigeyuki Chaki. Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists. Neuropharmacology 2011, 61 (8) , 1419-1423. https://doi.org/10.1016/j.neuropharm.2011.08.034
    42. Yuji Odagaki, Masakazu Kinoshita, Ryoichi Toyoshima. Functional Coupling between Metabotropic Glutamate Receptors and G-Proteins in Rat Cerebral Cortex Assessed by Guanosine-5′-O-(3-[35S]thio)triphosphate Binding Assay. Basic & Clinical Pharmacology & Toxicology 2011, 109 (3) , 175-185. https://doi.org/10.1111/j.1742-7843.2011.00705.x
    43. Catherine H. Choi, Brian P. Schoenfeld, Aaron J. Bell, Paul Hinchey, Maria Kollaros, Michael J. Gertner, Newton H. Woo, Michael R. Tranfaglia, Mark F. Bear, R. Suzanne Zukin, Thomas V. McDonald, Thomas A. Jongens, Sean M.J. McBride. Pharmacological reversal of synaptic plasticity deficits in the mouse model of Fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Research 2011, 1380 , 106-119. https://doi.org/10.1016/j.brainres.2010.11.032
    44. Nurith Amitai, Athina Markou. Effects of metabotropic glutamate receptor 2/3 agonism and antagonism on schizophrenia-like cognitive deficits induced by phencyclidine in rats. European Journal of Pharmacology 2010, 639 (1-3) , 67-80. https://doi.org/10.1016/j.ejphar.2009.12.040
    45. A.-M. Linden, B.G. Johnson, Nina Trokovic, E.R. Korpi, D.D. Schoepp. Use of MGLUR2 and MGLUR3 knockout mice to explore in vivo receptor specificity of the MGLUR2/3 selective antagonist LY341495. Neuropharmacology 2009, 57 (2) , 172-182. https://doi.org/10.1016/j.neuropharm.2009.05.002
    46. Brian M. Coleridge, Charles S. Bello, Andreas Leitner. General and user-friendly protocol for the synthesis of functionalized aryl- and heteroaryl-cyclopropanes by Negishi cross-coupling reactions. Tetrahedron Letters 2009, 50 (31) , 4475-4477. https://doi.org/10.1016/j.tetlet.2009.05.054
    47. Anton Y. Bespalov, Marcel M. van Gaalen, Irina A. Sukhotina, Karsten Wicke, Mario Mezler, Hans Schoemaker, Gerhard Gross. Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression. European Journal of Pharmacology 2008, 592 (1-3) , 96-102. https://doi.org/10.1016/j.ejphar.2008.06.089
    48. Kazunari Sakagami, Akito Yasuhara, Shigeyuki Chaki, Ryoko Yoshikawa, Yasunori Kawakita, Akio Saito, Takeo Taguchi, Atsuro Nakazato. Synthesis, in vitro pharmacology, and pharmacokinetic profiles of 2-[1-amino-1-carboxy-2-(9H-xanthen-9-yl)-ethyl]-1-fluorocyclopropanecarboxylic acid and its 6-heptyl ester, a potent mGluR2 antagonist. Bioorganic & Medicinal Chemistry 2008, 16 (8) , 4359-4366. https://doi.org/10.1016/j.bmc.2008.02.066
    49. Thomas J. Woltering, Geo Adam, Philipp Huguenin, Jürgen Wichmann, Sabine Kolczewski, Silvia Gatti, Anne Bourson, James N. C. Kew, Grayson Richards, John A. Kemp, Vincent Mutel, Frédéric Knoflach. Asymmetric Synthesis and Receptor Pharmacology of the Group II mGlu Receptor Ligand (1 S ,2 R ,3 R ,5 R ,6 S )‐2‐Amino‐3‐hydroxy‐bicyclo[3.1.0]hexane‐2,6‐dicarboxylic Acid—HYDIA. ChemMedChem 2008, 3 (2) , 323-335. https://doi.org/10.1002/cmdc.200700226
    50. James A. Monn, Michael P. Johnson, Darryle D. Schoepp. Metabotropic Glutamate Receptors. 2007https://doi.org/10.1002/9780470101001.hcn011
    51. Jeffrey M. Witkin, William J.A. Eiler II. Antagonism of metabotropic glutamate group II receptors in the potential treatment of neurological and neuropsychiatric disorders. Drug Development Research 2006, 67 (9) , 757-769. https://doi.org/10.1002/ddr.20144
    52. Akito Yasuhara, Masato Nakamura, Kazunari Sakagami, Toshiharu Shimazaki, Ryoko Yoshikawa, Shigeyuki Chaki, Hiroshi Ohta, Atsuro Nakazato. Prodrugs of 3-(3,4-dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039): A potent and orally active group II mGluR antagonist with antidepressant-like potential. Bioorganic & Medicinal Chemistry 2006, 14 (12) , 4193-4207. https://doi.org/10.1016/j.bmc.2006.01.060
    53. T M Senserrick. Reducing young driver road trauma: guidance and optimism for the future: Figure 1. Injury Prevention 2006, 12 (suppl 1) , i56-i60. https://doi.org/10.1136/ip.2006.012773
    54. Akito Yasuhara, Kazunari Sakagami, Ryoko Yoshikawa, Shigeyuki Chaki, Masato Nakamura, Atsuro Nakazato. Synthesis, in vitro pharmacology, and structure–activity relationships of 2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives as mGluR2 antagonists. Bioorganic & Medicinal Chemistry 2006, 14 (10) , 3405-3420. https://doi.org/10.1016/j.bmc.2005.12.061
    55. Masato Nakamura, Yasunori Kawakita, Akito Yasuhara, Yoshiki Fukasawa, Koji Yoshida, Kazunari Sakagami, Atsuro Nakazato. IN VITRO AND IN VIVO EVALUATION OF THE METABOLISM AND BIOAVAILABILITY OF ESTER PRODRUGS OF MGS0039 (3-(3,4-DICHLOROBENZYLOXY)-2-AMINO-6-FLUOROBICYCLO[3.1.0]HEXANE-2,6-DICARBOXYLIC ACID), A POTENT METABOTROPIC GLUTAMATE RECEPTOR ANTAGONIST. Drug Metabolism and Disposition 2006, 34 (3) , 369-374. https://doi.org/10.1124/dmd.105.006213
    56. Rosario González, Iván Collado, Beatriz López de Uralde, Alicia Marcos, Luisa M. Martín-Cabrejas, Concepción Pedregal, Jaime Blanco-Urgoiti, Javier Pérez-Castells, M. Alejandro Fernández, Sherri L. Andis, Bryan G. Johnson, Rebecca A. Wright, Darryle D. Schoepp, James A. Monn. C3′-cis-Substituted carboxycyclopropyl glycines as metabotropic glutamate 2/3 receptor agonists: Synthesis and SAR studies. Bioorganic & Medicinal Chemistry 2005, 13 (23) , 6556-6570. https://doi.org/10.1016/j.bmc.2005.07.036
    57. Rajeshwar P. Verma, Corwin Hansch. An approach toward the problem of outliers in QSAR. Bioorganic & Medicinal Chemistry 2005, 13 (15) , 4597-4621. https://doi.org/10.1016/j.bmc.2005.05.002
    58. A.-M. Linden, H. Shannon, M. Baez, J. L. Yu, A. Koester, D. D. Schoepp. Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. Psychopharmacology 2005, 179 (1) , 284-291. https://doi.org/10.1007/s00213-004-2098-x
    59. I. Feinberg, D. D. Schoepp, K.-C. Hsieh, N. Darchia, I. G. Campbell. The Metabotropic Glutamate (mGLU)2/3 Receptor Antagonist LY341495 [2 S -2-Amino-2-(1 S ,2 S -2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic Acid] Stimulates Waking and Fast Electroencephalogram Power and Blocks the Effects of the mGLU2/3 Receptor Agonist LY379268 [(-)-2-Oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] in Rats. Journal of Pharmacology and Experimental Therapeutics 2005, 312 (2) , 826-833. https://doi.org/10.1124/jpet.104.076547
    60. A.-M. Linden, M. Bergeron, D.D. Schoepp. Comparison of c-Fos induction in the brain by the mGlu2/3 receptor antagonist LY341495 and agonist LY354740: Evidence for widespread endogenous tone at brain mGlu2/3 receptors in vivo. Neuropharmacology 2005, 49 , 120-134. https://doi.org/10.1016/j.neuropharm.2005.05.006
    61. Guy A. Higgins, Theresa M. Ballard, James N.C. Kew, J. Grayson Richards, John A. Kemp, Geo Adam, Thomas Woltering, Shigetada Nakanishi, Vincent Mutel. Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology 2004, 46 (7) , 907-917. https://doi.org/10.1016/j.neuropharm.2004.01.018
    62. Chad J. Swanson, Kenneth W. Perry, Darryle D. Schoepp. The mGlu2/3 receptor agonist, LY354740, blocks immobilization‐induced increases in noradrenaline and dopamine release in the rat medial prefrontal cortex. Journal of Neurochemistry 2004, 88 (1) , 194-202. https://doi.org/10.1046/j.1471-4159.2003.02125.x
    63. Ayhan S. Demir, Özge Sesenoglu, Dincer Ülkü, Cengiz Arici. Enantioselective Synthesis of 2‐(2‐Arylcyclopropyl)glycines: Conformationally Restricted Homophenylalanine Analogs. Helvetica Chimica Acta 2004, 87 (1) , 106-119. https://doi.org/10.1002/hlca.200490000
    64. Michael F O’Neill, Claire Heron-Maxwell, Michael W Conway, James A Monn, Paul Ornstein. Group II metabotropic glutamate receptor antagonists LY341495 and LY366457 increase locomotor activity in mice. Neuropharmacology 2003, 45 (5) , 565-574. https://doi.org/10.1016/S0028-3908(03)00232-6
    65. Meixiang Yu, Kjell Någren, Y.Iris Chen, Elijahu Livni, David Elmaleh, Alan Kozikowski, Xukui Wang, Kimmo Jokivarsi, Anna-Liisa Brownell. Radiolabeling and biodistribution of methyl 2-(methoxycarbonyl)-2-(methylamino) bicyclo [2.1.1] - hexane -5-carboxylate, a potential neuroprotective drug. Life Sciences 2003, 73 (12) , 1577-1585. https://doi.org/10.1016/S0024-3205(03)00482-X
    66. Giuseppe Battaglia, Carla L. Busceti, Fabrizio Pontarelli, Francesca Biagioni, Francesco Fornai, Antonio Paparelli, Valeria Bruno, Stefano Ruggieri, Ferdinando Nicoletti. Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology 2003, 45 (2) , 155-166. https://doi.org/10.1016/S0028-3908(03)00146-1
    67. Patrick A Howson, David E Jane. Actions of LY341495 on metabotropic glutamate receptor‐mediated responses in the neonatal rat spinal cord. British Journal of Pharmacology 2003, 139 (1) , 147-155. https://doi.org/10.1038/sj.bjp.0705230
    68. . The Carboxyphosphonates. 2003https://doi.org/10.1201/9780203503676.ch8
    69. Ulrik S Sørensen, Thomas J Bleisch, Anne E Kingston, Rebecca A Wright, Bryan G Johnson, Darryle D Schoepp, Paul L Ornstein. Synthesis and Structure–Activity Relationship Studies of Novel 2-Diarylethyl Substituted (2-Carboxycycloprop-1-yl)glycines as High-Affinity Group II Metabotropic Glutamate Receptor Ligands. Bioorganic & Medicinal Chemistry 2003, 11 (2) , 197-205. https://doi.org/10.1016/S0968-0896(02)00387-5
    70. Yan Zhai, Carolyn A George, Jin Zhai, Eric S Nisenbaum, Michael P Johnson, Laura K Nisenbaum. Group II Metabotropic Glutamate Receptor Modulation of DOI-induced c-fos mRNA and Excitatory Responses in the Cerebral Cortex. Neuropsychopharmacology 2003, 28 (1) , 45-52. https://doi.org/10.1038/sj.npp.1300013
    71. Barry M. Trost, Olivier Dirat, Janet L. Gunzner. Callipeltoside A: Assignment of Absolute and Relative Configuration by Total Synthesis. Angewandte Chemie 2002, 114 (5) , 869-871. https://doi.org/10.1002/1521-3757(20020301)114:5<869::AID-ANGE869>3.0.CO;2-G
    72. Roberto Pellicciari, Gabriele Costantino, Maura Marinozzi, Antonio Macchiarulo, Laura Amori, Peter Josef Flor, Fabrizio Gasparini, Rainer Kuhn, Stephan Urwyler. Design, synthesis and preliminary evaluation of novel 3′-Substituted carboxycyclopropylglycines as antagonists at group 2 metabotropic glutamate receptors. Bioorganic & Medicinal Chemistry Letters 2001, 11 (24) , 3179-3182. https://doi.org/10.1016/S0960-894X(01)00656-4
    73. James Monn, Darryle Schoepp. Pharmacology of metabotropic glutamate receptors. 2001, 151-186. https://doi.org/10.1201/9780203299388.ch7
    74. A J Doherty, M J Palmer, Z A Bortolotto, A Hargreaves, A E Kingston, P L Ornstein, D D Schoepp, D Lodge, G L Collingridge. A novel, competitive mGlu 5 receptor antagonist (LY344545) blocks DHPG‐induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. British Journal of Pharmacology 2000, 131 (2) , 239-244. https://doi.org/10.1038/sj.bjp.0703574
    75. Enrico Morera, Marianna Nalli, Francesco Pinnen, Domenico Rossi, Gino Lucente. 4-Amino-1,2-dithiolane-4-carboxylic acid (Adt) as cysteine conformationally restricted analogue. synthetic protocol for Adt containing peptides. Bioorganic & Medicinal Chemistry Letters 2000, 10 (14) , 1585-1588. https://doi.org/10.1016/S0960-894X(00)00281-X
    76. Cyril De Colle, Anne-Sophie Bessis, Joël Bockaert, Francine Acher, Jean-Philippe Pin. Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor. European Journal of Pharmacology 2000, 394 (1) , 17-26. https://doi.org/10.1016/S0014-2999(00)00113-8
    77. James A. Monn, Darryle D. Schoepp. Chapter 1. Metabotropic glutamate receptor modulators: Recent advances and therapeutic potential. 2000, 1-10. https://doi.org/10.1016/S0065-7743(00)35002-3
    78. Atsuro Nakazato, Shigeru Okuyama. Recent advances in novel atypical antipsychotic agents: potential therapeutic agents for the treatment of schizophrenia. Expert Opinion on Therapeutic Patents 2000, 10 (1) , 75-98. https://doi.org/10.1517/13543776.10.1.75
    79. Bryan G Johnson, Rebecca A Wright, M.Brian Arnold, William J Wheeler, Paul L Ornstein, Darryle D Schoepp. [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells. Neuropharmacology 1999, 38 (10) , 1519-1529. https://doi.org/10.1016/S0028-3908(99)00053-2
    80. Darryle D. Schoepp, David E. Jane, James A. Monn. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 1999, 38 (10) , 1431-1476. https://doi.org/10.1016/S0028-3908(99)00092-1
    81. C. J. Beaver, Q.-H. Ji, N. W. Daw. Effect of the Group II Metabotropic Glutamate Agonist, 2R,4R-APDC, Varies With Age, Layer, and Visual Experience in the Visual Cortex. Journal of Neurophysiology 1999, 82 (1) , 86-93. https://doi.org/10.1152/jn.1999.82.1.86
    82. Angel Mazón, Concepción Pedregal, William Prowse. Enantioselective synthesis of 2-(3′-alkyl-2′-carboxy cyclopropyl)glycines. Tetrahedron 1999, 55 (22) , 7057-7064. https://doi.org/10.1016/S0040-4020(99)00333-6
    83. Michael Arlt, Henning Böttcher, Joachim Gante, Rolf Gericke, Rudolf Gottschlich, Günter Hölzemann, Rochus Jonas, Alfred Jonczyk, Werner W. K. R. Mederski, Matthias Wiesyner, Nils Griebenow, Jan‐Gerd Hansel, Stephen Jordan, Tobias Wunberg. Organische Chemie 1998, Teil II. Nachrichten aus Chemie, Technik und Laboratorium 1999, 47 (3) , 275-285. https://doi.org/10.1002/nadc.19990470308
    84. Dawei Ma. Conformationally Constrained Analogues ofL-Glutamate as Subtype-Selective Modulators of Metabotropic Glutamate Receptors. Bioorganic Chemistry 1999, 27 (1) , 20-34. https://doi.org/10.1006/bioo.1998.1107
    85. Carlos Cativiela, Marı́a Dolores Dı́az-de-Villegas. Stereoselective synthesis of quaternary α-amino acids. Part 1: Acyclic compounds. Tetrahedron: Asymmetry 1998, 9 (20) , 3517-3599. https://doi.org/10.1016/S0957-4166(98)00391-7
    86. Iván Collado, Jesús Ezquerra, Angel Mazón, Concepción Pedregal, Belén Yruretagoyena, Anne E. Kingston, Rosemary Tomlinson, Rebecca A. Wright, Bryan G. Johnson, Darryle D. Schoepp. 2,3′-disubstituted-2-(2′-carboxycyclopropyl)glycines as potent and selective antagonists of metabotropic glutamate receptors. Bioorganic & Medicinal Chemistry Letters 1998, 8 (20) , 2849-2854. https://doi.org/10.1016/S0960-894X(98)00510-1
    87. Isabelle Brabet, Marie-Laure Parmentier, Cyril De Colle, Joël Bockaert, Francine Acher, Jean-Philippe Pin. Comparative effect of l-CCG-I, DCG-IV and γ-carboxy-l-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology 1998, 37 (8) , 1043-1051. https://doi.org/10.1016/S0028-3908(98)00091-4
    88. Paul L. Ornstein, M.Brian Arnold, Thomas J. Bieisch, Rebecca A. Wright, William J. Wheeler, Darryle D. Schoepp. [3H]LY341495, a highly potent, selective and novel radioligand for labeling group II metabotropic glutamate receptors. Bioorganic & Medicinal Chemistry Letters 1998, 8 (14) , 1919-1922. https://doi.org/10.1016/S0960-894X(98)00329-1
    89. A.E Kingston, P.L Ornstein, R.A Wright, B.G Johnson, N.G Mayne, J.P Burnett, R Belagaje, S Wu, D.D Schoepp. LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology 1998, 37 (1) , 1-12. https://doi.org/10.1016/S0028-3908(97)00191-3
    90. Michael P. Johnson, Darryle D. Schoepp. Group II Metabotropic Glutamate Receptors (mGlu2 and mGlu3). , 465-488. https://doi.org/10.1007/978-1-59745-055-3_11

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 1998, 41, 3, 358–378
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm970498o
    Published January 14, 1998
    Copyright © 1998 American Chemical Society

    Article Views

    1480

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.